动能势能动能定理
动能与势能相互转化

1、 在距离地面20m高处以15m/s的初速度 水平抛出一小球,不计空气阻力,取g= 10m/s2,求小球落地速度大小? 答案:25m/s
2 、如图所示,在竖直平面内有一段四分 之一圆弧轨道,半径OA在水平方向,一个质量 为m的小球从顶端A点由静止开始下滑,不计摩 擦,求小球到达轨道底端 B 点时小球对轨道压 力的大小为多少? 答案:3mg
重力势能相互转化,但 总量保持不变
(2)、动能与弹性势能的相互转化
实验探究
1 、运动中小球动能和势能如何 变化? 2、上述实验现象说明了什么? 结论:运动中动能与
弹性势能相互转化,但 总量保持不变
二、机械能守恒定律
如图,质量为m的物体在空中做平抛运动,在高度h1的A处 时速度为v1,在高度为h2的B处速度为v2。
E E
Ek 2 Βιβλιοθήκη p 2 Ek1 E p1
a、
1 1 2 2 mv2 mgh2 mv1 mgh1 2 2
意义:系统的初、末状态的机械能守恒,运用时必须 选取参考平面,把初末状态的重力势能正负表示清楚
B、
EP减 Ek增
E E E E
P1 P2 K2
K1
意义:系统减少(增加)的重力势能等于系统 增加(减少)的动能,运用时无需选取参考 平面,只需判断运动过程中系统的重力势能 的变化
C、
EA减 EB增
意义:A物体减少的机械能等于B物体增 加的机械能,运用时无需选取参考平面
机械能守恒定律的守恒条件
机 械 能 守 恒 定 律
只有重力(弹力)做功包括: ①只受重力(或系统内的弹力),不受其 他力(如所有做抛体运动的物体,不计阻力)。 ②还有其它力,但其它力都不做功或其他 力做功代数和时刻为零(只有重力和系统内部 的弹力做功) 。
11能量流动分析(上)——功、动能定理和势能定理

第十一讲:能量流动分析(上)——功、动能定理和势能定理---------------------------------------------------------------------------------------------------------------------- 一、功【例1】如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置。
在下列三种情况下,分别用水平拉力F 将小球拉到细线与竖直方向成θ角的位置。
在此过程中,拉力F 做的功各是多少?⑴用F 缓慢地拉;⑵F 为恒力;⑶若F 为恒力,而且拉到该位置时小球的速度刚好为零。
可供选择的答案有A .θcos FLB .θsin FLC .()θcos 1-FLD .()θcos 1-mgL二、动能定理【例2】如图所示,游乐列车由许多节车厢组成。
列车全长为L ,圆形轨道半径为R ,(R 远大于一节车厢的高度h 和长度l ,但L>2πR )。
已知列车的车轮是卡在导轨上的光滑槽中只能使列车沿着圆周运动而不能脱轨。
试问:列车在水平轨道上应具有多大初速度V 0,才能使列车通过圆形轨道?三、势能定理【例3】物体间万有引力场中具有的势能叫做引力势能。
取两物体相距无穷远时的引力势能为零,一个质量为的质点距离质量为M 0的引力源中心为时。
其引力势能(式中G 为引力常数),一颗质地为的人造地球卫星以圆形轨道环绕地球飞行,已知地球的质量为M ,由于受高空稀薄空气的阻力作用。
卫星的圆轨道半径从逐渐减小到。
若在这个过程中空气阻力做功为,则在下面约会出的的四个表达式中正确的是:( )A .B .C .D .0m 0r 00r m GM E p -=m 1r 2r f W f W ⎪⎪⎭⎫⎝⎛--=2111r r GMm W f⎪⎪⎭⎫⎝⎛--=12112r r GMm W f ⎪⎪⎭⎫⎝⎛--=21113r r GMm W f ⎪⎪⎭⎫ ⎝⎛--=12113r r GMm W f【例4】有一个竖直固定在地面的透气圆筒,筒中有一劲度为k的轻弹簧,其下端固定,上端连接一质量为m的薄滑块,圆筒内壁涂有一层新型智能材料——ER流体,它对滑块的阻力可调。
重力势能、弹性势能、动能及动能定理

.课重力势能、弹性势能、动能和动能定理题教学目的重难点1、掌握重力势能、弹性势能和动能的概念2、熟练应用动能定理动能定理的应用教学内容【根底知识总结与稳固】一、重力做功和重力势能(1〕重力做功特点:重力对物体所做的功只跟物体的初末位置的高度有关,跟物体运动的路径无关。
物体沿闭合的路径运动一周,重力做功为零,其实恒力〔大小方向不变〕做功都具有这一特点。
如物体由 A 位置运动到 B 位置,如图 1 所示, A、 B 两位置的高度分别为h1、 h2,物体的质量为m,无论从A 到 B 路径如何,重力做的功均为:W G=mgs×cosa=mg〔h1-h2〕=mgh l -mgh2可见重力做功与路径无关。
(2〕重力势能定义:物体的重力势能等于它所受重力与所处高度的乘积。
公式: Ep=mgh。
单位:焦〔 J〕(3〕重力势能的相对性与重力势能变化的绝对性重力势能是一个相对量。
它的数值与参考平面的选择相关。
在参考平面内,物体的重力势能为零;在参考平面上方的物体,重力势能为正值;在参考平面下方的物体,重力势能为负值。
重力势能变化的不变性〔绝对性〕尽管重力势能的大小与参考平面的选择有关,但重力势能的变化量都与参考平面的选择无关,这表达了它的不变性〔绝对性〕。
某种势能的减小量,等于其相应力所做的功。
重力势能的减小量,等于重力所做的功;弹簧弹性势能的减小量,等于弹簧弹力所做的功。
重力势能的计算公式E p=mgh,只适用于地球外表及其附近处g 值不变时的范围。
假设g 值变化时。
不能用其计算。
二、弹力做功和弹性势能探究弹力做功与弹性势能(1〕功能关系是定义某种形式的能量的具体依据,从计算某种力的功入手是探究能的表达式的根本方法和思路。
(2〕科学探究中必须善于类比已有知识和方法并进行迁移运用。
(3〕科学的构思和猜想是创造性的表达。
可使探究工作具有针对性。
(4〕分割——转化——累加,是求变力功的一般方法,这是微积分思想的具体应用。
动能定理,机械能守恒定律,能量守恒定律,动量定理,动量守恒定理的内容,表达式,适用条件。

动能定理,机械能守恒定律,能量守恒定律,动量定理,动量守恒定理的内容,表达式,适用条件。
动能定理指的是物体受到力的加速,物体的动能就会增加,其表达
式为:
µv2 =W,其中µ为物体的质量,v为物体的速度,W为物体受力的势能。
只要施加力,物体的动能就会改变,当物体处于静止状态时,动
能为零。
机械能守恒定律认为物体的机械能是不变的,总的机械能等于其动能
与势能的总和,表达式为:K0+U0=K+U,其中K0是物体的初始动能,U0为物体初始势能,K是物体的最终动能,U为物体的最终势能,表
示物体的动能和势能之和均不变、守恒。
能量守恒定律认为,物质运动时,能量不会被创建或消失,也就是说
能量是守恒的,它们只能以同样的形式互相转变,表达式为:Ε=Ε0,
其中Ε表示物体最终的能量,Ε0代表物体的初始能量,Ε等于Ε0,表
示能量守恒。
动量定理指的是物体受到力时,其动量就会改变,表达式为:p = mv,其中p为物体的冲量,m为物体的质量,v是物体的速度,物体的冲量
与其质量和速度成正比。
动量守恒定律认为物体的总冲量是守恒的,不会改变,表达式为:
∆p=0,虽然物体加力后,它的总冲量会改变,但是这个变化是可以由
其他物体抵消的,总的冲量是守恒的。
所有这些定律和定理都适用于物体受到力而加速或减速运动时,其运动规律是相同的,即动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定理的适用。
只要物体的势能发生变化,就可以使用这些定律和定理来描述物体的运动特性。
三、重力势能 动能 动能定理

如果是减少了,减少的重力势能到哪里去了?
9.如图,在光滑的桌面上有一根均匀柔软的质量为m、 长为L的绳,其绳长的1/4悬于桌面下,从绳子开始下滑 至绳子刚好全部离开桌面的过程中,重力对绳子做
功
,绳子的重力势能增量为
(桌面离地
高度大于L)。
答案:15mgL/32
W
G
E
P1
E
P2
说明:变化量(增量)=末量-初量
减少量 = 初量 -末量
说明:
EP只与重力做功有关,与运动状态和其他受力 ( 1)
无关( W
E P ; G W G E P )(重力做正功,释放重
力势能;重力做负功,储存重力势能)
(2)也适用于曲线运动的情况(重力做功与路径无关) W G EP
从抛出到落地的过程中,重力所做的功相等,物体减少
的重力势能一定相等
C.重力势能等于零的物体,不可能对别的物体做功
D.用手托住一个物体匀速上举时,手的支持力做的功 等于克服重力做的功与物体重力势能增量之和
4、一物体从A点沿粗糙面AB与光滑面AC分别滑到同一 水平面上的B点与C点,则下列说法中正确的是( D ) A、沿AB面重力做功多
-15mgL/32
10、如图所示,在一次“蹦极”运动中,人由高空下 落到最低点的整个过程中,下列说法中正确的是 ( )
A.重力对人做正功
B.人的重力势能减小
C.橡皮绳对人做正功
D.橡皮绳的弹性势能增加
11、如图所示,重物A质量为m,置于水平地面上, 其上表面竖直立着一根轻质弹簧.弹簧长为L,劲度 系数为k,下端与物体A相拴接.现将弹簧上端点P缓
动能定理物体的动能与力的做功

动能定理物体的动能与力的做功动能定理:物体的动能与力的做功动能定理是物理学中的基本定理之一,它描述了物体的动能与力的做功之间的关系。
在本文中,我们将探讨动能定理的定义、原理以及应用。
一、动能定理的定义动能定理是指在外力作用下,物体的动能的变化量等于力的做功。
简而言之,物体的动能增加或减少的大小,正好等于作用于物体的力所作的功。
二、动能定理的原理物体的动能可以通过它的质量和速度来定义,即动能 = 1/2 ×质量 ×速度的平方。
力的功可以用力的大小、物体的位移和力与位移之间的夹角来定义,即做功 = 力 ×位移× cosθ。
根据动能定理,在外力作用下,物体的动能的变化量等于力的做功。
表示为:物体的动能的增量 = 力的做功。
三、动能定理的应用1. 物体的动能和速度关系:根据动能定理,物体的动能正比于其速度的平方。
当速度增加时,动能增加;当速度减小时,动能减小。
2. 动能与重力势能的转换:在重力场中,当物体从较高位置下降到较低位置时,重力对物体做功,并将其势能转化为动能。
反之,当物体由较低位置上升到较高位置时,动能将转化为重力势能。
3. 动能与弹性势能的转换:在弹性体系中,物体由于受到压缩或伸展而具有弹性势能。
当物体释放出弹性势能时,它将转化为动能。
4. 动能定理的应用于机械工作:在机械运动中,动能定理可应用于机器的工作原理和能量转换的分析。
比如,在运输系统中,我们可以通过应用动能定理来计算物体在传送过程中所需的能量和功率。
总结:动能定理是物体的动能与力的做功之间的关系。
它可以帮助我们理解物体运动时的能量转化过程,并应用于各种实际情况的分析和计算。
通过深入研究动能定理,我们可以更好地理解物体运动的本质和力学规律。
动力学中的动能定理与势能定理

动力学中的动能定理与势能定理在动力学中,动能定理和势能定理是两个重要的物理定理,它们揭示了物体在不同力场中运动时的能量变化规律。
动能定理描述了物体动能的变化与物体所受力之间的关系,而势能定理则说明了物体在势能变化时所受力的大小。
本文将详细介绍这两个定理的含义和应用。
1. 动能定理动能定理是描述物体动能变化的定理,它表明物体所受的合外力所做的功等于物体动能的增量。
设物体质量为m,初始速度为v1,末速度为v2,根据动能定理可得:[公式]其中K1和K2分别表示初始和末态的动能。
根据动能定理,当物体所受的合外力做功时,物体的动能会发生变化。
动能定理的应用非常广泛,其中一个重要的应用是运动力学中动量定理的推导。
通过将动能定理与牛顿第二定律结合可以得到动量定理:[公式]其中F是物体所受的合外力,dp/dt是物体的动量变化率。
2. 势能定理势能定理是描述物体势能变化的定理,它表明物体在势能发生变化时所受的力的大小等于势能的变化率。
对于某个力场中的物体,在两个位置A和B之间势能的变化为∆U,根据势能定理可得:[公式]其中W_AB是对物体施加力的功,U_A和U_B分别表示位置A和位置B处的势能。
势能定理可以帮助我们理解力场对物体的作用。
在重力场中,物体从高处下落时,势能逐渐转化为动能,因此物体会加速下落。
同样地,在弹簧振子中,势能也会转化为动能,并在运动的过程中不断变化。
总结:动能定理和势能定理是研究物体在力场中运动时能量变化的重要定理。
动能定理表明物体所受的合外力做功等于物体动能的增量,而势能定理则说明物体在势能变化时所受力的大小。
这两个定理在物理学的研究和应用中发挥着重要的作用,帮助我们理解和分析物体的运动过程。
注:本文水平有限,仅提供基本的介绍和解释。
如需深入了解动力学中的动能定理与势能定理,请参考相关教材或专业资料。
动能定理与势能

动能定理与势能动能定理和势能是物理学中关于物体运动的两个重要概念。
本文将逐一介绍动能定理和势能的定义、原理及其应用。
动能定理动能定理是描述物体运动能量变化的一个基本原理。
它表明物体的动能与物体所受力之间存在着一定的关系。
动能定理可以用数学公式表示为:动能定理公式:K = 1/2 mv²其中,K代表物体的动能,m代表物体的质量,v代表物体的速度。
动能定理的基本原理是,当一个物体在运动过程中受到合力F作用,物体的速度将会发生改变,从而导致动能的变化。
如果合力F与物体的速度方向一致,物体的速度将增加,动能也将增加;如果合力F与物体的速度方向相反,物体的速度将减小,动能也将减小。
动能定理的应用非常广泛。
在机械领域中,它可以用来计算物体的机械能,从而分析物体的运动状态。
在运动学中,动能定理可以用来计算物体在不同速度下的动能变化情况。
在动力学中,动能定理可以用来分析物体在受力作用下的加速度和速度变化情况。
势能势能是物体由于其位置或状态而具有的能量。
势能可以分为多种类型,如重力势能、弹性势能、化学势能等。
本文将以重力势能为例进行介绍。
重力势能是物体在地球表面上的高度位置所具有的势能。
它可以用数学公式表示为:重力势能公式:E = mgh其中,E代表物体的重力势能,m代表物体的质量,g代表重力加速度,h代表物体的高度。
重力势能的基本原理是物体在高处具有较大的势能,当物体下落时,其重力势能将会转化为动能。
这个过程通常被称为势能转化为动能。
同样地,当物体上升时,动能将会转化为势能。
重力势能的应用广泛。
在日常生活中,我们可以根据物体的质量、高度和重力加速度来计算物体的重力势能,进而分析物体的动能和势能的转化情况。
在工程领域中,重力势能的概念与应用也是不可或缺的。
结论动能定理和势能是描述物体运动能量变化的两个重要概念。
动能定理通过描述物体的动能与所受力之间的关系,揭示了物体在运动中能量转化的规律。
而势能则描述了物体由于其位置或状态而具有的能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2 动能 势能 动能定理教学目标:理解功和能的概念,掌握动能定理,会熟练地运用动能定理解答有关问题 教学重点:动能定理 教学难点:动能定理的应用教学方法:讲练结合,计算机辅助教学 教学过程:一、动能1.动能:物体由于运动而具有的能,叫动能。
其表达式为:221mv E k =。
2.对动能的理解(1)动能是一个状态量,它与物体的运动状态对应.动能是标量.它只有大小,没有方向,而且物体的动能总是大于等于零,不会出现负值.(2)动能是相对的,它与参照物的选取密切相关.如行驶中的汽车上的物品,对汽车上的乘客,物品动能是零;但对路边的行人,物品的动能就不为零。
3.动能与动量的比较(1)动能和动量都是由质量和速度共同决定的物理量,221mv E k ==m p 22或 k mE p 2= (2)动能和动量都是用于描述物体机械运动的状态量。
(3)动能是标量,动量是矢量。
物体的动能变化,则其动量一定变化;物体的动量变化,则其动量不一定变化。
(4)动能决定了物体克服一定的阻力能运动多么远;动量则决定着物体克服一定的阻力能运动多长时间。
动能的变化决定于合外力对物体做多少功,动量的变化决定于合外力对物体施加的冲量。
(5)动能是从能量观点出发描述机械运动的,动量是从机械运动本身出发描述机械运动状态的。
二、重力势能1.重力势能:物体和地球由相对位置决定的能叫重力势能,是物体和地球共有的。
表达式:mgh E p =,与零势能面的选取有关。
2.对重力势能的理解(1)重力势能是物体和地球这一系统共同所有,单独一个物体谈不上具有势能.即:如果没有地球,物体谈不上有重力势能.平时说物体具有多少重力势能,是一种习惯上的简称.重力势能是相对的,它随参考点的选择不同而不同,要说明物体具有多少重力势能,首先要指明参考点(即零点).(2)重力势能是标量,它没有方向.但是重力势能有正、负.此处正、负不是表示方向,而是表示比零点的能量状态高还是低.势能大于零表示比零点的能量状态高,势能小于零表示比零点的能量状态低.零点的选择不同虽对势能值表述不同,但对物理过程没有影响.即势能是相对的,势能的变化是绝对的,势能的变化与零点的选择无关.(3)重力做功与重力势能重力做正功,物体高度下降,重力势能降低;重力做负功,物体高度上升,重力势能升高.可以证明,重力做功与路径无关,由物体所受的重力和物体初、末位置所在水平面的高度差决定,即:W G =mg △h .所以重力做的功等于重力势能增量的负值,即W G = -△E p = -(mgh 2-mgh 1).三、动能定理 1.动能定理的表述合外力做的功等于物体动能的变化。
(这里的合外力指物体受到的所有外力的合力,包括重力)。
表达式为W =ΔE K动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。
实际应用时,后一种表述比较好操作。
不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。
和动量定理一样,动能定理也建立起过程量(功)和状态量(动能)间的联系。
这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。
和动量定理不同的是:功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。
【例1】 一个质量为m 的物体静止放在光滑水平面上,在互成60°角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v ,在力的方向上获得的速度分别为v 1、v 2,那么在这段时间内,其中一个力做的功为A .261mv B .241mv C .231mv D .221mv 错解:在分力F 1的方向上,由动动能定理得2221161)30cos 2(2121mv v m mv W =︒==,故A 正确。
正解:在合力F 的方向上,由动动能定理得,221mv Fs W ==,某个分力的功为211412130cos 30cos 230cos mv Fs s F s F W ==︒︒=︒=,故B 正确。
2.对外力做功与动能变化关系的理解:外力对物体做正功,物体的动能增加,这一外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这一外力是阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服阻力做功. 功是能量转化的量度,外力对物体做了多少功;就有多少动能与其它形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.即.3.应用动能定理解题的步骤(1)确定研究对象和研究过程。
和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。
(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零)。
(2)对研究对象进行受力分析。
(研究对象以外的物体施于研究对象的力都要分析,含重力)。
(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。
如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。
(4)写出物体的初、末动能。
(5)按照动能定理列式求解。
【例2】 如图所示,斜面倾角为α,长为L ,AB 段光滑,BC 段粗糙,且BC =2 AB 。
质量为m 的木块从斜面顶端无初速下滑,到达C 端时速度刚好减小到零。
求物体和斜面BC 段间的动摩擦因数μ。
解:以木块为对象,在下滑全过程中用动能定理:重力做的功为mgL sinα,摩擦力做的功为αμcos 32mgL -,支持力不做功。
初、末动能均为零。
mgL sin ααμcos 32mgL -=0,αμtan 23= 点评:从本例题可以看出,由于用动能定理列方程时不牵扯过程中不同阶段的加速度,所以比用牛顿定律和运动学方程解题简洁得多。
【例3】 将小球以初速度v 0竖直上抛,在不计空气阻力的理想状况下,小球将上升到某一最大高度。
由于有空气阻力,小球实际上升的最大高度只有该理想高度的80%。
设空气阻力大小恒定,求小球落回抛出点时的速度大小v 。
解:有空气阻力和无空气阻力两种情况下分别在上升过程对小球用动能定理:2021mv mgH =和()20218.0mv Hf mg =+,可得H=v 02/2g ,mg f 41= 再以小球为对象,在有空气阻力的情况下对上升和下落的全过程用动能定理。
全过程重力做的功为零,所以有:22021218.02mv mv H f -=⨯⋅,解得053v v = αCBvv /f GGfh点评:从本题可以看出:根据题意灵活地选取研究过程可以使问题变得简单。
有时取全过程简单;有时则取某一阶段简单。
原则是尽量使做功的力减少,各个力的功计算方便;或使初、末动能等于零。
【例4】如图所示,质量为m 的钢珠从高出地面h 处由静止自由下落,落到地面进入沙坑h /10停止,则 (1)钢珠在沙坑中受到的平均阻力是重力的多少倍?(2)若让钢珠进入沙坑h /8,则钢珠在h 处的动能应为多少?设钢珠在沙坑中所受平均阻力大小不随深度改变。
解析:(1)取钢珠为研究对象,对它的整个运动过程,由动能定理得W =W F +W G =△E K =0。
取钢珠停止处所在水平面为重力势能的零参考平面,则重力的功W G =1011mgh ,阻力的功W F =101- F f h , 代入得1011mgh 101-F f h =0,故有F f /mg =11。
即所求倍数为11。
(2)设钢珠在h 处的动能为E K ,则对钢珠的整个运动过程,由动能定理得W =W F +W G =△E K =0,进一步展开为9mgh /8—F f h /8= —E K ,得E K =mgh /4。
点评:对第(2)问,有的学生这样做,h /8—h /10= h /40,在h /40中阻力所做的功为 F f h /40=11mgh /40,因而钢珠在h 处的动能E K =11mgh /40。
这样做对吗?请思考。
【例5】 质量为M 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m 。
质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,并以v =90m/s 的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求木块与台面间的动摩擦因数为μ。
解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段。
所以本题必须分三个阶段列方程:子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v 1,mv 0= mv +Mv 1……①木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2,有:22212121Mv Mv MgL -=μ……②木块离开台面后的平抛阶段,g hv s 22=……③由①、②、③可得μ=0.50点评:从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理。
从本题还应引起注意的是:不要对系统用动能定理。
在子弹穿过木块阶段,子弹和木块间的一对摩擦力做的总功为负功。
如果对系统在全过程用动能定理,就会把这个负功漏掉。
四、动能定理的综合应用动能定理可以由牛顿定律推导出来,原则上讲用动能定律能解决物理问题都可以利用牛顿定律解决,但在处理动力学问题中,若用牛顿第二定律和运动学公式来解,则要分阶段考虑,且必须分别求每个阶段中的加速度和末速度,计算较繁琐。
但是,我们用动能定理来解就比较简捷。
我们通过下面的例子再来体会一下用动能定理解决某些动力学问题的优越性。
1.应用动能定理巧求变力的功如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功。
【例6】 如图所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止。
求物体在轨道AB 段所受的阻力对物体做的功。
解析:物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =μmg ,由于物体在AB 段受的阻力是变力,做的功不能直接求。
根据动能定理可知:W 外=0,所以mgR -μmgS -W AB =0即W AB =mgR -μmgS =1×10×0.8-1×10×3/15=6 J【例7】一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H .提升时,车加速向左运动,沿水平方向从A 经过B 驶向C .设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.解析:设绳的P 端到达B 处时,左边绳与水平地面所成夹角为θ,物体从井底上升的高度为h ,速度为v ,所求的功为W ,则据动能定理可得:221mv mgh W =- 因绳总长不变,所以: H Hh -=θsin根据绳联物体的速度关系得:v =v B cosθ 由几何关系得:4πθ=由以上四式求得: H mg mv W B )12(412-+=2.应用动能定理简解多过程问题。