同角三角函数基本关系式练习题
1.2.2同角三角函数的基本关系式练习题

同角三角函数的基本关系式练习题1.若 sin α= 4,且 α是第二象限角,则 tan α的值等于 () 5A .- 4 3 3 43 B. C .± D . ±4 4 3 2.化简 1-sin 2160 °的结果是 ()A . cos160 °B .- cos160 °C . ±cos160 °D . ±|cos160 | °2sin α-cos α3.若 tan α= 2,则的值为 ()sin α+ 2cos α35 A . 0B.4 C . 1D. 484.若 cos α=- 17,则 sin α= ________, tan α= ________.5,则 sin α等于 ()5.若 α是第四象限的角, tan α=-121 1 35A. 5B .- 5 C.15 D .- 136.若 α为第三象限角,则cos α + 2sin α 的值为 ()1- sin 2α1- cos 2α A . 3B .- 3C . 1D .-127、已知 A 是三角形的一个内角, sinA + cosA = 3 ,则这个三角形是 ( )A .锐角三角形B .钝角三角形C .不等腰直角三角形D .等腰直角三角形18、知 sin α cos α = 8 ,则 cos α- sin α 的值等于( )3333A .± 4B .± 2C . 2D .- 2、已知 是第三象限角,且 sin 4cos45 ,则sin cos()992 B .2 C . 1 D .1A .333310、如果角满足 sin cos2,那么 tan1的值是()tanA . 1B .2C . 1D . 2sin cos ,则 tan( )11、若22 sincosA .1B .-1C .3D .443112. A 为三角形 ABC 的一个内角,若sinA+ cosA=12,则这个三角形的形状为 () 25A .锐角三角形B.钝角三角形C.等腰直角三角形D.等腰三角形13.已知 tanθ= 2,则 sin2θ+ sin θcosθ- 2cos2θ等于 () 4534 A.-3 B. 4 C.-4 D. 5 14. ( tan x1)cos2x= ()tan xA . tanx B. sinx C. cosx1 D.tan x15.使1-cosα cosα- 1)=sinα成立的α的范围是 (1+cosαA . { x|2kπ-π<α< 2kπ, k∈Z }B. { x|2kπ-π≤ α≤ 2kπ, k∈Z }3πC. { x|2kπ+π<α< 2kπ+2, k∈Z} D.只能是第三或第四象限的角16.计算17.已知1- 2sin40 ·°cos40 °2= ________.sin40 -° 1-sin 40°1- sinαcosαtanα=- 3,则2sinαcosα+cos2α=________.18、若tan3sin 3 2 cos3的值为 ________________ .,则32 cos3sinsin cos2,则 sin cos 的值为19、已知cossinsinα20.若角α的终边落在直线x+y= 0 上,则2+1-sin α21.求证: sinθ(1+ tanθ)+ cosθ·(1+1)=1+1.tanθ sinθ cosθ1-cos2α的值为 ________.cosα2部分答案1、解析: 选 A. ∵α为第二象限角,∴cos α=- 1- sin 2α=-1- 4 2=- 3,5 54∴tan α= sin α 5=- 4.=3cos α - 352、解析: 选 B. 1- sin 2160 °= cos 2160 °=- cos160 °.2sin α- cos α 2tan α- 1.3、解析: 选 B.= = 3sin α+ 2cos α tan α+ 2 48 4、解析: ∵ cos α=- 17<0,∴α是第二或第三象限角.若 α是第二象限角,则 sin α>0, tan α<0.∴sin α=215 , tan α= sin α 151- cos α==- 8.17cos α若 α是第三象限角,则sin α<0, tan α>0.∴ sin α=-215, tan α= sin α 15 .1- cos α=-17 =cos α 8 答案:15或-15- 15或1517 17 8 85、解析: 选 D. ∵tan α= sin α 5 2 2=- , sin α+ cos α= 1,cos α 12∴ sin α=±5,13又 α为第四象限角,∴sin α=- 135.6、解析: 选 B. ∵α为第三象限角,∴ sin α<0, cos α<0,∴cos α+2sin α=cos α 2sin α1- sin 2+=- 1-2=- 3.α1- cos 2α |cos α||sin α|127、解析: 选 B. ∵sinA + cosA = ,212 2 144∴ (sinA + cosA) = (25) = 625,即 1+2sinAcosA =144,∴ 2sinAcosA =-481625625<0,∴ sinA>0,cosA<0,∴ A 为钝角,∴△ ABC 为钝角三角形.13、解析: 选 D.sin 2θ+ sin θcos θ- 2cos 2θ322θ= sin θ+ sin θcos θ- 2cossin 2θ+cos 2θ= tan 2θ+ tan θ- 2tan 2θ+1= 4+ 2-2= 4.5 52sinx + cosx 214、解析: 选 D.(tan x + cotx) ·cos x =( cosx sinx ) ·cos x =sin 2x + cos 2x2cosx= cotx.sinx ·cosx ·cos x = sinx15、解析:选 A.1- cos α1- cos α2 1- cos α cos α- 1==|sin α|=,1+ cos α1- cos 2αsin α即 sin α< 0,故 { x|2k π-π< α< 2k π, k ∈ Z } .2cos40 °- sin40 °16、解析: 原式=sin40 -°cos40 °==- 1.sin40 -° cos 240° sin40 -°cos40 °答案: -11- sin αcos αsin 2α- sin αcos α+ cos 2α tan 2α- tan α+ 1 - 3 2- -3 +117、解析:2=2=2tan α+ 1 = =2sin αcos α+ cos α2sin αcos α+ cos α2× -3 +113 - 5 .答案: -13518、答案: 5/321、证明: 左边= sin θ(1+ sin θcos θ)+ cos θ·(1+)cos θsin θ2θ2θ= sin θ+sin+ cos θ+coscos θsin θ2θ2θ= (sin θ+ cossin+cos θ)sin θ)+ (cos θsin 2θ+ cos 2θ sin 2θ+ cos 2θ=+cos θsin θ=1+1=右边,sin θcos θ∴原式成立.4。
三角函数计算练习题及答案详解

三角函数计算练习题及答案详解1.同角三角函数基本关系式sin2α+cos2α=1sinα=tanα cosαtanαcotα=12.诱导公式sin=___________ sin= ___________cos=___________ cos=___________tan=___________ tan=___________sin=___________ sin=___________cos=___________ cos=___________tan=___________ tan=___________ππ sin=____________sin=____________2ππcos=____________ +α)=_____________2ππtan=____________ +α)=_____________2 3π3πsin=____________ sin=____________2 3π3πcos=____________ +α)=____________2 3π3πtan=____________ +α)=____________ 2 sin=-sinα cos=cosα tan=-tanα公式的配套练习5π sin=___________cos=___________9πcos=__________ sin=____________3.两角和与差的三角函数cos=cosαcosβ-sinαsinβcos=cosαcosβ+sinαsinβsin =sinαcosβ+cosαsinβsin =sinαcosβ-cosαsinβtan= tanα+tanβ 1-tanαtanβtanα-tanβ 1+tanαtanβtan=4.二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=cos2α-1=1-sin2α2tanαtan2α= 1-tanα5.公式的变形升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α降幂公式:cos2α=1+cos2α1-cos2α sin2α=2正切公式变形:tanα+tanβ=tantanα-tanβ=tan 万能公式2tanα1-tan2α2tanαsin2α= tan2α= cos2α=1+tanα1+tanα1-tanα6.插入辅助角公式basinx+a+b sin a特殊地:sinx±cosx=sin7.熟悉形式的变形1±sinx±cosx1±sinx 1±cosx tanx+cotx 1-tanα1+tanα1+tanα1-tanα若A、B是锐角,A+B=2π,则=2nsinn+1αcosαcos2αcos2α?cosα=2sinα8.在三角形中的结论若:A+B+C=π A+B+Cπ=2tanA+tanB+tanC=tanAtanBtanCABBCCAtantan +tan tan + tan=122222三角函数计算练习1.已知x∈,cosx=,则tan2x= B. C. D.2.cos240°=A. B. C. D.3.已知cosα=k,k∈R,α∈,则sin= C.± D.﹣k4.已知角α的终边经过点,则cosα=5.cos480°的值为6.已知7.已知sin=,则cos2α等于)为其终边上一点,且cosα=x,则x=.已知α是第二象限角,P=)=..)=,则cos,且sin,则tan2x===﹣.故选D点评:此题考查了同角三角函数间的基本关系,以及二倍角的正切函数公式.学生求sinx和tanx时注意利用x 的范围判定其符合.2.B考点:运用诱导公式化简求值.专题:计算题;三角函数的求值.分析:运用诱导公式及特殊角的三角函数值即可化简求值.解答:解:cos240°=cos=﹣cos60°=﹣,故选:B.点评:本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知识的考查.3.A考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.解答:解:∵cosα=k,k∈R,α∈,∴sinα==,.∴sin=﹣sinα=﹣故选:A.点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.4.D考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点,∴x=﹣4,y=3,r=∴cosα==故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.5.D考点:运用诱导公式化简求值.专题:三角函数的求值.分析:运用诱导公式即可化简求值.解答:解:cos480°=cos=cos120°=﹣cos60°=﹣.故选:D.点评:本题主要考查了运用诱导公式化简求值,属于基础题.6.C考点:诱导公式的作用.专题:三角函数的求值.分析:已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.解答:解:sin=sin=sin=cosα=. =﹣, =5.考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:由sin=及诱导公式可得cosα=,由二倍角的余弦公式可得cos2α的+α)=, =﹣,借助于角的终边上的点,解关于x的方程,便可求得所求的横坐标.解答:解:∵cosα===x,或x=﹣.∴x=0或x=故选:D.点评:本题巧妙运用三角函数的定义,联立方程求出未知量,不失为一种好方法..考点:二倍角的余弦.专题:三角函数的求值.分析:由二倍角的余弦公式化简所求后代入已知即可求值.解答:解:∵sinα=,∴cos2α=1﹣2sinα=1﹣2×=.故答案为:.点评:本题主要考查了二倍角的余弦公式的应用,属于基本知识的考查. 10.考点:二倍角的余弦;两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:由二倍角的余弦函数公式根据已知即可求值.解答:解:cos=2cos﹣1=2×﹣1=.点评:本题主要考查了二倍角的余弦函数公式的应用,属于基本知识的考查.11.﹣考点:二倍角的正切;两角和与差的正弦函数.专题:三角函数的求值.分析:依题意,可得sinθ﹣cosθ=①,sinθ+cosθ=②,联立①②得:sinθ=,cosθ=,于是可得cos2θ、sin2θ的值,从而可得答案.解答:解:∵sin==,,2sinθcosθ=),,>0,又=1+sin2θ=∴sinθ+cosθ=,②联立①②得:sinθ=,cosθ=,∴cos2θ=2cosθ﹣1=﹣2,三角函数公式练习题1.1.sin29??A.11.?C. D22C试题分析:由题可知,sin考点:任意角的三角函数.已知sin?sin??;662?4)?772,cos2??,sin??25104343B.? C.?D.555D 试题分析由?7sin??sin??cos??45①,77?cos2??sin2?? 52571所以?cos??sin???cos??sin???②,由①②可得cos??sin??? ③,2553由①③得,sin?? ,故选D5cos2??考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式.cos690?A.1133B.?C. D.?222C试题分析:由cos690?cos2?360?30?cos??30??cos30?,故选C考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值.tan16?的值为A.?B. C. D.?3C试题分析tanπ=tan=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值..若??????1?cos? ???0???,cos?,cos?4243222A.33536B.? C. D.?399C.试题分析:因为????1??3?,且???0???,cos?,所以????2243444?22???;又因为cos?,且????0,所以??)?43422??????6??????,所以.又因为?????,且sin?24424234422cos?cos[?]?coscos?sinsin1322653.故应选C. ?????33339考点:1、同角三角函数的基本关系;2、两角差的余弦公式..若角?的终边在第二象限且经过点P?,那么sin2x=518247?? 252525258.已知cos?1??52524考点:二倍角公式,三角函数恒等变形5?1??)?,那么cos?? 52112A.?B.?C.D.55559.已知sin?=sin?cosa,所以选C.52考点:三角函数诱导公式的应用1,则cos2a的值为231177A. B.? C. D.?339910.已知sin?D试题分析:由已知得cos??1272,从而cos2??2cos??1??1??,故选D.99考点:诱导公式及余弦倍角公式.11.已知点P在第三象限,则角?在 A.第一象限B.第二象限 C.第三象限 D.第四象限B试题分析:由已知得,?考点:三角函数的符号.?tan??0,,故角?在第二象限.cos??0?5,则sin?? 121155A. B.? C. D.?55131312.已知?是第四象限角,tan???D22试题分析:利用切化弦以及sin??cos??1求解即可. tan??sin?5??cos?12,?sin2??cos2??1,?sin2??525sin??0,sin???,13,169又?是第四象限角,2?故选:D.考点:任意角的三角函数的定义 y?sin?xT?213.化简cos?sin2得到A.sin2?B.?sin2?C.cos2?D.?cos2? A 试题分析:cos2?sin2?cos2?sin2?cos2?cos?sin2?考点:三角函数的诱导公式和倍角公式. 14.已知cos?? 3???,0????,则tan?????4??A.11B.C.?1D.?57D3?44?0可知0???,因此sin??,tan??,25354??1tan??tan?由和角公式可知tan????7,故答案为D。
(完整word版)三角函数的定义、诱导公式、同角三角函数的关系练习题-

三角函数的定义、诱导公式、同角三角函数的关系练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知角α的终边经过点P(4,—3),则的值为( )A. B. C. D.2.已知角α的始边与x轴非负半轴重合,终边在射线4x-3y=0(x≤0)上,则cos α-sin α的值为( ) A. B.C. D.3.已知角α的终边与单位圆的交点P,则sinα·tanα=( )A.- B.± C.- D.±4.若tanα〈0,且sinα〉cosα,则α在()A.第一象限 B.第二象限C.第三象限 D.第四象限5.若,且,则角是( )A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角6.若,且为第二象限角,()A. B. C. D.7.已知,则等于A .B .C .D .8.若,且为第二象限角,则( )A .B .C .D .二、填空题9.已知 ,则___________三、解答题10.已知,且是第四象限的角。
(1)求; (2). 11.(1)已知,求的值;(2)已知, ,求的值.12.已知tan α2,= (1)求值: sin cos sin cos αααα+- (2)求值: ()()()()π5πsin cos cos π22cos 7πsin 2πsin παααααα⎛⎫⎛⎫+--+ ⎪ ⎪⎝⎭⎝⎭+-+ 13.已知角α终边上的一点()7,3P m m - ()0m ≠。
(1)求()cos sin 2119cos sin 22παπαππαα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭的值; (2)求22sin cos cos ααα+-的值。
14.已知0θπ<<,且1sin cos 5θθ+=,求 (1)sin cos θθ-的值;(2)tan θ的值.15.已知tan 2α=.(1)求3sin 2cos sin cos αααα+-的值; (2)求()()()()3cos cos sin 22sin 3sin cos πππαααπααππα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭+-+的值; 16.已知,计算:(1); (2)。
《同角三角函数关系》典型例题

学而优 · 教有方
−
−
= ( − ) ×
−
= .
−
−
+
=
=
(−)
−
−
.
+
(+)
−
=
典型例题
高中数学
GAOZHONGSHUXUE
题型1 利用同角三角函数的基本关系化简求值(逻辑推理)
典例1-3
解析
−
[简单问题解决能力]化简
.
−
此题属于简单化简问题,掌握三角函数的基本关系即可求解.具体如下:
度所属的范围及象限.分析题意,要化简的式子带有根号,所以先将分母有理化,然
后开方计算化简.具体如下:
学而优 · 教有方
典型例题
高中数学
GAOZHONGSHUXUE
题型1 利用同角三角函数的基本关系化简求值(逻辑推理)
典 例 1-2
[分析计算能力、推测解释能力]若
−
+
+
解析
学而优 · 教有方
典型例题
高中数学
GAOZHONGSHUXUE
题型1 利用同角三角函数的基本关系化简求值(逻辑推理)
典 例 1-1
[ 分 析 计 算 能 力 、 推 测 解 释 能 力 ] 已 知 =
− ,求
+ 的值.
解析
已知角的某个三角函数值,求其余三角函数值时,可以利用 + = 解
典 例 1-1
[ 分 析 计 算 能 力 、 推 测 解 释 能 力 ] 已 知 =
+ 的值.
高一数学同角三角函数的基本关系式和诱导公式试题答案及解析

高一数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,,则角的终边在第()象限A.一B.二C.三D.四【答案】B【解析】由题意,确定的象限,然后取得结果 .由,得在第二、四象限,由,得在第二、三象限,所以在第二象限.,故选B【考点】任意角的三角函数的定义.2.已知,则= ;【答案】【解析】分子分母同除,便会出现,【考点】三角函数的计算3.已知,且为第三象限角,(1)求的值;(2)求的值。
【答案】(1)(2)【解析】(1)由,再结合第三象限,余弦值为负,算出结果(2)先化简上式,根据,再结合(1)算出结果。
试题解析:(1)且(2分)为第三象限角(4分)(2)==(7分)=(8分)【考点】同角三角函数基本关系的运用以及三角函数的化简.4.已知,那么角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】要,即,因此角是第二或第三象限角,故选择B.【考点】同角三角函数基本关系及三角函数值的符号确定.5.已知.【答案】.【解析】对式子两边平方,得,从而.【考点】同角三角函数基本关系(平方关系),注意通过平方可与联系.6.已知是第三象限角,且.(1)求的值;(2)求的值【答案】(1);(2).【解析】解题思路:(1)先求,再求,进而求;(2)联立方程组,解得,进而求所求值.规律总结:涉及“”的“知一求二”问题,要利用以下关系式:;.注意点:由的值,求的值,要注意结合角的范围确定符号.试题解析:,是第三象限角,由得.【考点】同角三角函数基本关系式.7.设函数(1)求;(2)若,且,求的值.(3)画出函数在区间上的图像(完成列表并作图)。
(1)列表(2)描点,连线【答案】(1)2;(2);(3)见解析【解析】(1)由正弦函数周期公式得,=,即可求得;(2)将代入的解析式,得到关于的方程,结合诱导公式即可求出,再利用平方关系结合的范围,求出,再利用商关系求出;(3)先由为0和算出分别等于,,在(,)分别令取,0,,求出相应的值和值,在给定的坐标系中描出点,再用平滑的曲线连起来,就得到所要作的图像.试题解析:(1),2分(2)由(1)知由得:, 4分∵∴ 6分∴. 8分(其他写法参照给分)(3)由(1)知,于是有(1)列表11分(2)描点,连线函数 14分【考点】正弦函数周期公式;诱导公式;同角三角函数基本关系式;五点法作图8.已知且是第四象限角,则A.B.C.D.【答案】A【解析】∵=,∴,又∵是第四象限角,∴==,故选A.由诱导公式知,=,∴,由是第四象限角知,,结合同角三角函数基本关系中的平方关系得==.【考点】诱导公式;同角三角函数基本关系式;三角函数在各象限的符号9.已知,.(1)求;(2)求的值.【答案】(1);(2).【解析】(1)由同角三角函数的基本关系:,,结合条件,可得,再由可知,从而;(2)由(1)可知,可将欲求值的表达式化为与只有关的,根据齐次的数学思想,可分子分母同时除以,从而可得:.试题解析:(1)∵,,∴, 2分又∵,∴, 4分∴; 6分(2) 9分12分.【考点】同角三角函数基本关系.10.已知为锐角,则 .【答案】.【解析】∵为锐角,,∴,,∴.【考点】1.同角三角函数基本关系;2.两角和的正切公式.11.已知x,y均为正数,,且满足,,则的值为.【答案】【解析】因为,所以而所以由得,因此或∵x、y为正数,∴【考点】同角三角函数关系,消参数12.已知的值为()A.-2B.2C.D.-【答案】D【解析】由原式可得,解得.【考点】同角三角函数间的基本关系.13.已知,则的值为 .【答案】【解析】,即,又,故.【考点】诱导公式,同角三角函数的基本关系式.14.已知:,其中,则=【答案】【解析】因为,所以,又因,所以,.【考点】诱导公式.15.已知角的终边过点.(1)求的值;(2)若为第三象限角,且,求的值.【答案】;【解析】(1)由角的终边过点求出,利用诱导公式化简即可;(2)由为第三象限角,,可求出,结合(1)求出,利用展开式即可(1)因为的终边过点,所以,而;(2)因为为第三象限角,且,,故【考点】三角函数的定义,诱导公式,同角三角函数基本关系式,两角和与差的三角函数16.已知是第四象限的角,则= .【答案】【解析】是第四象限的角,则,而.【考点】二倍角公式、同角三角函数的基本关系.17.已知()A.B.C.D.【答案】A【解析】由即①由即②所以①+②可得即即,选A.【考点】1.同角三角函数的基本关系式;2.两角差的余弦公式.18.已知(1)化简;(2)若是第三象限角,且,求的值.【答案】(1) ;(2) .【解析】(1)根据诱导公式进行化简;(2)首先化简,根据第三象限角,同角基本关系式求,确定的值.试题解析:解:(1);. (6)(2),又是第三象限角,,.. (6)【考点】1.诱导公式;2同角基本关系式.19.比较大小:(用“”,“”或“”连接).【答案】>.【解析】在单位圆中,做出锐角1的正切线、正弦线、余弦线,观察他们的长度,发现正切线最长,余弦线最短,故有 tan1>sin1>cos1>0.【考点】三角函数线.20.函数在区间上的最大值为,则实数的值为( )A.或B.C.D.或【答案】A【解析】因为,令,故,当时,在单调递减所以,此时,符合要求;当时,在单调递增,在单调递减故,解得舍去当时,在单调递增所以,解得,符合要求;综上可知或,故选A.【考点】1.同角三角函数的基本关系式;2.二次函数的最值问题;3.分类讨论的思想.21.已知函数(1)求函数的最小正周期及在区间上的最大值和最小值;(2)若,求的值.【答案】(1)(2)【解析】(1)先利用诱导公式,二倍角公式,化一公式将此函数化简为的形式,利用周期公式,求周期,用x的范围求出整体角的范围,结合三角函数图像求其最值。
高中数学-同角三角函数的基本关系式练习

高中数学-同角三角函数的基本关系式练习34,选D. 答案:D5.已知θ∈(0,2π),且sin θ,cos θ是方程x 2-kx +k +1=0的两个实根,求k ,θ的值.解析:依题意有sin θ+cos θ=k ,① sin θcos θ=k +1,②又(sin θ+cos θ)2=1+2sin θcos θ, 所以k 2-2k -3=0,解得k =3或k =-1, 显然|sin θcos θ|=|k +1|≤1,因此k =-1,代入①②得⎩⎪⎨⎪⎧sin θ+cos θ=-1,sin θcos θ=0,从而⎩⎪⎨⎪⎧sin θ=0,cos θ=-1或⎩⎪⎨⎪⎧sin θ=-1,cos θ=0.又θ∈(0,2π),所以θ=π或3π2.(限时:30分钟)1.已知α是第四象限角,cos α=1213,则sin α等于( )A.513 B .-513 C.512 D .-512解析:∵α是第四象限角, ∴sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫12132=-513.答案:B2.已知tan α=-12,则2sin αcos αsin 2α-cos 2α的值是( ) A.43 B .3 C .-43D .-3解析:2sin αcos αsin 2α-cos 2α=2tan αtan 2α-1,将tan α=-12代入得: 2sin αcos αsin 2α-cos 2α=2×⎝ ⎛⎭⎪⎫-1214-1=43,故选A. 答案:A 3.化简⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α)的结果是( )A .sin αB .cos αC .1+sin αD .1+cos α解析:原式=⎝ ⎛⎭⎪⎫1sin α+cos αsin α(1-cos α)=1+cos α1-cos αsin α=sin 2αsin α=sin α. 答案:A4.已知sin αcos α=18,且π<α<5π4,则cos α-sin α的值为( )A.32 B .-32C.34 D .-34解析:∵(cos α-sin α)2=1-2sin αcos α=1-2×18=34,且π<α<5π4,∴cos α<sin α,∴cos α-sin α<0,∴cos α-sin α=-34=-32. 答案:B5.已知sin α-cos α=-52,则tan α+1tan α的值为( ) A .-4 B .4 C .-8 D .8解析:tan α+1tan α=sin αcos α+cos αsin α=sin 2α+cos 2αsin αcos α=1sin αcos α.∵sin α-cos α=-52,∴1-2sin αcos α=54, ∴sin αcos α=-18,∴1sin αcos α=-8.答案:C6.已知1+sin x cos x =-13,则cos xsin x -1的值等于( )。
高三数学同角三角函数的基本关系式和诱导公式试题答案及解析

高三数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,则.【答案】3【解析】===3.【考点】同角三角函数基本关系式2.若tan α=3,则 sin2α-2 sin αcos α+3 cos2α=______.【答案】【解析】sin2α-2 sin αcos α+3 cos2α====.3.已知f(α)=,则f的值为________.【答案】-【解析】∵f(α)==-cos α,∴f=-cos=-cos=-cos=-.4.化简+=________.【解析】原式=+=-sin α+sin α=0.5.已知α∈(,π),tanα=-,则sin(α+π)=()A.B.-C.D.-【答案】B【解析】由题意可知,由此解得sin2α=,又α∈(,π),因此有sinα=,sin(α+π)=-sinα=-,故选B.6.记cos(-80°)=k,那么tan100°=()A.B.-C.D.-【答案】B【解析】解法一:因为cos(-80°)=cos80°=k,sin80°==,所以tan100°=-tan80°=-=-.解法二:因为cos(-80°)=k,所以cos80°=k,所以tan100°=-tan80°==-.7.已知sinαcosα=,且π<α<,则cosα-sinα的值为()A.-B.C.-D.【答案】B【解析】∵π<α<,∴cosα>sinα,∴cosα-sinα>0,又∵(cosα-sinα)2=1-2cosαsinα=,∴cosα-sinα=.8.若3cos(-θ)+cos(π+θ)=0,则cos2θ+sin2θ的值是________.【答案】【解析】∵3cos(-θ)+cos(π+θ)=0,即3sinθ-cosθ=0,即tanθ=.∴cos2θ+sin2θ======.9.(5分)(2011•福建)若α∈(0,),且sin2α+cos2α=,则tanα的值等于()A.B.C.D.【答案】D【解析】把已知的等式中的cos2α,利用同角三角函数间的基本关系化简后,得到关于sinα的方程,根据α的度数,求出方程的解即可得到sinα的值,然后利用特殊角的三角函数值,由α的范围即可得到α的度数,利用α的度数求出tanα即可.解:由cos2α=1﹣2sin2α,得到sin2α+cos2α=1﹣sin2α=,则sin2α=,又α∈(0,),所以sinα=,则α=,所以tanα=tan=.故选D点评:此题考查学生灵活运用二倍角的余弦函数公式及同角三角函数间的基本关系化简求值,是一道基础题.学生做题时应注意角度的范围.10.已知sin α=+cos α,且α∈,则的值为________.【答案】-【解析】将sin α-cos α=两边平方,得2sin α·cos α=,(sin α+cos α)2=,sin α+cos α=,==-(sin α+cos α)=-.11.在△ABC中,若sinA,cosA是关于x的方程3x2-2x+m=0的两个根,则△ABC是 ( )A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【答案】A【解析】∵sinA,cosA是关于x的方程3x2-2x+m=0的两个根∴sinA+cosA=∴(sinA+cosA)2=1+2sinAcosA=即sinAcosA=-∵0o<A<180o,∴sinA>0,所以cosA<0,即90o<A<180o故知△ABC是钝角三角形12.已知,则()A.B.C.D.【答案】A【解析】∵,∴,∴,∴,∴,∴,∴.【考点】三角函数求值.13.在中,角A,B,C的对边a,b,c成等差数列,且,则 .【答案】【解析】∵成等差数列,∴,∴,∵,∴,∴,∴,(1)∵且,∴代入(1)式中,,∴,∴,∴,∴.【考点】1.等差中项;2.倍角公式;3.诱导公式.14.已知,,则.【答案】【解析】由题意,,.【考点】同角间的三角函数关系.15.若则【答案】【解析】,得,∴.【考点】求三角函数值.16.α是第二象限角,tanα=-,则sinα=________.【答案】【解析】由解得sinα=±.∵α为第二象限角,∴sinα>0,∴sinα=.17. cos=________.【答案】-【解析】cos=cos=cos(17π+)=-cos=-.18.已知其中若.(1)求的值;(2)求的值.【答案】(1);(2).【解析】(1)先由已知条件求得的值,再由平方关系可得的值,把拆为,最后利用两角和的余弦公式即可求得的值;(2)考查了三角函数中知一求三的思想,即这几个量“知一求三”.可先利用差角余弦公式将展开,求得的值,两边平方即可求得的值,再由平方关系即可求得的值,最后由商关系即可求得的值.试题解析:(1)由已知得:,(2)由,得,两边平方得:,即,∵,且,从而. 12分【考点】1.平面向量的数量积运算;2.应用三角恒等变换求三角函数的值.19.已知x∈(0,),则函数f(x)=的最大值为()A.0B.C.D.1【答案】C【解析】由已知得,f(x)==tanx-tan2x=-(tanx-)2+,∵x∈(0,),∴tanx∈(0,1),=.故当tanx=时,f(x)max20.已知sinθ,cosθ是关于x的方程x2-ax+a=0(a∈R)的两个根.(1)求cos3(-θ)+sin3(-θ)的值.(2)求tan(π-θ)-的值.【答案】(1) -2 (2) 1+【解析】【思路点拨】先由方程根的判别式Δ≥0,求a的取值范围,而后应用根与系数的关系及诱导公式求解.解:由已知,原方程的判别式Δ≥0,即(-a)2-4a≥0,∴a≥4或a≤0.又(sinθ+cosθ)2=1+2sinθcosθ,则a2-2a-1=0,从而a=1-或a=1+(舍去),因此sinθ+cosθ=sinθcosθ=1-.(1)cos3(-θ)+sin3(-θ)=sin3θ+cos3θ=(sinθ+cosθ)(sin2θ-sinθ·cosθ+cos2θ)=(1-)[1-(1-)]=-2.(2)tan(π-θ)-=-tanθ-=-(+)=-=-=1+.21.若sinθcosθ>0,则θ在()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限【答案】B【解析】∵sinθcosθ>0,∴sinθ,cosθ同号.当sinθ>0,cosθ>0时,θ在第一象限,当sinθ<0,cosθ<0时,θ在第三象限,因此,选B.22.=()A.-B.-C.D.【解析】====sin 30°=.23.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=________.【答案】-【解析】f(x)=sin x-2cos x==sin(x-φ),其中sin φ=,cos φ=,当x-φ=2kπ+ (k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cos θ=-sin φ=-.24. 4cos 50°-tan 40°=________.【答案】【解析】4cos 50°-tan 40°======.25.已知α∈,且cos α=-,则tan α=________.【答案】2【解析】利用同角三角函数的基本关系求解.由条件可得sin α=-,所以tan α===2.26.若α,β∈,cos =,sin =-,则cos (α+β)=________.【答案】【解析】∵α,β∈,∴-<α-<,-<-β<,由cos =和sin =-得α-=±,-β=-,当α-=-,-β=-时,α+β=0,与α,β∈矛盾;当α-=,-β=-时,α=β=,此时cos (α+β)=-.27.若cos =,则cos =().A.-B.-C.D.【答案】D【解析】∵cos =,∴cos =2cos 2-1=-,即sin 2x=,∴cos =sin 2x=.28.已知sin θ+cos θ=,则sin θ-cos θ的值为________.【答案】-【解析】∵sin θ+cos θ=,∴(sin θ+cos θ)2=1+2cos θsin θ=,∴2cos θsin θ=,∴(sin θ-cos θ)2=1-=,又θ∈,∴sin θ<cos θ,∴sin θ-cos θ=-.29.已知,则=____________.【答案】【解析】,根据,可知:,故答案为.【考点】同角三角函数的基本关系式的运算30.已知,且,则.【答案】【解析】因为,所以。
中档题18同角三角函数的基本关系及诱导公式(含答案,直接打印)

1,cos
1,则实数 m 的值的集合为___________.
1
1 . 若 tan ,则cos
sin
______.若 sin
1 cos
1,则
cos
sin sin
________. ________.
1 . 若 t th ,且 sin
cos
,则 tan ___________
17. 若 sin
cos sin
sin
cos sin cos
1
11
1. 1.
解:因为 是锐角,所以 t
t,
因为 sin
1,所以 cos
,则 sin
sin
cos
,
6.【答案】
解: 向量 4h h
1h , h 的夹角为 ,则
41
,‸
1 cos
,
7.【答案】
解: sin cos
8.【答案】 4
1 sin 4,又 t t t ,
, sin cos t, sin cos
解: ‸
,且 t t , ‸
把所给的等式平方可得 1 ‸
1, ‸
再根据 ‸
‸ sin cos
9.【答案】 8
tan 1
4.求得
, t 1.
4.
,或
1 舍去 ,
第 页,共 4页
解: t t t, ‸
1,
‸ , 4 t t t, t t t,
‸
1,两边平方,可得 ‸
4,
7, ‸cosຫໍສະໝຸດ ‸18.10.【答案】 7 8
sin
1 cos 1 cos
14
9.
1
.
16.【答案】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意角的三角函数
1.已知sin α=45
,且α为第二象限角,那么tan α的值等于 ( ) (A)3
4
(B)43
- (C)4
3
(D)4
3-
2.若θ是第三象限角,且02
cos <θ,则2
θ是
( )
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限
3.设是第二象限角,则sin cos αα
( )
(A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ=3
1,π<θ<32
π,则sin θ·cos θ的值为 ( ) (A)±
3
10
(B)
3
10
5 若α 是三角形的一个内角,且sin α+cos α=3
2
,则三角形为 ( ) (A) 钝角三角形 (B)锐角三角形 (C)直角三角形
(D)等腰三角形
6.已知α的终边经过P (ππ6
5cos ,6
5sin ),则α可能是 ( )
A .π6
5
B .
6
π
C .3
π-
D .3
π
7.如果).cos(|cos |π+-=x x 则x 的取值范围是 ( )
A .)(]
22
,22
[Z k k k ∈++-ππππ
B .)()
22
3,22
(Z k k k ∈++ππππ
C .)(]
22
3,22
[Z k k k ∈++ππππ
D .)()2,2(Z k k k ∈++-ππππ
8.1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( )
A .5
B .-5
C .6
D .-6
9. 扇形的周期是16,圆心角是2弧度,则扇形面积是______________
10.若θ为第二象限角,则sin θcos θtan3的符号是_______________.
11.⎪⎭
⎫
⎝
⎛-π6
19sin 的值等于______________.
12.若sin (125°-α)= 12
13 ,则sin (α+55°)=
.
π7 +cos 2π7 +cos 3π7 +cos 4π7 +cos 5π7 +cos 6π
7 = . 14.已知sin α cos α=8
1,且4π<α<2
π
,则cos α-sin α的值为 ______________. 15.若
2cos sin 2cos sin =-+α
αα
α,则=αtan
______________
16.已知tan α=2,则2sin 2α-3sin αcos α-2cos 2α= ; 17.角α的终边上有一点P (m ,5),且)0(,13
cos ≠=m m
α,则sin α+cos α=______.
18.若cos α=2
3,α是第四象限角,求
sin(2)sin(3)cos(3)cos()cos()cos(4)
απαπαππαπααπ-+--------的值.
19.已知5
1
cos sin =+x x ,且π<<x 0.
(1)求sinx 、cosx 、tanx 的值. (2)求sin 3x – cos 3x 的值.。