新人教版八年级数学下第十六章检测试卷及答案
人教版初中数学八年级下学期第十六章测试卷(含答案)

初中数学人教版八年级下学期第十六章测试卷一、单选题(共5题;共10分)1. ( 2分) 化简的结果是()A. -3B. 3C. ±3D. 92. ( 2分) 下列各组二次根式中是同类二次根式的是()A. B. C. D.3. ( 2分) 若式子有意义,则x的取值范围是()A. x>0B. x>1C. x≥1D. x≤14. ( 2分) 利用计算器计算时,依次按键下:,则计算器显示的结果与下列各数中最接近的一个是()A. 2.5B. 2.6C. 2.8D. 2.95. ( 2分) 如果是二次根式,那么x应满足的条件是()A. x≠2的实数B. x<2的实数C. x>2的实数D. x>0且x≠2的实数二、填空题(共2题;共2分)6. ( 1分) 若二次根式有意义,则的取值范围是________.7. ( 1分) 化简=________.三、计算题(共5题;共45分)8. ( 5分).9. ( 5分) 计算:10. ( 20分) 计算:(1)(2)(3)(4)11. ( 10分) 计算:(1);(2)12. ( 5分) 计算:答案解析部分一、单选题1.【答案】B【考点】二次根式的定义【解析】【解答】解:,故答案为:B.【分析】根据 ,求值即可。
2.【答案】C【考点】同类二次根式【解析】【解答】解:A、与被开方数不同,不是同类二次根式;B、与被开方数不同,不是同类二次根式;C、与被开方数相同,是同类二次根式;D、与被开方数不同,不是同类二次根式.故答案为:C.【分析】将每一个二次根式化为最简二次根式后,若被开方数相同的即为同类二次根式,据此逐一分析即可.3.【答案】C【考点】二次根式有意义的条件【解析】【解答】解:由题意得:x-1≥0,解得:x≥1;故答案为:C.【分析】二次根式有意义的条件是被开方数大于等于0,据此列不等式,求出x的范围即可。
4.【答案】B【考点】二次根式的性质与化简【解析】【解答】∵,∴与最接近的是2.6,故答案为:B.【分析】根据二次根式的性质进行估算即可得到答案。
人教版数学八年级下册第十六单元测试试卷(含答案)(1)

人教版数学8年级下册第16单元·一、选择题(共12小题,满分36分,每小题3分)1.(3分)下列根式中的最简二次根式是( )A B C D2.(3a 的值为( )A .2B .13C .11D .03.(3分)下列计算错误的是( )A +=B ×=C ÷=D =34.(3分)已知实数a 在数轴上的位置如图所示,则化简:|a ―2|+( )A .2B .﹣2C .2a ﹣6D .﹣2a +65.(3A B C D 6.(3分)如图,在一个长方形中无重叠的放入面积分别为32cm 2和2cm 2的两张正方形纸片,则图中阴影部分的面积为( )A .3.2cm 2B .2C .6cm 2D .12cm 27.(3分)已知x =―2,y =+2,则1x+1y 的值为( )A .B .﹣4C .4D .﹣8.(3A B C D9.(3分)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.a<﹣3B.b>1C.b﹣a>0D10.(3分)下列各式计算正确的是( )A.―=B=C+=D―=11.(3分)设x,y为实数,且y=6++|﹣x+y|的值是( )A.1B.2C.4D.512.(3分)如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为( )A.(8―2B.(4―2C.(16―2D.―12)cm2二、填空题(共6小题,满分18分,每小题3分)13.(3x的取值范围是 .14.(3分)若最简二次根式m= .15.(3分)在进行二次根式化简时,我们可以将2进一步化简,如:===―1+++⋯+= .16.(3分)对于任意正数m,n,定义运算※如下:m※n=―≥n),计算(3※2)+<n).×(8※12)的结果为 .17.(3分)已知a+b=3,ab=2+ .18.(3分)海伦一秦九韶公式;海伦公式又译作希伦公式,海龙公式、希罗公式、海伦一秦九韶公式,它是利用三角形的三条边的边长直接求三角形面积的公式,表达式为:S=p为半周长(周;已知三角形最短边是3,最长边是10,第三边是奇数,则该三长的一半)即:p=a b c2角形的面积是 .三、解答题(共7小题,满分66分)19.(8分)计算:(1―+(2)―×20.(8分)化简计算:(1+―(2)+―.21.(8分)化简:(1)―×―(2++―.22.(8===23.(11分)已知y=++1,求(+2的值.24.(11分)你能找出规律吗?(1×= ,= ;×= ,= .(2)由(1×= .(a≥0,b≥0)(3)按照找到规律计算:××25.(12分)某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC宽AB,长方形花+1―1)米.(1)长方形ABCD的周长是 米;(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果均化为最简二次根式)参考答案一、选择题(共12小题,满分36分,每小题3分)1.A2.A3.A4.A5.D6.C7.D8.D9.C10.A11.B12.D;二、填空题(共6小题,满分18分,每小题3分)13.x≥314.315.(1)16.217.18.4;三、解答题(共7小题,满分66分)19.解:(1)原式=―+=(2)原式=―=3﹣2=1.20.解:(1+―=+―=﹣(2)+―22=5﹣3=2.21.解:(1)―×―=――=6﹣―=6﹣(2++―=++2﹣3=3+4+2﹣3=6.22==23.解:根据已知得:1﹣4x ≥0且4x ﹣1≥0,解得:x =14,∴y =12,∵+2=2x ++y ,再将x =14,y =12代入得:原式=2×14++12=12+1+12=2.24.解:(1×=2×3=6==6;×=4×5=20==20,故答案为:6,6;20,20;(2×=(3)×===20;×===4.25.解:(1)长方形ABCD 的周长=2+2(+,答:长方形ABCD 的周长是(2)通道的面积=×―+1)―1)=100(平方米),购买地砖需要花费=6×(100)=600(元).答:购买地砖需要花费600元.。
人教版数学八年级下册《第十六章二次根式》单元测试题(含答案)

【人教版八年级数学(下)单元测试】第十六章二次根式单元测试(题数:20道测试时间:45分钟 总分:100分)、单选题(每小题 3分,共24 分)5x要使式子有意义,则X 的取值范围是()J x +2F 列各式计算正确的是( )把上45化成最简二次根式的结果是2.20计算(.3+2) 2018 ( .3⑵2019的结果是6 .若a • ■ b 与'、a 八b 互为倒数,则A. a=b-1B. a=b+1C. a+b=1D. a+ b=-17•若3, m , 5为三角形三边,化简: \ (2-m)2-m-82 得(A. -10B. — 2m+6C. -2 m-6D. 2m-108.若 x 2 —X -2 =0,贝U 2 - (X 2 _x )十虫 的值等于( ) 2、3 A. 3 • 3 B. 3 C. .3 二、填空题(每小题 4分,共28 分) 9 .当x 时,式子 1x -3有意义 班级:姓名:得分:A.B. X-2A.F 列二次根式: D. X = -24 .27.能与.3合并的是()B. 2 和 3C. 1 和 2D.A.一3 B .G=6C.3、5 = 3.5D.A.3 B.-4C.D. 2、. 5A. 2+ \3B. —C. 2 — 3D.1 12 ; 2、22 ;10. _____________________________________ 若y= •. x - 3 + .3 -x + 2,则x y= •11 •若最简二次根式S3a +b与丁二b是同类根式,则2a-b=_________________________ .12 .当x=2+ , 3 时,式子x2- 4x+2017= _________ .13. 已知三角形三边的长分别为__________________________ J27cm, JT2 cm, J48 cm,则它的周长为cm.14. 如果一个直角三角形的面积为 _____________________________ 8,其中一条直角边为J10,求它的另一条直角边 __________________________________________________ .15. 如图,将1,,Q, d3,寸6按下列方式排列.若规定(m, n)表示第m排从左向右第n个数,则(5 , 4)与(15 , 2)表示的两数之积是 _________ .第I対第2排第I HI-三、解答题(共48 分)(2)18. (8分)先化简,再求值:已知a = 8, b = 2,试求a I兀」:E 的值.17. (8 分)计算:、5、5-、,15 2、3 .15-2.319. (10分)已知长方形的长a= 1 .32,宽b= 1、、花.2 3(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.5 ~1 , y= 5 1,求- -的值;20. ( 12分)⑴已知x=2 2 x y⑵已知x, y 是实数,且满足y< x - 2 + •、. 2 - X + 1 ,化简:、..y2-4y 4 —(x—2+ 2 )2.参考答案【解析】依题意得:x+2 > 0,解得x> -2.故选B.2. A【解析】(1) 12=2 -. 3 ; (2) ZF =2;(3):弓;(4),27 = 3. 3 .•••( 1) (4)能与,3合并,故选A.3. B【解析】A选项中,••• 、、6、3不是同类二次根式,不能合并,•本选项错误;B选项中,T 12 ::』3= .36=6,•本选项正确;C选项中,••• 3.5=3,而不是等于3+-、5,•本选项错误;D选项中,•••、、祜“2=二°「5,•本选项错误;2故选B.故选B.5. B【解析】(.3+2)2018( -、3 T2)2018(、、3 T2)=[(,3 +2) r- 3 -2)]2018(-3 -2)=(-1)2018(.3 -2)=3 2故选B.6. B【解析】根据倒数的定义得:i\ b a 7b 二a -b =1.即a =b 1.故选B.【解析】根据题意,得:2<m<8,/• 2- m<0, m- 8<0 ,•••原式=m- 2+m- 8=2m- 10.故选D.8. A【解析】••• X2 -x -2 = 0 ,•x2_x =2 ,2 2、3 _2+2、3_ 2+2 3 3 - 3 4.3 2、3••原式= _ = _ = ------------------------- = ------- =--------22-1+巧3+73 (3+73)(3-73) 6 3 '故选A.9. x>0且x^9【解析】由题意得,x _ 0且、,x -3 = 0,解得X _ 0且x = 9.10. 9「X—3K0【解析】根据题意得:解得:x=3.3-^0,当x=3时,y=2,.x y=32=9.故答案为:9.11. 9【解析】••• 2a f 3a b是最简二次根式,•2a —4 二2 ,•a = 3a -b =3a b2b = -2ab - -a - -3,•2a -b =2 3 - -31=6 3 = 9.故答案为:9.12. 2016【解析】把所求的式子化成(X-2) 2+2013然后代入式子计算,即可得到:x2-4x+2017= (x -2) 2+2013 = ( 3 ) 2+2013=3+2013=2016 .故答案是:2016.【解析】三角形的周长为:,2^ ,4^ = 2、、3 4.3 =9、_3.故本题应填9... 3 .14. 1.6 10【解析】根据三角形的面积公式可直角求出另一条直角边解:设直角三角形的另一直角边为x ,•••一个直角三角形的面积为8,其中一条直角边为,10 ,_ x .10 =8,216 16/10■ X = -= -----------------即它的另一条直角边是8 - 10515. 6【解析】根据数的排列方法可知,第一排:1个数,第二排2个数•第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1 )排共有:1+2+3+4+••+ (m-1)个数((m -1)m),根据数的排列方法,每四个数一个轮回,根据题目意思找出第2m排第n个数到底是哪个数后再计算•因此可由(5,4)可知是第5排第4个数,是2,然后由(15,2)可知是第15排第2个数,因此可知2(m」)m-14严。
人教版八年级数学下册第十六章测试卷及答案

人教版八年级数学下册第十六章测试卷及答案一.选择题(共10小题,每小题3分,共30分)1.在下列各式中,不是二次根式的有( )同号,且A.3个 B.2个 C.1个 D.0个2.( )A.3-2+1 B.3+2-1 C.3+2+1 D.3-2-13. 下列式子中,为最简二次根式的是( )A4. 下列计算错误的是( )A BC D5.下列计算正确的是( )A.32=6 B.(-25)3=-85C.(-2a2)2=2a4 D6.若实数a,b满足ab>0,则化简( )A7.( )A.5和6之间 B.6和7之间C.7和8之间 D.8和9之间8.若x<0,( )A.0 B.-2 C.0或2 D.29.已知a,b,c为△ABC的三边长,|b-c|=0,则△ABC的形状是( ) A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10. 已知实数x,y满足:y( )A..5二.填空题(共8小题,每小题3分,共24分)11.计算_______.12. 已知a <2,_________.13.如图是一个简单的数值运算程序,当输入x ,则输出的值为________.输入x →→输出14.在△ABC 中,a,b,c 为三角形的三边长,化简2|c -a -b|=________.15.x 的取值范围是________.16.实数a,b 在数轴上对应点的位置如图所示,______.17.某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B 处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n(n >1)倍,且钢梁保持水平,则弹簧秤读数为________(N)(用含n,k 的代数式表示).18.已知三角形的三边长分别为a,b,c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S 其中p =a +b +c 2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S 若一个三角形的三边长分别为2,3,4,则其面积是________.三.解答题(共7小题, 66分)19.(8分) 计算下列各式:;20.(8分) 先化简,再求值:a 2-b 2a ÷(a -2ab -b 2a ),其中a 2,b 2.21.(8分) 已知x 2,求(9+2-2)x +4的值.22.(8分) 已知实数a,b 满足(4a -b +11)20,求1的值.23.(10分)如图,用两个边长均为的小正方形拼成一个大的正方形.(1)求大正方形的边长;(2)沿此大正方形边的方向能否剪出一张长.宽之比为4∶3,且面积为720 cm 2的长方形纸片?若能,试求出剪出的长方形纸片的长与宽;若不能,试说明理由.24.(10分) 先阅读材料,再回答问题:已知x1,求x2+2x-1的值.计算此题时,若将x1直接代入,则运算非常麻烦.仔细观察代数式,发现由x1,得x+1所以(x+1)2=3.整理,得x2+2x=2.再代入求值会非常简便.解答过程如下:解:由x1,得x+1∴(x+1)2=3.整理,得x2+2x=2,∴x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x2,求6-2x2+8x的值.25.(14分) (1)用"="">""<"填空:4++16________2+5________2(2)由(1)中各式猜想m+n与,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成长方形的花圃,如图所示,花圃恰好可以借用一段墙体,为了围成面积为200 m2的花圃,所用的篱笆至少为多少米?参考答案1-5BABCD 6-10ABDBD12. 2-a14. -a -3b +3c15. x>216. -2a 17.k n19. 解:(1)原式=2=5;(2)原式=20.解:原式=(a +b)(a -b)a ÷a 2-2ab +b 2a =(a +b)(a -b)a ·a(a -b)2=a +b a -b .当a 2,b 2时,21. 解:原式=(9+2)2-2)+4=(9+--1+4=81-80-1+4=422. 解:由题意得{4a -b +11=013b -4a -3=0解得{a =14b =12.则1==14×14×223. 解:(1)30(cm)(2)不能,理由如下:设长方形纸片的长为4x cm,宽为3x cm,则4x·3x =720,解得x =∴4x =30,∴不能剪出符合要求的长方形纸片24. 解:由x 2,得x -2∴(x -2)2=5.整理,得x 2-4x =1,∴6-2x 2+8x =6-2(x 2-4x)=6-2×1=4.25. 解:(1)>;>;=(2)m 理由如下:当m≥0,n≥0时2≥0,∴2-2≥0.∴m -∴m (3)设花圃平行于墙的一边长为a m,垂直于墙的一边长为b m,则a >0,b >0,ab =200.根据(2)中的结论可得a 2×20=40,∴所用的篱笆至少为40 m.。
人教版八年级下册数学 第十六章 二次根式 本章测试题(附答案)

6.如果 x • x − 6 = x(x − 6) ,那么( )
A.x≥0
B.x≥6
7.小明的作业本上有以下四题:
C.0≤x≤6
① 16a 4 = 4a 2 ; ② 5a 10a = 5 2a ;
D.x 为一切实数
③ a 1 = a2 • 1 = a ;④
a
a
3a − 2a = a 。做错的题是( )
2
2
(4)原式= 32 m2 2n = 3m 2n 。
23.解:(1)原式=49× 3 = 21;(2)原式=1 − 24 = 1 ;
14
25 25
(3)原式= 2 15 (−27 5) = − 15 27 5 = −45 3 ;
34
3
(4)原式=
49
126 =
7 14 =
72 2 7 =
。
14. x + 1 • x −1 = x2 −1 成立的条件是
15.比较大小: 2 3
13 。
16. 2xy • 8y =
, 12 • 27 =
。 。
17.计算 a
3+
9a − 3
a
=
。
a
3
18. 1 与 3 + 2 的关系是
。
3− 2
19.若 x = 5 − 3 ,则 x 2 + 6x + 5 的值为
1
.∴ | 1 −
y
| 1−
=
y
=
−1 .
2 y −1 y −1
4/4
参考答案
一、选择题 1.C 2.D 3.B 4.D 5.A 6.B 7.D 8.C 9.C 10.A 二、填空题
新人教版初中数学八年级下册同步练习试题及答案第16章二次根式(19页)

第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义 ,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时 ,12--x 有意义 ,当x ______时 ,31+x 有意义. 3.假设无意义2+x ,那么x 的取值范围是______. 4.直接写出以下各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.以下计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=- A .①、② B .③、④C .①、③D .②、④6.以下各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时 ,以下各式中 ,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时 ,以下式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算以下各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.411+=-+-y x x ,那么x y 的平方根为______. 14.当x =-2时 ,2244121x x x x ++-+-=________. 二、选择题15.以下各式中 ,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.假设022|5|=++-y x ,那么x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算以下各式:(1);)π14.3(2-(2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2 ,b =-1 ,c =-1时 ,求代数式aacb b 242-±-的值.拓广、探究、思考19.数a ,b ,c 在数轴上的位置如下列图:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.△ABC 的三边长a ,b ,c 均为整数 ,且a 和b 满足.09622=+-+-b b a 试求△ABC的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算 ,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立 ,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.以下计算正确的选项是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时 ,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.三角形一边长为cm 2 ,这条边上的高为cm 12 ,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算 "@〞的运算法那么为:,4@+=xy y x 那么(2@6)@6 =______.10.矩形的长为cm 52 ,宽为cm 10 ,那么面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.假设b a b a -=2成立 ,那么a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内 ,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.假设(x -y +2)2与2-+y x 互为相反数 ,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算 ,能把二次根式化成最||简二次根式.课堂学习检测一、填空题1.把以下各式化成最||简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最||简单的因式 ,使得它与所给二次根式相乘的结果为有理式 ,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.以下计算不正确的选项是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最||简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算以下各式 ,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.,732.13≈那么≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.13+=a ,132-=b ,那么a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.以下各式中 ,最||简二次根式是( ).A .yx -1 B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷(2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时 ,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征 ,会进行二次根式的加、减运算.课堂学习检测一、填空题1.以下二次根式15,12,18,82,454,125,27,32化简后 ,与2的被开方数相同的有______ ,与3的被开方数相同的有______ ,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后 ,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.以下说法正确的选项是( ). A .被开方数相同的二次根式可以合并 B .8与80可以合并 C .只有根指数为2的根式才能合并 D .2与50不能合并5.以下计算 ,正确的选项是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.二次根式b a b +4与b a +3是同类二次根式 ,(a +b )a 的值是______.13.3832ab 与ba b 26无法合并 ,这种说法是______的.(填 "正确〞或 "错误〞) 二、选择题14.在以下二次根式中 ,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+ ,其中4=x ,91=y .20.当321-=x 时 ,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断以下各式是否成立?你认为成立的 ,在括号内画 "√〞 ,否那么画 "×〞.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后 ,发现了什么规律?请用含有n 的式子将规律表示出来 ,并写出n的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算 ,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时 ,最||简二次根式12-a 与73--a 可以合并. 2.假设27+=a ,27-=b ,那么a +b =______ ,ab =______. 3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.以下各组二次根式化成最||简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.以下计算正确的选项是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b ) =|a -b | ,其中a ,b 为实数 ,那么=+7)3*7(_______.(2)设5=a ,且b 是a 的小数局部 ,那么=-baa ________. 二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.以下计算正确的选项是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘 ,如果它们的积不含有二次根式 ,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写以下各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1 , >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2 ,b =3 ,于是1<c <5 ,所以c =2 ,3 ,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577 ,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时 ,a a a ==22)(;当a <0时 ,a a -=2 ,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x 3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画 "√〞;(2)1122-=-+n n nn n n (n ≥2 ,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D .16.⋅-4117.2. 18..21-19.ab 4(可以按整式乘法 ,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.mnm 1+-有意义 ,那么在平面直角坐标系中 ,点P (m ,n )位于第______象限. 2.322-的相反数是______ ,绝||对值是______.3.假设3:2:=y x ,那么=-xy y x 2)(______.4.直角三角形的两条直角边长分别为5和52 ,那么这个三角形的周长为______. 5.当32-=x 时 ,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时 ,式子2)2(,2,2,2-+--a a a a 中 ,有意义的有( ). A .1个 B .2个 C .3个 D .4个7.以下各式的计算中 ,正确的选项是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.假设(x +2)2=2 ,那么x 等于( ). A .42+B .42-C .22-±D .22± 9.a ,b 两数满足b <0<a 且|b |>|a | ,那么以下各式中 ,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.A 点坐标为),0,2(A 点B 在直线y =-x 上运动 ,当线段AB 最||短时 ,B 点坐标( ).A .(0 ,0)B .)22,22(- C .(1 ,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅ 14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.a 是2的算术平方根 ,求222<-a x 的正整数解.18.:如图 ,直角梯形ABCD 中 ,AD ∥BC ,∠A =90° ,△BCD 为等边三角形 ,且AD 2= ,求梯形ABCD 的周长.附加题19.先观察以下等式 ,再答复以下问题.①;211111*********2=+-+=++②;6111212113121122=+-+=++③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息 ,猜想2251411++的结果; (2)请按照上面各等式反映的规律 ,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形 ,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1 ,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1 ,对角线);cm (0.733712721222≈=+(2)拼成2×3 ,对角线3.431312362422≈=+(cm).。
人教版八年级数学下册第16章二次根式质量评估试卷(含答案)

第十六章质量评估试卷[时间:90分钟分值:120分]一、选择题(每小题3分,共30分)1.代数式x+1x-1有意义,则x的取值范围是()A.x≥-1且x≠1 B.x≠1C.x≥1且x≠-1D.x≥-12.下列运算正确的是()A.4+9=4+9B.12×6=62 C.32-2=3 D.24÷3=23 3.下列二次根式中,可以与2合并的是() A. 4 B.2aC.29 D.124.下列计算正确的是()A.83×23=16 3 B.53×52=56 C.43×22=6 5 D.32×23=665.在24,ab,x2-y2,a2-2a+1,3x中,最简二次根式的个数为()A.1 B.2C.3D.46.计算32×12+2×5的结果估计在()A.10与11之间 B.9与10之间C.8与9之间D.7与8之间7.按如图1所示的程序计算,若开始输入的n的值为2,则最后输出的结果是( )图1A .14 B.16 C.8+5 2D.14+28.若x =3+12 2 019,y =3-12 2 019,则x 2+2xy +y 2的值为( )A .12 B.8 C. 3D. 2 0199.已知x ,y 是实数,3x -y +y 2-6y +9=0,则y 2x 的值是( ) A.13 B.9 C.6D.1610.甲、乙两人对题目“先化简再求值:1a +1a2+a 2-2,其中a =15”有不同的解答. 甲的解答是:1a +1a 2+a 2-2=1a +⎝ ⎛⎭⎪⎫1a -a 2=1a +1a -a =2a -a=495; 乙的解答是:1a +1a 2+a 2-2=1a +⎝ ⎛⎭⎪⎫1a -a 2=1a +a -1a =a =15.在两人的解答中( ) A .甲正确 B.乙正确 C.都不正确D.无法确定二、填空题(每小题4分,共24分)11.一般地,若x 4=a (a ≥0),则称x 为a 的四次方根,一个正数a 的四次方根有两个,它们互为相反数,记为±4a .若4m 4=10,则m = .12.若最简二次根式2x -1能与3合并,则x 的值为 .13. 如果(2+2)2=a +b 2(a ,b 为有理数),则a = ,b = .14. 若实数x ,y 满足y =2x -1+1-2x +13,则代数式x 2-2x+y 2= .15.若5的整数部分为a ,小数部分为b ,则a -1b -ab 的值为 .16.对于任意两个正数m ,n ,定义运算※为:m ※n =⎩⎪⎨⎪⎧m -n (m ≥n ),m +n (m <n ).计算(8※3)×(18※27)的结果为_________. 三、解答题(共66分)17.(8分)把下列各式化为最简二次根式: (1)200;(2)438;(3)24a 3b 2c (a >0,b >0,c >0);(4)16a 3+32a 2(a >0).18.(9分)计算:(1)()32+||-2-()π-20;(2)⎝⎛⎭⎪⎫8-12×6;(3)(-3)0-27+|1-2|+13+2.19.(8分)已知a =(3-1)(3+1)+|1-2|,b =8-2+⎝ ⎛⎭⎪⎫12-1,求b -a 的算术平方根.20.(9分)计算:(1)(1+3)(1-3)(1+2)(1-2);(2)(3+2)2(3-2)2;(3)(3+32-6)(3-32-6).21.(10分)已知x =2+3,y =2-3,求⎝ ⎛⎭⎪⎫1x +1y ⎝ ⎛⎭⎪⎫1x -1y 的值.22.(10分)阅读理解:对于任意正实数a ,b ,∵(a -b )2≥0,∴a -2ab +b ≥0,∴a +b ≥2ab ,只有当a =b 时,等号成立.∴在a +b ≥2ab 中,只有当a =b 时,a +b 有最小值2ab .根据上述内容,解答下列问题:(1)若a +b =9,求ab 的取值范围(a ,b 均为正实数).(2)若m >0,当m 为何值时,m +1m 有最小值?最小值是多少?23.(12分)先阅读下面的材料,再解答问题. ∵(a +b )(a -b )=a -b , ∴a -b =(a +b )(a -b ). 特别地,(14+13)(14-13)=1, ∴114-13=14+13.当然,也可以利用14-13=1,得1=14-13, ∴114-13=14-1314-13=(14)2-(13)214-13=(14+13)(14-13)14-13=14+13.这种变形叫做将分母有理化. 利用上述思路方法计算下列各式:(1)⎝ ⎛⎭⎪⎫12+1+13+2+14+3+…+12 021+ 2 020×( 2 021+1);(2)34-13-613-7-23+7.参考答案1.A 2.B 3.C 4.D 5.B 6.D 7.C 8.A 9.B 10.A 11.±10 12.2 13.6 4 14.-233615.6-5 16.3+3617.(1)102 (2)6 (3)4ab ac (4)4a a +2 18.(1)4 (2)33 (3)-23 19.1 20.(1)2 (2)1 (3)-9-62 21.-83 22.(1)0<ab ≤92(2)当m =1时,m +1m 有最小值,最小值是2. 23.(1)2 020 (2)1。
人教版八年级数学下册第16章测试卷及答案 (2).docx

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第十六章卷(1)一、选择题1.如果有意义,那么x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x<12.的相反数是()A.﹣B.C.﹣D.3.下列根式中属最简二次根式的是()A.B.C.D.4.下列计算错误的是()A.B.C. D.5.下列二次根式中与的被开方数相同的是()A. B.C.D.6.若是整数,则正整数n的最小值是()A.2 B.3 C.4 D.57.设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和58.已知a<b,则化简二次根式的正确结果是()A. B.C.D.9.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣310.已知,则的值为()A.B.8 C.D.6二、填空题11.已知a=,则代数式a2﹣1的值为.12.若,则m﹣n的值为.13.计算:=.14.比较大小:﹣3﹣2.15.如果最简二次根式与的被开方数相同,那么a=.16.与的关系是.17.观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:.三、解答题18.计算:(1);(2);(3);(4).19.当x=﹣1时,求代数式x2+2x+2的值.20.先化简,再求值:(﹣)÷,其中x=2.21.解方程组,并求的值.22.若实数x,y满足y=++2,求的值.23.阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.答案1.如果有意义,那么x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x<1【考点】二次根式有意义的条件.【专题】选择题.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:由题意得:x﹣1≥0,解得:x≥1.故选B.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.的相反数是()A.﹣B.C.﹣D.【考点】二次根式的定义及识别条件.【专题】选择题.【分析】由于互为相反数的两个数和为0,由此即可求解.【解答】解:∵+(﹣)=0,∴的相反数是﹣.故选A.【点评】此题主要考查了求无理数的相反数,无理数的相反数和有理数的相反数的意义相同,无理数的相反数是各地中考的重要考点.3.下列根式中属最简二次根式的是()A.B.C.D.【考点】最简二次根式.【专题】选择题.【分析】根据最简二次根式的定义对各选项分析判断后利用排除法求解.【解答】解:A、无法化简,故本选项正确;B、=,故本选项错误;C、=2故本选项错误;D、=,故本选项错误.故选A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.下列计算错误的是()A.B.C. D.【考点】二次根式的混合运算.【专题】选择题.【分析】结合选项分别进行二次根式的除法运算、乘法运算、加减运算,然后选择正确选项.【解答】解:A、×=7,原式计算正确,故本选项错误;B、÷=,原式计算正确,故本选项错误;C、+=8,原式计算正确,故本选项错误;D、3﹣=2,原式计算错误,故本选项错误.故选D.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的加减法则和乘除法则.5.下列二次根式中与的被开方数相同的是()A. B.C.D.【考点】被开方数相同的最简二次根式.【专题】选择题.【分析】根据被开方数相同的最简二次根式的定义,先化简,再判断.【解答】解:A、=2,与的被开方数不同,不是同类二次根式,故A选项错误;B、=,与的被开方数不同,不是同类二次根式,故B选项错误;C、=,与的被开方数不同,不是同类二次根式,故C选项错误;D、=3,与的被开方数相同,是同类二次根式,故D选项正确.故选D.【点评】此题主要考查了被开方数相同的最简二次根式的定义,即:化成最简二次根式后,被开方数相同,这样的二次根式叫做被开方数相同的最简二次根式.6.若是整数,则正整数n的最小值是()A.2 B.3 C.4 D.5【考点】二次根式的定义.【专题】选择题.【分析】先把75分解,然后根据二次根式的性质解答.【解答】解:∵75=25×3,∴是整数的正整数n的最小值是3.故选B.【点评】本题考查了二次根式的定义,把75分解成平方数与另一个因数相乘的形式是解题的关键.7.设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和5【考点】二次根式的加减.【专题】选择题.【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后计算介于哪两个相邻的整数之间.【解答】解:∵16<19<25,∴4<<5,∴3<﹣1<4,∴3<a<4,∴a在两个相邻整数3和4之间;故选C.【点评】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8.已知a<b,则化简二次根式的正确结果是()A. B.C.D.【考点】二次根式的性质与化简.【专题】选择题.【分析】由于二次根式的被开方数是非负数,那么﹣a3b≥0,通过观察可知ab 必须异号,而a<b,易确定ab的取值范围,也就易求二次根式的值.【解答】解:∵有意义,∴﹣a3b≥0,∴a3b≤0,又∵a<b,∴a<0,b≥0,∴=﹣a.故选A.【点评】本题考查了二次根式的化简与性质.二次根式的被开方数必须是非负数,从而必须保证开方出来的数也需要是非负数.9.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣3【考点】二次根式的化简求值.【专题】选择题.【分析】x=﹣3时,1+x<0,=﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.【点评】本题考查了二次根式的化简方法,关键是根据x的取值,判断算式的符号.10.已知,则的值为()A.B.8 C.D.6【考点】二次根式的乘法.【专题】选择题.【分析】首先求出(a+)2=a2++2=10,进而得出(a﹣)2=6,即可得出答案.【解答】解:∵,∴(a+)2=a2++2=10,∴a2+=8,∴a2+﹣2=(a﹣)2=6,∴=.故选C.【点评】此题主要考查了完全平方公式的应用,根据已知得出a2+的值是解题关键.11.已知a=,则代数式a2﹣1的值为.【考点】二次根式的乘法.【专题】填空题.【分析】把a=代入a2﹣1直接计算即可.【解答】解:当a=时,a2﹣1=()2﹣1=1.故本题答案为:1.【点评】本题考查实数的运算和代数式的求值,主要考查运算能力.12.若,则m﹣n的值为.【考点】二次根式的性质.【专题】填空题.【分析】根据任何非负数的平方根以及偶次方都是非负数,两个非负数的和等于0,则这两个非负数一定都是0,即可得到关于m.n的方程,从而求得m,n的值,进而求解.【解答】解:根据题意得:,解得:.则m﹣n=3=(﹣1)=4.故答案是:4.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.计算:=.【考点】:二次根式的加减法.【专题】填空题.【分析】本题是二次根式的减法运算,二次根式的加减运算法则是合并同类二次根式.【解答】解:=5﹣2=3.【点评】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.14.比较大小:﹣3﹣2.【考点】二次根式的乘法.【专题】填空题.【分析】先把两数平方,再根据实数比较大小的方法即可比较大小.【解答】解:∵(3)2=18,(2)2=12,∴﹣3<﹣2.故答案为:<.【点评】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.15.如果最简二次根式与的被开方数相同,那么a=.【考点】被开方数相同的最简二次根式.【专题】填空题.【分析】根据被开方数相同的最简二次根式的定义建立关于a的方程,求出a的值.【解答】解:∵最简二次根式与的被开方数相同,∴1+a=4a﹣2,解得a=1.故答案为1.【点评】本题考查了被开方数相同的最简二次根式的定义.16.与的关系是.【考点】二次根式的乘法.【专题】填空题.【分析】把分母有理化,即分子、分母都乘以,化简再比较与的关系.【解答】解:∵=,∴的关系是相等.【点评】正确理解分母有理化的概念是解决本题的关键.17.观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:.【考点】二次根式的乘除法.【专题】填空题.【分析】从给出的三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,依此可以找出规律.【解答】解:从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,即=(n+1).【点评】做这类题的关键是仔细观察各式从中找出规律.18.计算:(1);(2);(3);(4).【考点】二次根式的混合运算.【专题】解答题.【分析】(1)先把各二次根式化为最简二次根式,然后去括号后合并同类二次根式;(2)根据二次根式的乘除法则运算;(3)利用平方差公式计算;(4)先把括号内的各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.【解答】解:(1)原式=2﹣﹣2﹣=﹣3;(2)原式=2××=;(3)原式=(2)2﹣()2=12﹣6=6;(4)原式=(8﹣9)÷=﹣÷=﹣=﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.19.当x=﹣1时,求代数式x2+2x+2的值.【考点】二次根式的乘法.【专题】解答题.【分析】将代数式进行适当的变形后,将x的值代入.【解答】解:原式=x2+2x+1+1=(x+1)2+1,当x=﹣1时,原式=()2+1=3【点评】本题考查二次根式运算,涉及因式分解,代数式求值问题,属于基础问题.20.先化简,再求值:(﹣)÷,其中x=2.【考点】代数式.【专题】解答题.【分析】按照分式的性质进行化简后代入x=2求值即可.【解答】解:原式=•=当x=2时,原式=.【点评】本题考查了分式的化简求值的知识,解题的关键是能够对分式进行正确的化简,难度不大.21.解方程组,并求的值.【考点】二次根式乘法法则的逆用.【专题】解答题.【分析】先根据解二元一次方程组的方法求出x、y的值,再代入进行计算即可.【解答】解:,①×2﹣②得,y=,代入①得,3x+6×=10,解得x=.故==.故答案为:.【点评】本题考查的是解二元一次方程组及代数式求值,能根据解二元一次方程组的加减消元法和代入消元法求出x、y的值是解答此题的关键.22.若实数x,y满足y=++2,求的值.【考点】二次根式有意义的条件.【专题】解答题.【分析】根据被开方数是非负数,可得x,y的值,根据代数式求值,可得答案.【解答】解:由题意,得1﹣x≥0,1﹣x≤0,解得x=1,当x=1时,y=2.当x=1,y=2时,=.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出x,y 的值是解题关键.23.阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.【考点】二次根式的混合运算.【专题】解答题.【分析】(1)(2)仿照题目所给的分母有理化的方法进行计算;(3)将每一个二次根式分母有理化,再寻找抵消规律.【解答】解:(1)===﹣;(2)===﹣;(3)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=10﹣1=9.【点评】主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新人教版八年级数学下册检测考试
第十六章检测卷
时间:120分钟 满分:120分
一、选择题(每小题3分,共30分) 1.要使二次根式x -3有意义,则x 的取值范围是( )
A .x =3
B .x >3
C .x ≤3
D .x ≥3
2.下列二次根式中,不能与3合并的是( )
A .2 3 B.12 C.18 D.27
3.下列式子为最简二次根式的是( )
A. 5
B.12
C.a 2
D.
1a 4.下列计算正确的是( )
A .53-23=2
B .22×32=62 C.3+23=3 D .33÷3=3
5.化简28-2(2+4)得( )
A .-2 B.2-4 C .-4 D .82-4
6.估计32×12+20的运算结果应在( ) A .6到7之间 B .7到8之间 C .8到9之间 D .9到10之间
7.若k ,m ,n 都是整数,且135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系,正确的是( )
A .k <m =n
B .m =n <k
C .m <n <k
D .m <k <n
8.已知x +y =3+2,xy =6,则x 2+y 2的值为( )
A .5
B .3
C .2
D .1
9.设M =⎝⎛⎭⎫1ab
-a b ·ab ,其中a =3,b =2,则M 的值为( ) A .2 B .-2 C .1 D .-1 10.已知a
2a +2a 2+18a =10,则a 等于( ) A .4 B .±2 C .2 D .±4
二、填空题(每小题3分,共24分)
11.计算:
(1)(27)2=________; (2)18-212
=________. 12.如果两个最简二次根式3a -1与2a +3能合并,那么a =________. 13.如果x ,y 为实数,且满足|x -3|+y +3=0,那么⎝⎛⎭⎫x y 2018的值是________.
14.已知x=5-1
2,则x
2+x+1=________.
15.若一个三角形的一边长为a,这条边上的高为63,其面积与一个边长为32的正方形的面积相等,则a=________.
16.实数a在数轴上的位置如图所示,化简|a-1|+(a-2)2=________.
17.如果实数m满足(m-2)2=m+1,且0<m<3,那么m的值为________.18.已知16-x2-4-x2=22,则16-x2+4-x2=________.
三、解答题(共66分)
19.(16分)计算下列各题:
(1)(48+20)-(12-5);(2)20+5(2+5);
(3)48÷3-21
5×30+(22+3)
2;(4)(2-3)2017(2+3)2018-|-3|-(-
2)0.
20.(6分)已知y=2x-3+3-2x-4,计算x-y2的值.
21.(10分)(1)已知x=2+1,求x+1-x2
x-1
的值;。