中考物理知识点 ——热学秘籍

合集下载

初中物理热学知识点归纳

初中物理热学知识点归纳

初中物理热学知识点归纳热学是物理学中的重要分支之一,它研究物体的热现象和热能转换等内容。

初中物理课程中,热学知识点是不可或缺的部分。

本文将为您归纳初中物理热学知识点,帮助您更好地理解和掌握这一领域的内容。

一、热量与能量转化1. 热和温度的概念:热是能量在物体之间传递的形式,而温度是物体内部分子或原子的平均动能大小。

温度高低决定了物体的热量高低。

2. 热平衡:当两个物体接触时,通过传导、对流或辐射等方式,热量会从温度高的物体传递到温度低的物体。

当两个物体达到相同的温度时,它们处于热平衡状态。

3. 热量的传递方式:热量可以通过三种方式传递,分别是传导、对流和辐射。

4. 传导:传导是热量在物体内部通过分子间的碰撞传递的方式。

导体具有较好的导热性能,而绝缘体则反之。

5. 对流:对流是流体(气体或液体)通过气流或液流的方式传递热量。

对流的速度与温度差、流体性质以及容器形状等有关。

6. 辐射:辐射是指由物体的高温部分向四周空间传递热量的方式。

辐射热量不需要介质,可以在真空中传递。

二、热量的计量1. 热量的单位:国际单位制中,热量的单位是焦耳(J),1焦耳等于在1秒钟内,1牛的力作用下,物体的体积膨胀1米。

2. 热量的测量:利用焦耳热量计可以测量热量的大小。

热量计由内胆、外壳和计量装置组成。

三、物质的热性质1. 热容与比热容:物体在加热时吸收热量会导致温度升高,而物体的热容量指的是单位质量物质温度升高1摄氏度所吸收的热量。

比热容则是指单位质量物质所吸收的热量。

2. 热膨胀和热收缩:物体在受热时会膨胀,在受冷时会收缩。

热膨胀和热收缩是物体热性质的表现。

四、三态转化与热力学循环1. 固体、液体和气体:物质存在三种基本状态,即固体、液体和气体。

固体分子紧密排列,无规则运动;液体分子较为松散,有自由运动;气体分子间距离较大,分子运动剧烈。

2. 相变:物质在升温或降温过程中会发生相变,包括熔化、凝固、蒸发、液化、升华和凝华。

初中物理热学知识点

初中物理热学知识点

初中物理热学知识点初中物理知识点:热学热学一、热现象:(一.)温度:1.物理意义:表示物体的冷热程度。

2.单位;摄氏度( ℃ )。

3.测量工具:温度计;4.温度计(1)制作原理:利用液体的胀热冷缩。

(2)常用种类:实验用温度计(测量范围:0℃~100℃)、体温计(测量范围:35℃~42℃)、寒暑表(测量范围:-30℃~50℃)。

(3)使用方法:使用前------使用时-------5.体温计的特殊结构:(1)三棱形的柱体(起放大液体的作用,容易观察液面的位置);(2)缩口——液泡和毛细管之间有一段非常细的部分(作用:上升到毛细管的水银不能自动回到玻璃泡内,在缩口处被切断)。

6.使用方法:使用前必须先向下甩一甩,读数时可以离开人体读)。

(二)物态变化:1.熔化:固变液,吸热,(晶体有熔点,熔化时吸热,但温度保持不变,非晶体没有熔点,熔化时吸热,但温度一直升高)。

2.凝固:液变固,放热。

3.汽化:液变气,吸热。

(1)两种方式;蒸发和沸腾。

(2)蒸发:A.条件:任何温度,只在液体的表面。

B.影响蒸发快慢的因素:液体温度、表面积、液面上的气流。

(3)沸腾:A.条件:达到沸点,继续吸热,液体表面和内部同时发生的。

B .影响沸腾的因素:液体表面上气压的大小(气压越大,沸点越高)。

4液化:气变液,放热。

(1)液化方法:A.降温 B.压缩体积(2)例如:“白气”、雾、露。

液化气。

二、热和能:1.分子动理论:(1)物质是由分子组成的;(2)一切物质的分子都在不停地做无规则运动 (扩散现象表明分子在不停地运动着;温度越高,分子运动越激烈,扩散现象越明显。

)(3)分子间有相互作用的引力和斥力2、内能:(1)概念:物体内部所有分子热运动的动能和势能的总和。

(2)内能大小与温度有关:同一个物体温度越高,内能越大。

(3)改变物体内能的方式有:做功和热传递。

(在热传递过程中传递能量的多少叫热量,单位是焦耳J。

物体间只要有温度差存在就有热传递发生。

初中物理热学知识点总结

初中物理热学知识点总结

初中物理热学知识点总结一、热现象的基础知识1. 温度:物体冷热程度的物理量,通常用摄氏度(℃)、华氏度(℉)或开尔文(K)表示。

2. 热量:物体内部分子热运动的总能量,单位是焦耳(J)。

3. 热传递:热量从高温物体传递到低温物体的过程,方式有导热、对流和辐射。

二、热量的计算1. 比热容:单位质量的物质升高或降低1摄氏度所需的热量,单位是J/(kg·℃)。

2. 热容量:物体升高或降低1摄氏度所需的热量,单位是焦耳(J)。

3. 热传递公式:Q = mcΔT,其中Q是热量,m是物质的质量,c是比热容,ΔT是温度变化。

三、热膨胀和冷缩1. 热膨胀:物体受热后体积膨胀的现象。

2. 膨胀系数:物体温度每变化1摄氏度,体积变化的比率。

3. 应用:铁路铺设、桥梁建设中的伸缩缝设计。

四、相变1. 熔化:固体变成液体的过程,需要吸收热量。

2. 凝固:液体变成固体的过程,会放出热量。

3. 沸腾:液体在一定温度下变成气体的过程,此时温度称为沸点。

4. 冷凝:气体在一定温度下变成液体的过程,会放出热量。

五、热机1. 内燃机:通过燃料在发动机内部燃烧产生动力的机械。

2. 热效率:热机将热量转化为有用功的效率。

3. 卡诺循环:理想热机的四个过程,包括等温膨胀、绝热膨胀、等温压缩和绝热压缩。

六、热力学定律1. 第一定律:能量守恒定律,即能量不能被创造或消灭,只能从一种形式转换为另一种形式。

2. 第二定律:熵增原理,即在一个封闭系统中,总熵(代表无序度)不会减少。

3. 第三定律:当温度趋近于绝对零度时,所有纯净物质的熵趋近于一个常数。

七、热学实验1. 温度计的使用:测量温度的工具,有水银温度计、酒精温度计等。

2. 热量计的使用:测量物质在相变过程中吸收或放出热量的实验装置。

3. 热膨胀实验:观察并测量物体在受热后长度的变化。

八、热学在生活中的应用1. 保温材料:减少热量流失,用于建筑、服装等领域。

2. 制冷设备:通过制冷剂的相变过程,降低物体的温度。

九年级物理热学知识点

九年级物理热学知识点

九年级物理热学知识点一、热学基本概念热学是研究热现象及其规律的学科,是物理学中的重要分支。

热学研究的对象是热量和温度以及它们之间的相互转化关系。

二、温度和热量1. 温度的定义与测量温度是物体冷热程度的度量,用于描述物体内部微观粒子的平均动能。

常用的温标有摄氏度和开氏度。

2. 热量的传递热能从高温物体传递到低温物体的过程称为热传导。

热传导可以通过导热材料(如金属)和空气等介质进行。

三、热平衡和热容1. 热平衡和热传导定律当两个物体处于接触状态时,它们之间的温度差趋向于消失,达到热平衡。

根据热传导定律,热量的传递速率与温度差成正比。

2. 热容和比热容热容是物体对热量变化的反应能力,用于描述物体吸收或释放热量的能力。

比热容是单位质量物质的热容。

不同物质的比热容不同,单位质量相同的物质比热容也可能随温度变化。

四、相变和热力学第一定律1. 相变和潜热物质在温度变化过程中可能会经历相变,如固态转化为液态、液态转化为气态等。

相变过程中,物质吸收或释放的热量称为潜热。

2. 热力学第一定律热力学第一定律是能量守恒定律在热学中的具体表现。

它指出,物体吸收的热量等于它所增加的内能和对外界所做的功之和。

五、热膨胀和热力学第二定律1. 热膨胀物体受热时,它的体积会发生变化,这种现象称为热膨胀。

热膨胀的原理和应用十分广泛,例如铁轨的伸长、液体温度计的工作原理等。

2. 热力学第二定律热力学第二定律揭示了热量的自然流动方向,即热量只能从温度较高的物体流向温度较低的物体,不会自发地由低温物体转移到高温物体。

六、理想气体和气体定律1. 理想气体模型理想气体是研究气体性质的一个简化模型,它假设气体的分子是无体积、无相互作用的质点,与容器壁碰撞时完全弹性碰撞。

2. 气体状态方程气体状态方程描述了气体的压强、体积和温度之间的关系。

常用的气体状态方程有理想气体状态方程、查理定律、盖-吕萨克定律等。

七、热功和功率1. 热功和功率的定义热功是物体由于受到热量作用而对外界所做的功。

九年级物理热学知识点总结

九年级物理热学知识点总结

九年级物理热学知识点总结1. 热量与温度的关系热量是物体传递热能的能力大小的量度,用单位焦耳(J)表示。

温度是物体内部分子热运动的程度,用单位摄氏度(℃)表示。

温度高低决定了物体的热运动速度,温度越高,分子热运动越激烈,热能传递速率越快。

2. 物质的内能物质内部的分子各自根据其微观状态具有相应的能量大小,这部分能量即为物质的内能,以单位质量的物质所具有的内能称为比热容。

物质的内能包括形成势能、动能以及各种内部相互作用交换的能量。

3. 热传导热传导是指物体内部或不同物体之间热量通过分子间的碰撞传递的过程。

热传导的速率与物体的温度差、物体的导热系数以及物体的截面积等因素有关。

导热系数越大,传热速率越快。

4. 热扩散热扩散是指物质内部的热平衡过程,热自高温处向低温处传播。

各个点的温度逐渐趋于一致。

热扩散是热传导的一个特例,它主要发生在固体物质中。

5. 热辐射热辐射是指热量通过电磁波的方式传播,不需要介质进行传递。

热辐射的速率与物体的温度的四次方成正比,即斯特藩定律。

黑体辐射是指在任何温度下,完全吸收一切辐射的理想物体。

6. 热容热容是物体吸收或放出单位热量所引起的温度变化的能力,用单位质量或单位摩尔物质的热容来表示。

物体的热容与其质量、物质的比热容以及物体的温度变化量有关。

7. 相变相变是物质在一定温度和压力下由一种物态转变为另一种物态的过程。

常见的相变有固态到液态的熔化、液态到气态的汽化、固态到气态的升华以及气态到液态的凝结等。

8. 冷热交换冷热交换是指物体或系统之间热量的传递过程,包括热传导、热辐射和热对流。

冷热交换的目的是使温度不同的物体趋于热平衡,即达到相同的温度。

9. 热功与功率热功是指物体由于温度差而进行的能量转化。

功率是单位时间内的能量转化率,用单位焦耳/秒来表示。

热功率是指在单位时间内传递的热量大小。

10. 热效率热效率是指在能量转化过程中,有用能量所占的比例。

热效率可以用功率的比例来表示,通常以百分比的形式展示。

九年级热学知识点

九年级热学知识点

九年级热学知识点热学知识点是九年级物理中的重要内容之一。

通过学习热学知识点,我们可以更好地理解热现象和能量转化过程,并应用于实际生活中。

本文将介绍九年级热学的几个重要知识点,包括热传递、热容量和热膨胀。

一、热传递热传递是指热量从高温物体传递到低温物体的过程。

常见的热传递方式有导热、对流和辐射。

1. 导热:导热是指热量通过物体内部的传递方式。

导热会受到物体的导热性和温度差的影响。

导热性是指物质导热的能力,常用导热系数来表示。

温度差越大,导热速率越大。

2. 对流:对流是指热量通过流体(液体或气体)的传递方式。

对流传热受到流体的热传导性、流体自身性质以及温度差的影响。

液体和气体的对流传热速率要大于固体。

3. 辐射:辐射是指热量通过电磁波的传递方式。

辐射传热不需要介质,可以在真空中传递。

辐射的传热速率与物体的温度和表面特性有关。

二、热容量热容量是指物体吸收或释放单位温度变化所需要的热量。

它可以用来衡量物体的热惰性。

1. 热容量的计算:热容量的计算公式为Q=C×ΔT,其中Q表示热量变化,C表示热容量,ΔT表示温度变化。

2. 比热容量:比热容量是指单位质量物质吸收或释放单位温度变化所需要的热量。

它可以用来比较不同物质的热惰性。

比热容量的计算公式为Q=mcΔT,其中Q表示热量变化,m表示物质的质量,c表示比热容量,ΔT表示温度变化。

三、热膨胀热膨胀是指物体在受热时体积或长度发生变化的现象。

热膨胀分为线膨胀、面膨胀和体膨胀三种形式。

1. 线膨胀:物体在受热时长度会发生变化,称为线膨胀。

线膨胀的大小与物体的材料有关,通常用线膨胀系数来表示。

2. 面膨胀:平面上的物体在受热时面积会发生变化,称为面膨胀。

面膨胀的大小与物体的材料有关,通常用面膨胀系数来表示。

3. 体膨胀:物体在受热时体积会发生变化,称为体膨胀。

体膨胀的大小与物体的材料有关,通常用体膨胀系数来表示。

四、热学应用热学的知识在生活中有很多应用。

例如,我们可以利用导热的原理来制作保温杯,使热饮保持更长时间的温度;我们可以利用对流的原理来设计散热器,降低电子产品的温度;我们可以利用热膨胀的原理来制作巧妙的物品,如温度敏感笔等。

初中物理热学知识点大全

初中物理热学知识点大全

初中物理热学知识点大全热学是物理学的一个重要分支,主要研究热传导、热平衡、热功与内能等与热相关的现象和规律。

初中阶段学习物理,热学也是必不可少的内容。

下面,我将为你介绍一些初中物理热学的知识点。

1. 温度和热量温度是物体分子热运动的强弱程度的量度,常用单位是摄氏度(℃)。

热量是物体内部微观粒子的能量之和,热量的传递是由高温物体向低温物体传递的。

2. 热传导热传导是热量在物体内部的传递方式,由分子的碰撞和传递引起。

热传导的速度取决于物体的导热性能和温度差异。

导热性能好的物质叫做导体,导热性能差的物质叫做绝缘体。

3. 热膨胀物体在受热时会膨胀,受冷时会收缩,这种现象叫做热膨胀。

热膨胀是由于物体受热后内部微观粒子振动增强,间距增大而引起的。

常见的应用有热胀冷缩原理制造的温度计和铁轨、桥梁等结构物的设计。

4. 比热容比热容是物质单位质量在单位温度变化下吸收或放出的热量。

单位是焦耳/千克∙摄氏度(J/kg∙℃)。

不同物质的比热容不同,比热容越大,物质单位质量吸热或放热的能力越强。

5. 相变相变是物质由一种相向另一种相转变的过程。

常见的相变有熔化、凝固、汽化、液化等。

相变时,物质吸收或放出的热量被称为相变潜热。

相变潜热与物质的性质有关,不同物质的相变潜热不同。

6. 热功与内能热量在物体内部的传递会引起物体的温度变化。

当热量转化为其他形式的能量时,称为热功。

内能是物体分子内部的能量,是热能和其他形式的能量之和。

7. 热力学第一定律热力学第一定律也叫做能量守恒定律,它规定了热量和功的转化关系。

根据热力学第一定律,物体吸收的热量等于物体的增加的内能和对外做的功的和。

8. 热力学第二定律热力学第二定律描述了热量的自然流动方向。

热量不会自动从低温物体传递到高温物体,这是自然界中不可逆的过程。

热力学第二定律还提出了熵增定律,即自发过程中总是会产生熵的增加。

初中物理热学是一个相对简单的领域,但它深刻地解释了许多我们日常生活中的现象。

九年级热学重要知识点归纳

九年级热学重要知识点归纳

九年级热学重要知识点归纳热学是物理学中一个非常重要的分支,涉及到热量、热传递、热力学等方面的知识。

九年级学生在学习热学时,需要掌握一些重要的知识点,下面将对这些知识点进行归纳总结。

1. 温度和热量温度是物体内部微观粒子的平均动能的度量,用温度计来测量,单位为摄氏度(℃)。

热量则是物体间传递的能量,可以引起温度的改变。

热量的传递方式分为传导、传输和辐射三种,其中传导主要通过固体物质中的分子传递,传输主要通过流体介质(如液体和气体)的流动传递,辐射则是指通过电磁波辐射传递热量。

2. 热膨胀热膨胀是物体在受热后体积增大的现象。

根据物体的性质,可以分为线热膨胀、面热膨胀和体热膨胀。

热膨胀有很多应用,比如温度计中的液体膨胀柱的原理,以及铁轨铺设时考虑到夏季温度升高而引起的长度变化。

3. 热力学第一定律热力学第一定律也被称为能量守恒定律,它指出能量在系统与外界之间的转换是守恒的。

简单来说,热力学第一定律可以表示为:系统吸收的热量等于系统对外界做功和系统内能的增量之和。

这个定律对于热力学的理解非常重要,也是其它热学定律的基础。

4. 热力学第二定律热力学第二定律描述了热量在自然界中如何传递的规律。

其中最著名的是卡诺定理,它指出在工作物质温度不变的理想循环中,无论循环的具体形式如何,循环的效率最大值是可逆热机效率,即不可能实现百分之百的热能转化为功。

5. 热力学第三定律热力学第三定律描述了温度接近绝对零度时,物质的行为。

它指出当温度接近绝对零度时,物质的熵趋于零。

这个定律对于解释低温物理学中的一些特殊现象具有重要意义,比如超导、超流等。

6. 热力学过程热力学过程是指系统在压强、温度和体积之间发生变化的过程。

常见的热力学过程有等温过程、绝热过程、等压过程和等容过程等。

对于每一种过程,我们可以通过热力学定律来计算系统的性质变化,比如温度变化、压强变化、体积变化等。

7. 热力学循环热力学循环是指一系列状态变化组成的闭合路径,在这个过程中,系统经历一系列的过程,最终回到初始状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

III热学秘籍
第九卷 物态变化知识归纳
1.温度:是指物体的冷热程度。

测量的工具是温度计, 温度计是根据液体的热胀冷缩的原
理制成的。

℃单位是摄氏度。

把冰水混合物温度规定为0度,把一标准大气压下沸水的2.摄氏温度():
温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。

(注意冰水混合物指的冰与水一段时间内稳定共存,温度不变的状态。


3.常见的温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。

体温计:测量范围是35℃至42℃,每一小格是0.1℃。

4.温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部
浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。

5.固体、液体、气体是物质存在的常见三种状态。

6.熔化:物质从固态变成液态的过程叫熔化。

吸热。

7.凝固:物质从液态变成固态的过程叫凝固。

放热。

8.熔点和凝固点:晶体熔化时保持不变的温度叫熔点;。

晶体凝固时保持不变的温度叫凝
固点。

晶体的熔点和凝固点相同。

9.晶体和非晶体的重要区别:晶体都有一定的熔化温度(即熔点),而非晶体没有熔点。

10.熔化和凝固曲线图:
(晶体熔化和凝固曲线图)
上图中AD是晶体熔化曲线图,晶体在AB段处于固态,在BC段是熔化过程,吸热,但温度不变,处于固液共存状态,CD段处于液态;而DG是晶体凝固曲线图,DE段于液态,EF段落是凝固过程,放热,温度不变,处于固液共存状态,FG处于固态。

11.汽化:物质从液态变为气态的过程叫汽化,汽化的方式有蒸发和沸腾。

都要吸热。

12.蒸发:是在任何温度下,且只在液体表面发生的,缓慢的汽化现象。

13.沸腾:是在一定温度(沸点)下,在液体内部和表面同时发生的剧烈的汽化现象。

液体沸
腾时要吸热,但温度保持不变,这个温度叫沸点。

14.影响液体蒸发快慢的因素:(1)液体温度;(2)液体表面积;(3)液面上方空气流动快慢。

15.液化:物质从气态变成液态的过程叫液化,液化要放热。

使气体液化的方法有:降低温
度和压缩体积。

(液化现象如:“白气”、雾等)
16.升华和凝华:物质从固态直接变成气态叫升华,要吸热;而物质从气态直接变成固态叫
凝华,要放热。

第十卷 内能和比热容知识归纳
1.分子动理论的内容是:
(1)物质由大量分子组成的,分子间有空隙;
(2)一切物体的分子都永不停息地做无规则运动;
(3)分子间同时存在相互作用的引力和斥力。

2.扩散:不同物质相互接触,彼此进入对方现象。

扩散现象是分子不停做无规则运动的宏
观体现。

3.固体、液体压缩时分子间表现为斥力大于引力;固体很难拉长是分子间表现为引力大于
斥力。

4.内能:物体内部所有分子做无规则运动的动能和分子势能的总和叫内能。

(内能也称热
能)
5.物体的内能与温度有关:物体的温度越高,分子运动速度越快,内能就越大。

6.热运动:物体内部大量分子的无规则运动。

7.改变物体的内能两种方法:做功和热传递,这两种方法对改变物体的内能是等效的。

8.物体对外做功,物体的内能减小;外界对物体做功,物体的内能增大。

9.物体吸收热量,当温度升高时,物体内能增大;物体放出热量,当温度降低时,物体内
能减小。

10.所有能量的单位都是:焦耳。

11.热量(Q):在热传递过程中,传递能量的多少叫热量。

(物体含有多少热量的说法是错
误的)
12.比热容(C):单位质量的某种物质温度升高(或降低)1℃,吸收(或放出)的热量叫
做这种物质的比热。

13.比热是物质的一种属性,它不随物质的体积、质量、形状、位置、温度的改变而改变,
只要物质相同,比热就相同。

14.比热的单位是:J/(kg·℃),读作:焦每千克摄氏度。

15.水的比热是:C=4.2×103焦耳/(千克·℃),它表示的物理意义是:每千克的水当温度升高
(或降低)1℃时,吸收(或放出)的热量是4.2×103焦耳。

16.热量的计算:
①Q吸=cm(t-t0△
)=cm t升
(Q吸是吸收的热量,单位是焦耳;c 是物体比热容,单位是:焦/(千克·℃);
m是质量;t0是初始温度;t 是后来的温度。

t)=cm t降
Q
②放 =cm(t0-△
17.热值(q ):1千克某种燃料完全燃烧放出的热量,叫热值。

单位是:焦耳/千克。

18.燃料燃烧放出热量计算:Q放=qm;(Q放是热量,单位是:焦耳;q是热值,单位
是:焦/千克;m 是质量,单位是:千克。


若燃料是气体,也有:Q放=q V;(Q放是热量,单位是:焦耳;q是热值,单位是:焦/立方米;V是体积,单位是:立方米。


19.利用内能可以加热,也可以做功。

20.内燃机可分为汽油机和柴油机,它们一个工作循环由吸气、压缩、做功和排气四个冲程。

一个工作循环中对外做功1次,活塞往复2次,曲轴转2周。

21.热机的效率:用来做有用功的那部分能量和燃料完全燃烧放出的能量之比,叫热机的效
率。

热机的效率是热机性能的一个重要指标
22.在热机的各种损失中,废气带走的能量最多,设法利用废气的能量,是提高燃料利用率
的重要措施。

相关文档
最新文档