普通克里金(OrdinaryKriging)插值及MATLAB实例

合集下载

克里金(kriging)插值的原理与公式推导

克里金(kriging)插值的原理与公式推导

克里金(kriging)插值的原理与公式推导
克里金插值是一种空间插值方法,用于估计未知区域的数值,其
原理是基于空间数据的空间相关性来进行插值。

具体来说,克里金插
值假设空间数据在不同位置之间具有一定的相关性,即在空间上相邻
的点具有相似的数值。

克里金插值利用这种相关性来进行插值,从而
可以更准确地估计未知位置的数值。

克里金插值的公式推导涉及到半变异函数的定义,通常使用高斯
模型、指数模型或球形模型来描述数据的空间相关性。

在推导过程中,会利用已知数据点的数值和位置信息,以及半变异函数的参数来构建
插值模型,进而估计未知位置的数值。

克里金插值的公式可以表示为:
\[Z(u) = \sum_{i=1}^{n} \lambda_i \cdot Z(u_i)\]
其中,\(Z(u)\)为未知位置的数值,\(Z(u_i)\)为已知数据点的
数值,\(\lambda_i\)为插值权重,通过半变异函数及数据点之间的空
间距离计算得出。

除了基本的克里金插值方法外,还有一些相关的扩展方法,如普通克里金、泛克里金等,这些方法在建模和插值的过程中考虑了更多的因素,如均值趋势、空间方向等,使得插值结果更加准确和可靠。

总的来说,克里金插值是一种常用的空间插值方法,适用于各种地学环境下的数据分析与建模。

在实际应用中,需要根据具体数据的特点选择合适的插值方法和模型参数,以获得准确的插值结果。

(最新整理)克里金插值法

(最新整理)克里金插值法

(完整)克里金插值法编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)克里金插值法)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)克里金插值法的全部内容。

克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D 。

Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法.1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。

其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1].因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。

假设研究区域a 上研究变量Z(x),在点x i ∈A (i=1,2,……,n )处属性值为Z(x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n)的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。

普通克里金OKOrdinaryKriging-Read

普通克里金OKOrdinaryKriging-Read
对于一组样本:
m




xp( x)dx
( zi )
i 1
N
N
(2)方差 为随机变量ξ的离散性特征数。若数学期望 E[ξ-E(ξ)]2存在,则称它为ξ的方差,记为D(ξ), 或Var(ξ),或σξ2。 D(ξ)= E[ξ-E(ξ)]2 其简算公式为 D(ξ)=E(ξ2) –[E(ξ)]2 方差的平方根为标准差,记为σξ
为一个实值变量,可根据概率分布取不同的值。 每次取值(观测)结果z为一个确定的数值,称为 随机变量Z的一个实现。
P

连续变量:
累积分布函数(cdf) cumulative distribution function
Z (u)
F (u; z) Pr ob{Z (u) z}
P
条件累积分布函数(ccdf)后验 conditional cumulative distribution function
G. Materon(1962)
1977年我国开始引入
井眼
克里金插值方法
z
*
x 0 i z xi
i 1
n
地震
(普通克里金)
不仅考虑待估点位置与
已知数据位置的相互关 系,而且还考虑变量的 空间相关性。 (应用随机函数理论)
第一节 基本原理
一、随机变量与随机函数
1. 随机变量
对于单变量而言:
P
F(u; z) F(u h; z)
可从研究区内所有数据的累积直方图推断而得 (将邻近点当成重复取样点)

太强的假设,不符合实际
二阶平稳 当区域化变量Z(u)满足下列二个条件时,则称其 为二阶平稳或弱平稳: ① 在整个研究区内有Z(u)的数学期望存在, 且等于常数,即: E[Z(u)] = E[Z(u+h)] = m(常数)

克里金插值

克里金插值

克里金(Kriging)插值克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。

克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。

该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。

它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后进行加权平均来估计块段品位的方法。

但它仍是一种光滑的内插方法在数据点多时,其内插的结果可信度较高。

克里金法类型分常规克里金插值(常规克里金模型/克里金点模型)和块克里金插值。

常规克里金插值其内插值与原始样本的容量有关,当样本数量较少的情况下,采用简单的常规克里金模型内插的结果图会出现明显的凹凸现象;块克里金插值是通过修改克里金方程以估计子块B内的平均值来克服克里金点模型的缺点,对估算给定面积实验小区的平均值或对给定格网大小的规则格网进行插值比较适用。

块克里金插值估算的方差结果常小于常规克里金插值,所以,生成的平滑插值表面不会发生常规克里金模型的凹凸现象。

按照空间场是否存在漂移(drift)可将克里金插值分为普通克里金和泛克里金,其中普通克里金(Ordinary Kriging简称OK法)常称作局部最优线性无偏估计.所谓线性是指估计值是样本值的线性组合,即加权线性平均,无偏是指理论上估计值的平均值等于实际样本值的平均值,即估计的平均误差为0,最优是指估计的误差方差最小。

在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括:Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)下面简单说明不同算法的特点。

克里金插值(kriging)

克里金插值(kriging)

二、统计推断与平稳要求
任何统计推断(cdf,数学期望等)均要求重复取样。 但在储层预测中,一个位置只能有一个样品。 同一位置重复取样,得到cdf,不现实
P

考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
空间一点处的观测值可解释为一个随机变量在该点
P

F(u; z) F(u h; z)

可从研究区内所有数据的累积直方图推断而得 (将邻近点当成重复取样点)
太强的假设,不符合实际
二阶平稳
当区域化变量Z(u)满足下列二个条件时,则称其 为二阶平稳或弱平稳:
① 在整个研究区内有Z(u)的数学期望存在, 且等于常数,即: E[Z(u)] = E[Z(u+h)] = m(常数) x h
为相应的观测值。区域化变量在 x0处的值 z* x0 可
采用一个线性组合来估计:
n
z*x0 i zxi i 1
无偏性和估计方差最小被作为 i 选取的标准
无偏 E Zx0 Z * x0 0 最优 Var Zx0 Z * x0 min
绝对收敛,则称它为ξ的数学期望,记为E(ξ)。

E(ξ) =
xp( x)dx

数学期望是随机变量的最基本的数字特征,
相当于随机变量以其取值概率为权的加权平均数。
从矩的角度说,数学期望是ξ的一阶原点矩。
对于一组样本:
N
( zi )
m i1 N
(2)方差 为随机变量ξ的离散性特征数。若数学期望
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。

kriging插值

kriging插值
m=

−∞
xp( x)dx
(∑ zi )
i =1Βιβλιοθήκη NN(2)方差 方差 为随机变量ξ的离散性特征数。若数学期望 E[ξ-E(ξ)]2存在,则称它为ξ的方差,记为D(ξ), 或Var(ξ),或σξ2。 D(ξ)= E[ξ-E(ξ)]2 其简算公式为 D(ξ)=E(ξ2) –[E(ξ)]2 方差的平方根为标准差,记为σξ
第一节 基本原理
一、随机变量与随机函数 1. 随机变量
为一个实值变量,可根据概率分布取不同的值。 为一个实值变量,可根据概率分布取不同的值。 每次取值(观测)结果z为一个确定的数值,称为 每次取值(观测)结果 为一个确定的数值, 为一个确定的数值 随机变量Z的一个实现。 随机变量 的一个实现。
P
φ
离散型地质变量
(范畴变量) 范畴变量) 类型变量
构造深度 砂体厚度 有效厚度 孔隙度 渗透率 含油饱和度
砂体 相 流动单元 隔夹层 断层
随机变量的特征值: 随机变量的特征值:
(1)数学期望 数学期望 是随机变量ξ的整体代表性特征数。 是随机变量 的整体代表性特征数。 的整体代表性特征数 ①设离散型随机变量ξ的所有可能取值为 离散型随机变量 的所有可能取值为 x1,x2,…,其相应的概率为 , P (ξ=xk)= pk, k=1,2,…. 则当级数 ∑ x k p k 绝对收敛时,称此级数的 k =1 和为ξ的数学期望,记为E(ξ),或Eξ。 E(ξ) =
第二讲
克里金插值
克里金方法( 克里金方法(Kriging), 是以南非矿业 ) 工程师D.G.Krige (克里格 名字命名的一项 工程师 克里格)名字命名的一项 克里格 实用空间估计技术, 实用空间估计技术,是地质统计学 的重要 组成部分,也是地质统计学的核心。 组成部分,也是地质统计学的核心。

matlab克里金模型代码实现

matlab克里金模型代码实现

matlab克里金模型代码实现介绍在地质学、气象学及环境科学等领域,克里金模型被广泛应用于空间插值和地质建模。

克里金模型通过通过插值已知数据点的属性值,来预测未知地点的属性值。

克里金模型的应用可以帮助我们预测未来的趋势,进行空间分析和决策支持,因此在实际问题中具有重要意义。

本文将介绍如何使用Matlab实现克里金模型,并通过一个案例来演示代码的应用。

简介克里金模型克里金模型是一种基于统计学理论的插值方法,通过计算空间点之间的相关性来实现插值。

在克里金模型中,我们将空间点的属性值视为随机变量,并假设这些随机变量之间存在某种空间相关性(通常是指数函数、高斯函数或球面函数)。

通过计算已知点之间的空间距离及其属性值的差异,克里金模型可以估计未知点的属性值。

克里金模型的优点在于:可以处理不完全的数据、考虑了空间自相关性及环境变量、提供了预测的不确定性。

MatlabMatlab是一个强大的科学计算软件,被广泛应用于各个领域的工程和科学研究。

Matlab提供了许多内置函数和工具箱,可以方便地进行克里金模型的实现和计算。

实现步骤准备工作在开始编写代码之前,我们需要准备一些数据和环境。

数据获取首先,我们需要收集属性值的已知数据点,这些数据点应该包括空间坐标和属性值。

数据可以通过现场观测、实验测量或已有的数据集等方式获取。

Matlab环境配置在使用Matlab进行克里金模型计算之前,我们需要确保相关的工具箱已经安装。

使用以下命令检查并安装克里金模型工具箱:ver如果克里金模型工具箱未安装,可以通过以下命令进行安装:pkg install kriging数据预处理数据预处理是准备数据以进行克里金模型计算的重要步骤。

数据导入将已知数据点的坐标和属性值导入到Matlab中。

可以使用csvread函数或load函数来读取数据。

data = csvread('data.csv');coordinates = data(:, 1:2);values = data(:, 3);数据可视化在进行数据插值之前,我们可以先对数据进行可视化,以了解数据的分布情况和属性值的变化趋势。

kriging(克里金方法,克里金插值)

kriging(克里金方法,克里金插值)
η)的二阶混合中心矩μ11,记为Cov(ξ,η),或σξ,η。
Cov(ξ,η) = σξ,η = E[ξ-E(ξ)][η-E(η)]
其简算公式为 Cov(ξ,η) = E (ξη)-E(ξ) ·E(η)
二、统计推断与平稳要求
•任何统计推断(cdf,数学期望等)均要求重复取样。 •但在储层预测中,一个位置只能有一个样品。 •同一位置重复取样,得到cdf,不现实
严格平稳
F(u1,,uK ; z1,, zK ) F(u1 h,,uK h; z1,, zK )
对于单变量而言:
P
F(u; z) F(u h; z)
可从研究区内所有数据的累积直方图推断而得 (将邻近点当成重复取样点)
太强的假设,不符合实际
二阶平稳
当区域化变量Z(u)满足下列二个条件时,则称其 为二阶平稳或弱平稳:
块金效应的尺度效应
如果品位完全是典型的随机变量,则不论 观测尺度大小,所得到的实验变差函数曲线总 是接近于纯块金效应模型。
当采样网格过大时,将掩盖小尺度的结构, 而将采样尺度内的变化均视为块金常数。这种 现象即为块金效应的尺度效应。
1
3
3
3
1
2
3
1
1
(h) = C(0) – C(h)
基台值(Sill):代表变量在空间上的总变异性大小。即为变 差函数在h大于变程时的值,为块金值c0和拱高cc之和。 拱高为在取得有效数据的尺度上,可观测得到的变异性幅 度大小。当块金值等于0时,基台值即为拱高。
克里金方法(Kriging), 是以南非矿业 工程师D.G.Krige (克里格)名字命名的一项 实用空间估计技术,是地质统计学 的重要 组成部分,也是地质统计学的核心。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档