人教版八年级上册第十二章《全等三角形》培优训练题

合集下载

人教版八年级上册第12章《全等三角形》培优练习题

人教版八年级上册第12章《全等三角形》培优练习题

《全等三角形》培优练习题一.选择题1.下列说法中错误的是()A.有两个角及它们的夹边对应相等的两个三角形全等B.有两个角及其中一个角的对边对应相等的两个三角形全等C.有两条边及它们的夹角对应相等的两个三角形全等D.有两条边及其中一条边的对角对应相等的两个三角形全等2.如图,已知AB=DE,∠1=∠2.若要得到△ABC≌△DEF,则下列条件中不符合要求的是()A.∠A=∠D B.∠C=∠F C.AC=DF D.CE=FB3.如图,点C是AB的中点,AD=BE,CD=CE,则图中全等三角形共有()A.2对B.3对C.4对D.5对4.在△ABC中,∠ABC=30°,AB边的长为10,AC边的长度可以在5,7,10,11中取值,满足这些条件的互不全等的三角形的个数是()A.4 B.5 C.6 D.75.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC6.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在∠A、∠B两内角平分线的交点处B.在AC、BC两边中线的交点处C.在AC、BC两边高线的交点处D.在AC、BC两边垂直平分线的交点处7.如图,在△ABC中,AB=6,BC=5,AC=4,AD平分∠BAC交BC于点D,在AB上截取AE=AC,则△BDE的周长为()A.8 B.7 C.6 D.58.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS9.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为()A.0.8 B.1 C.1.5 D.4.210.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.120°C.135°D.150°二.填空题11.如图,在△ADC与△BDC中,∠1=∠2,加上条件(只填写一个即可),则有△ADC≌△BDC.12.如图,以△ABC的顶点A为圆心,以BC长为半径作弧,再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连接AD、CD,若∠B=56°,则∠ADC的大小为度.13.已知,如图,∠D=∠A,EF∥BC,添加一个条件:,使得△ABC≌△DEF.14.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,AE=AB,连接ED,且∠E =∠C,AD=2DE,则S△AED:S△ADB=.15.在四边形ABCD中,∠ADC与∠BCD的角平分线交于点E,∠DEC=115°,过点B 作BF∥AD交CE于点F,CE=2BF,,连接BE,,则CE =.三.解答题16.如图,在△ABC中,点D是边BC上一点,CD=AB,点E在边AC上,且AD=DE,∠BAD=∠CDE.(1)如图1,求证:BD=CE;(2)如图2,若DE平分∠ADC,在不添加辅助线的情况下,请直接写出图中所有与∠ADE相等的角(∠ADE除外).17.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE.(2)连接OA,BC,试判断直线OA,BC的关系,并说明理由.18.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.20.阅读下面材料:学习了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪的探究方法是对∠B分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B是直角时,如图1,△ABC和△DEF中,AC=DF,BC=EF,∠B =∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是;A.全等B.不全等C.不一定全等第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B =∠E>90°.过点C作AB边的垂线交AB延长线于点M;同理过点F作DE边的垂线交DE延长线于N,根据“ASA”,可以知道△CBM≌△FEN,请补全图形,进而证出△ABC≌△DEF.参考答案一.选择题1.解:A、有两个角及它们的夹边对应相等的两个三角形全等,是“ASA”,说法正确;B、两个角及其中一个角的对边对应相等的两个三角形全等,是“AAS”,说法正确;C、有两条边及它们的夹角对应相等的两个三角形全等,是“SAS”,说法正确;D、有两条边及其中一条边的对角对应相等的两个三角形不一定全等,说法错误;故选:D.2.解:A、添加∠A=∠D,根据ASA可以判定△ABC≌△DEF,故本选项不符合题意.B、添加∠C=∠F,根据AAS可以判定△ABC≌△DEF,故本选项不符合题意.C、添加AC=DF,根据SSA不可以判定△ABC≌△DEF,故本选项符合题意.D、添加CE=FB可以得到BC=EF,根据SAS可以判定△ABC≌△DEF,故本选项不符合题意.故选:C.3.解:∵点C是以AB的中点,∴AC=BC,∵AD=BE,CD=CE,∴△ACD≌△BCE(SSS),∴∠D=∠E,∠A=∠B,∠ACD=∠BCE,∴∠ACG=∠BCH,∴△ACG≌△BCH(ASA),∴CG=CH,∴EG=DH,△ECH≌△DCG(ASA),∵∠EFG=∠DFH,∴△EFG≌△DFH(AAS);∴图中全等三角形共有4对,故选:C.4.解:过A作AE⊥BC于E,∵∠AB=10,∠B=30°,∴AE=AB=5,即AE是A到直线BC的最短距离,当AC=5时,此时三角形有1个;当AC=7此时三角形有2个;当AC=10时,此时三角形有1个;当AC=11时,此时三角形有1个;即存在三角形1+2+1+1=5(个),故选:B.5.解:过D点分别作AB、BC、AC的垂线,垂足分别为E、G、F,∵∠ABC、∠ACB外角的平分线相交于点D,∴ED=GD,GD=DF,∴ED=DF,∴AP平分∠CAB.故选:B.6.解:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选:A.7.解:∵AD是∠BAC的平分线,∴∠EAD=∠CAD在△ADE和△ADC中,,∴△ADE≌△ADC(SAS),∴ED=CD,∴BC=BD+CD=DE+BD=5,∴△BDE的周长=BE+BD+ED=(6﹣4)+5=7.故选:B.8.解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:A.9.解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC.CE=AD=2.5.∵DC=CE﹣DE,DE=1.7cm,∴DC=2.5﹣1.7=0.8.故选:A.10.解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:C.二.填空题(共5小题)11.解:加上条件AD=BD(答案不唯一),则有△ADC≌△BDC.理由是:在△ADC和△BDC中,,∴△ADC≌△BDC(SAS),故答案为:AD=BD(答案不唯一).12.解:由作图可知:AD=BC,AB=CD,AC=CA,∴△ABC≌△CDA(SSS),∴∠ADC=∠B=56°,故答案为:56.13.解:∵EF∥BC,∴∠ACB=∠DFE,又∵∠D=∠A,∴添加条件AC=DF,可以使得△ABC≌△DEF(ASA),添加条件AB=DE,可以使得△ABC≌△DEF(AAS),添加条件BC=EF,可以使得△ABC≌△DEF(AAS),故答案为:AC=DF(AB=DE或BC=EF).14.解:取AD的中点G,连接BG,则AG=DG,AD=2AG,∵AD=2DE,∴DE=AG,∵∠BAC=90°,AD⊥BC,∴∠ABC+∠C=∠ABC+∠BAG=90°,∴∠C=∠BAG,∵∠C=∠E,∴∠BAG=∠E,在△ABG和△EAD中,,∴△ABG≌△EAD(SAS),∴S△AED=S△BAG,∵点G是AD的中点,∴S△BGD=S△BAG,∴S△AED:S△ADB=1:2,故答案为:1:2.15.解:∵∠CBF=∠BCE,∴可以假设∠BCE=4x,则∠CBF=5x,∵DE平分∠ADC,CE平分∠DCB,∴∠ADE=∠EDC,∠ECD=∠ECB=4x,设∠ADE=∠EDC=y,∵AD∥BF,∴∠A+∠ABF=180°,∴∠ADC+∠DCB+∠CBF=180°,∴2y+13x=180°①,∵∠DEC=115°,∴∠EDC+∠ECD=65°,即y+4x=65°②,由①②解得,∴∠BCF=40°,∠CBF=50°,∴∠CFB=90°,∴BF⊥EC,∴CE=2BF,设BF=m,则CE=2m,∵S△BCE=•EC•BF=,∴×2m×m=,∴m=或﹣(舍弃),∴CE=2m=5,故答案为5.三.解答题(共5小题)16.解:(1)在△ABD和△DCE中,,∴△ABD≌△DCE(SAS),∴BD=CE;(2)∵△ABD≌△DCE,∴∠B=∠C,∴∠ADE=∠CDE=∠BAD,∵∠ADC=∠B+∠BAD=∠ADE+∠CDE,∴∠B=∠ADE=∠BAD=∠EDC=∠C,∴与∠ADE相等的角有∠EDC,∠BAD,∠B,∠C.17.解:(1)证明:∵CD⊥AB于D,BE⊥AC于E,∴∠ADC=∠AEB=90°,在△ADC与△AEB中,,∴△ACD≌△ABE,∴AD=AE;(2)直线OA垂直平分BC,理由如下:如图,连接AO,BC,延长AO交BC于F,在Rt△ADO与Rt△AEO中,,∴Rt△ADO≌Rt△AEO,∴OD=OE,∵CD⊥AB于D,BE⊥AC于E,∴AO平分∠BAC,∵AB=AC,∴AO⊥BC.18.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△ABM≌△DBM,则AB=BD,显然不可能,故①错误.故答案为②.19.(1)证明:∵∠ABC=90°,∴∠DBC=90°,在△ABE和△CBD中∴△ABE≌△CBD(SAS);(2)解:∵AB=CB,∠ABC=90°,∴∠BCA=45°,∴∠AEB=∠CAE+∠BCA=30°+45°=75°,∵△ABE≌△CBD,∴∠BDC=∠AEB=75°.20.解:第二种情况选C.理由:由题意满足条件的点D有两个,故△ABC和△DEF不一定全等(如图所示)故选C.第三种情况补全图.证明:由△CBM≌△FEN得,CM=FN,BD=EN又在Rt△CMA和Rt△FND中,∴△CMA≌△FND,∴AM=DN,∴AB=DE,又在△ABC和△DEF中,∴△ABC≌△DEF.。

八上数学《第12章.全等三角形》状元培优单元测试题(人教版版附答案)

八上数学《第12章.全等三角形》状元培优单元测试题(人教版版附答案)

2019-2020学年八上数学《12.全等三角形》状元培优单元测试题(人教版版附答案)一、选择题1、如图所示,△ABC与△DEF是全等三角形,即△ABC≌△DEF,那么图中相等的线段有( ).A.1组 B.2组 C.3组 D.4组2、如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下哪个条件仍不能判定△ABE ≌△ACD( )A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3、如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是()A.1 B.2 C.3 D.44、如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是().A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE5、下列说法正确的是()A.全等三角形是指形状相同大小相等的三角形 B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形 D.所有的等边三角形都是全等三角形6、如图,已知,,与交于点,于点,于点,那么图中全等的三角形有()A.5对B.6对C.7对D.8对7、如图,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠BAD=∠ABC,∠ABD=∠BAC B.AD=BC,BD=ACC.BD=AC,∠BAD=∠ABC D.∠D=∠C,∠BAD=∠ABC8、小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上 B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等 D.以上均不正确9、如图是两个全等三角形,则∠1=()A.62° B.72° C.76° D.66°10、如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于( )A.65° B.95° C.45° D.100°11、数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线 B.一条高 C.一条角平分线D.不确定12、已知:如图,AB=AD,∠1=∠2,以下条件中,不能推出△ABC≌△ADE的是()A.AE=AC B.∠B=∠D C.BC=DE D.∠C=∠E二、填空题13、如图,在等腰△ABC中,∠ABC=90°,D为底边AC中点,过D点作DE⊥DF,交AB于E,交BC于F.若AE=12,FC=5,EF长为.14、如图,已知,,,则.15、如图,点P为△ABC三条角平分线的交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD____________PF.16、如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到AB的距离为________ .17、如图所示,在平行四边形ABCD中,分别以AB.AD为边作等边△ABE和等边△ADF,分别连接CE.CF和EF,则下列结论中一定成立的是________ (把所有正确结论的序号都填在横线上).①△CDF≌△EBC;②△CEF是等边三角形;③∠CDF=∠EAF;④EF⊥CD.三、简答题18、如图,在△ADF和△BCE中,AF=BE,AC=BD,∠A=∠B,∠B=32°,∠F=28°,BC=5cm,CD=1cm.求:(1)∠1的度数;(2)AC的长.19、如图,在平面直角坐标系中A.B坐标分别为(2,0),(-1,3),若△OAC与△OAB全等,(1)试尽可能多的写出点C的坐标;(2)在⑴的结果中请找出与(1,0)成中心对称的两个点。

【精品】人教版八年级数学上册第12章《全等三角形》培优试题【3套】试题

【精品】人教版八年级数学上册第12章《全等三角形》培优试题【3套】试题

人教版八年级数学上册第12章《全等三角形》培优试题一.选择题(共10小题,每小题3分,共30分) 1.如图,给出下列四组条件:①AB DE =,BC EF =,AC DF =; ②AB DE =,B E ∠=∠.BC EF =; ③B E ∠=∠,BC EF =,C F ∠=∠; ④AB DE =,AC DF =,B E ∠=∠. 其中,能使ABC DEF ∆≅∆的条件共有( ) A .1组B .2组C .3组D .4组2.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆≅∆的 是( ) A .CB CD =B .BCA DCA ∠=∠C .BAC DAC ∠=∠D .90B D ∠=∠=︒3.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带( )去. A .第1块B .第2块C .第3块D .第4块4.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,若3AD =,1BE =,则 (DE = )A .1B .2C .3D .45.下列作图语句正确的是( ) A .延长线段AB 到C ,使AB BC = B .延长射线ABC .过点A 作////AB CD EFD .作AOB ∠的平分线OC6.如图,Rt ABC ∆沿直角边BC 所在直线向右平移到Rt DEF ∆,则下列结论中,错误的第1题图第2题图第3题图第4题图是( ) A .BE EC =B .BC EF =C .AC DF =D .ABC DEF ∆≅∆7.如图,在ABC ∆中,90C ∠=︒,AC BC =,AD 平分CAB ∠交BC 于D ,DE AB ⊥于E ,若6AB cm =,则DBE ∆的周长是( ) A .6 cmB .7 cmC .8 cmD .9 cm8.已知ABC ∆的三个内角三条边长如图所示,则甲、乙、丙三个三角形中,和ABC ∆全等的图形是( ) A .甲和乙B .乙和丙C .只有乙D .只有丙9.如图,BE CF =,AE BC ⊥,DF BC ⊥,要根据“HL ”证明Rt ABE Rt DCF ∆≅∆,则还需要添加一个条件是( ) A .AE DF =B .A D ∠=∠C .B C ∠=∠D .AB DC =10.下列语句中不正确的是( )A .斜边和一锐角对应相等的两个直角三角形全等B .有两边对应相等的两个直角三角形全等C .有两个锐角相等的两个直角三角形全等D .有一直角边和一锐角对应相等的两个直角三角形全等 二.填空题(共8小题,每小题3分,共24分)11.如图,点F 、C 在线段BE 上,且12∠=∠,BC EF =,若要使ABC DEF ∆≅∆,则还需补充一个条件 ,依据是 .第6题图第7题图第8题图第9题图12.如图,AD 是ABC ∆的角平分线,DE AC ⊥,垂足为E ,//BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠,2AE BF =.给出下列四个结论:①DE DF =;②DB DC =;③AD BC ⊥;④3AC BF =,其中正确的结论是 .13.如图,点O 在ABC ∆内,且到三边的距离相等,若60A ∠=︒,则BOC ∠= .14.如图,已知CD FB =,AC EF =,要使ABC EDF ∆≅∆,应添加的一个条件是 . 15.如图,线段AC 、BD 相交于点0,OA OC =,OB OD =,那么AB 、CD 的位置关系是 .16.如图,把矩形纸条ABCD 沿EF 、GH 同时折叠,B 、C 两点恰好落在AD 边的P 点处,若90FPH ∠=︒,8PF =,6PH =,则矩形ABCD 的边BC 长为 .17.如图,ABC DEB ∆≅∆,AB DE =,E ABC ∠=∠,则C ∠的对应角为 ,BD 的对应边为 .18.如图,AD BC ⊥,DE AB ⊥,DF AC ⊥,D 、E 、F 是垂足,BD CD =,那么图中的全等三角形有 对.第11题图第12题图第13题图第14题图第15题图 第16题图第17题图第18题图三.解答题(共6小题,满分46分,其中19、20每小题7分,21题6分,22、23每小题8分,24题10分)19.如图,D、C、F、B四点在一条直线上,AB DE⊥,垂足分=,AC BD⊥,EF BD 别为点C、点F,CD BF=.求证:(1)ABC EDF∆≅∆;(2)//AB DE.20.如图,在ABC=,M、∆中,AD BC⊥,垂足为D,AD CD=,点E在AD上,DE BD N分别是AB、CE的中点.(1)求证:ADB CDE∆≅∆;(2)求MDN∠的度数..21.有一座锥形小山,如图,要测量锥形小山两端A、B的距离,先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD CA=,连接BC并延长到E,使=,连接DE,量出DE的长为50m,你能求出锥形小山两端A、B的距离吗?CE CB22.如图,已知BD AC⊥.⊥,CF AB(1)若BE AC∆≅∆.=,求证:BFE CFA(2)取BC中点为G,连结FG,DG,求证:FG DG=.23.等边ABC ∆中,D 、E 是BC 、AC 上的点,AE CD =,AD 与BE 相交于Q ,BP AD ⊥, 求证:(1)ABE CAD ∆≅∆;(2)2BQ PQ =.24.(1)已知,如图①,在ABC ∆中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E ,求证:DE BD CE =+.(2)如图②,将(1)中的条件改为:在ABC ∆中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=,其中α为任意钝角,请问结论DE BD CE =+是否成立?若成立,请你给出证明:若不成立,请说明理由.2019—2020学年人教版八年级数学上册第12章《全等三角形》培优试题参考简答一.选择题(共10小题)1.C . 2.B . 3.B . 4.B . 5.D . 6.A . 7.A . 8.B . 9.D . 10.C . 二.填空题(共8小题)11. AC DF = SAS . 12. ①②③④ . 13. 120︒ . 14. C F ∠=∠或AB DE = . 15. //AB CD . 16. 24 . 17. DBE ∠ , CA . 18. 3 . 三.解答题(共6小题)19.如图,D 、C 、F 、B 四点在一条直线上,AB DE =,AC BD ⊥,EF BD ⊥,垂足分别为点C 、点F ,CD BF =. 求证:(1)ABC EDF ∆≅∆; (2)//AB DE .【证明】:(1)AC BD ⊥,EF BD ⊥,ABC ∴∆和EDF ∆为直角三角形, CD BF =,CF BF CF CD ∴+=+,即BC DF =,在Rt ABC ∆和Rt EDF ∆中, AB DEBC DF =⎧⎨=⎩Rt ABC Rt EDF(HL)∴∆≅∆;(2)由(1)可知ABC EDF ∆≅∆,B D ∴∠=∠,//AB DE ∴.20.如图,在ABC ∆中,AD BC ⊥,垂足为D ,AD CD =,点E 在AD 上,DE BD =,M 、N 分别是AB 、CE 的中点.(1)求证:ADB CDE ∆≅∆; (2)求MDN ∠的度数..【证明】:(1)AD BC ⊥,90ADB ADC ∴∠=∠=︒,在ABD ∆与CDE ∆中, AD CD ADB ADC DB DE =⎧⎪∠=∠⎨⎪=⎩, ()ABD CDE SAS ∴∆≅∆;(2)ABD CDE ∆≅∆, BAD DCE ∴∠=∠,AB CE =,M 、N 分别是AB 、CE 的中点,12AM AB ∴=,12CN CE =, AM CN ∴=,在ADM ∆和CDN ∆中, AM CNBAD DCE AD CD =⎧⎪∠=∠⎨⎪=⎩, ()ADM CDN SAS ∴∆≅∆, ADM CDN ∴∠=∠, 90CDN ADN ∠+∠=︒, 90ADM ADN ∴∠+∠=︒, 90MDN ∴∠=︒.21.有一座锥形小山,如图,要测量锥形小山两端A 、B 的距离,先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD CA =,连接BC 并延长到E ,使CE CB =,连接DE ,量出DE 的长为50m ,你能求出锥形小山两端A 、B 的距离吗?【解】:在ABC ∆和EDC ∆中 CA CD ACB DCE CB CE =⎧⎪∠=∠⎨⎪=⎩, ABC EDC ∴∆≅∆, 50AB DE ∴==.答:锥形小山两端A 、B 的距离为50m . 22.如图,已知BD AC ⊥,CF AB ⊥. (1)若BE AC =,求证:BFE CFA ∆≅∆.(2)取BC 中点为G ,连结FG ,DG ,求证:FG DG =.【证明】:(1)BD AC ⊥,CF AB ⊥,90BFE CFA EDC ∴∠=∠=∠=︒, BEF CED ∠=∠, FBE FCA ∴∠=∠,在BFE ∆和CFA ∆中,BFE CFA FBE FCA BE CA ∠=∠⎧⎪∠=∠⎨⎪=⎩()BFE CFA AAS ∴∆≅∆;(2)BD AC ⊥,CF AB ⊥,BFC ∴∆和BDC ∆都是直角三角形,点G 是BC 边的中点, 2BC FG ∴=,2BC DG =, FG DG ∴=.23.等边ABC ∆中,D 、E 是BC 、AC 上的点,AE CD =,AD 与BE 相交于Q ,BP AD ⊥, 求证:(1)ABE CAD ∆≅∆;(2)2BQ PQ =.【证明】:(1)ABC ∆是等边三角形, 60BAC C ∴∠=∠=︒,AB AC BC ==.在ABE ∆和CAD ∆中, AB CA BAC C AE CD =⎧⎪∠=∠⎨⎪=⎩, ()ABE CAD SAS ∴∆≅∆;(2)ABE CAD ∆≅∆, ABE CAD ∴∠=∠.BQP ABE BAQ ∠=∠+∠,60BQP CAD BAD BAC ∴∠=∠+∠=∠=︒.BP AD ⊥,90BPQ ∴∠=︒. 90PBQ BQP ∴∠+∠=︒,30PBQ ∴∠=︒. 2BQ PQ ∴=.24.(1)已知,如图①,在ABC ∆中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E ,求证:DE BD CE =+.(2)如图②,将(1)中的条件改为:在ABC ∆中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=,其中α为任意钝角,请问结论DE BD CE =+是否成立?若成立,请你给出证明:若不成立,请说明理由.【证明】:(1)BD ⊥直线m ,CE ⊥直线m ,90BDA CEA ∴∠=∠=︒, 90BAC ∠=︒, 90BAD CAE ∴∠+∠=︒, 90BAD ABD ∠+∠=︒, CAE ABD ∴∠=∠,在ADB ∆和CEA ∆中 ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADB CEA AAS ∴∆≅∆,AE BD ∴=,AD CE =,DE AE AD BD CE ∴=+=+;(2)BDA BAC α∠=∠=,180DBA BAD BAD CAE α∴∠+∠=∠+∠=︒-, CAE ABD ∴∠=∠,在ADB ∆和CEA ∆中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADB CEA AAS ∴∆≅∆,AE BD ∴=,AD CE =,DE AE AD BD CE ∴=+=+.人教版八年级数学上册第12章章末教材同步培优、拔高检测卷及解析一、选择题(共30分)1.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.∠A=∠B B.AO=BO C.AB=CD D.AC=BD(第1题图)(第2题图)2.如图,已知AB=AC,BD=CD,则可推出()A.△ABD≌△BCD B.△ABD≌△ACDC.△ACD≌△BCD D.△ACE≌△BDE3.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若证△ABC≌△A′B′C′还要从下列条件中补选一个,错误的选法是()A.∠B=∠B′B.∠C=∠C′C.BC=B′C′D.AC=A′C′4.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等5.∠AOB的平分线上一点P到OA的距离为5,Q是OB上任意一点,则()A.PQ>5 B.PQ≥5C.PQ<5 D.PQ≤56.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A .90°B .150°C .180°D .210°(第6题图) (第7题图) (第8题图)7.如图,点A 、D 、C 、E 在同一条直线上,AB ∥EF ,AB =EF ,∠B =∠F ,AE =12,AC =8,则CD 的长为( )A .5.5B .4C .4.5D .38.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( )A .15B .30C .45D .609.如图,平面上有△ACD 与△BCE ,其中AD 与BE 相交于P 点.若AC =BC ,AD =BE ,CD =CE ,∠ACE =55°,∠BCD =155°,则∠BPD 的度数为( ) A .110° B .125° C .130° D .155°(第9题图) (第10题图)10.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE =DF ,连接BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 的面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是________.12.如图,在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为________.13.如图,若△AOB≌△A′OB′,∠B=30°,∠AOA′=52°,则∠A′CO=________.14.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.15.如图,已知AB∥CF,E为AC的中点,若FC=6cm,DB=3cm,则AB=________.16.如图,在△ABC中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF的度数是________.(第16题图)17.我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是________时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是________时,它们一定不全等.18.如图,在平面直角坐标系中,已知点A(0,3),B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为________.(第17题图)三、解答题(共66分)19.(8分)如图,点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.20.(8分)如图,点D在BC上,∠1=∠2,AE=AC,下面有三个条件:①AB=AD;②BC=DE;③∠E=∠C,请你从所给条件①②③中选一个条件,使△ABC≌△ADE,并证明两三角形全等.21.(8分)如图,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等方法来探索BF与AE有何特殊的位置关系,并说明你猜想的正确性.22.(10分)如图,在△ABC中,点O是∠ABC、∠ACB平分线的交点,AB +BC+AC=12,过O作OD⊥BC于D点,且OD=2,求△ABC的面积.23.(10分)如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),求点B的坐标.24.(10分)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)求证:BE=CF;(2)如果AB=8,AC=6,求AE,BE的长.25.(12分)在直角△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC 和∠BCA的平分线,AD,CE相交于点F.(1)求∠EFD的度数;(2)判断FE与FD之间的数量关系,并证明你的结论.参考答案与解析1.C 2.B 3.C 4.C 5.B 6.C 7.B 8.B9.C 解析:在△ACD和△BCE中,∵AC=BC,CD=CE,AD=BE,∴△ACD ≌△BCE(SSS),∴∠A=∠B,∠ACD=∠BCE,∴∠ECD=∠BCA.∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°.∵∠ACE=55°,∴∠ACD=105°,∴∠A+∠D=75°,∴∠B+∠D=75°,∴∠BPD=360°-∠B-∠D -∠BCD=360°-75°-155°=130°.故选C.10.D 解析:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE =DF,∴△BDF≌△CDE(SAS),故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD.∴BF∥CE,故③正确.故选D.11.DC=BC或∠DAC=∠BAC12.413.82°14.3 15.9 16.50°17.钝角三角形或直角三角形钝角三角形18.(6,6) 解析:如图,过点C作CE⊥OA,CF⊥OB,垂足分别为E,F.则∠OEC=∠OFC=90°.∵∠AOB=90°,∴∠ECF=90°.∵∠ACB=90°,∴∠ACE=∠BCF .在△ACE 和△BCF 中,⎩⎪⎨⎪⎧∠AEC =∠BFC =90°,∠ACE =∠BCF ,AC =BC ,∴△ACE ≌△BCF (AAS),∴AE =BF ,CE =CF ,∴点C 的横纵坐标相等,∴OE =OF .∵AE =OE -OA =OE -3,BF =OB -OF =9-OF ,∴OE =OF =6,∴C (6,6).19.证明:∵点C 是AE 的中点,∴AC =CE .(2分)在△ABC 和△CDE 中,⎩⎪⎨⎪⎧AC =CE ,∠A =∠ECD ,AB =CD ,∴△ABC ≌△CDE (SAS),(7分)∴∠B =∠D .(8分)20.解:选②BC =DE .(1分)∵∠1=∠2,∠3=∠4,∴∠E =∠C .(3分)在△ADE和△ABC 中,⎩⎪⎨⎪⎧AE =AC ,∠E =∠C ,DE =BC ,∴△ADE ≌△ABC (SAS).(8分)21.解:猜想:BF ⊥AE .(2分)理由如下:∵∠ACB =90°,∴∠ACE =∠BCD =90°.又BC =AC ,BD =AE ,∴△BDC ≌△AEC (HL).∴∠CBD =∠CAE .(5分)又∵∠CAE +∠E =90°,∴∠EBF +∠E =90°.∴∠BFE =90°,即BF ⊥AE .(8分)22.解:如图,过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA .(2分)∵点O 是∠ABC ,∠ACB 平分线的交点,∴OE =OD ,OF =OD ,即OE =OF =OD =2.(5分)∴S △ABC =S △ABO +S △BCO +S △ACO =12AB ·OE +12BC ·OD +12AC ·OF =12×2×(AB +BC +AC )=12×2×12=12.(10分)23.解:如图,过A 和B 分别作AD ⊥x 轴于D ,BE ⊥x 轴于E ,(1分)∴∠ADC =∠CEB =90°,∴∠ACD +∠CAD =90°.∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE .(3分)在△ADC 和△CEB 中,∠ADC =∠CEB =90°,∠CAD =∠BCE ,AC =BC ,∴△ADC ≌△CEB (AAS),∴CD =BE ,AD =CE .(6分)∵点C 的坐标为(-2,0),点A 的坐标为(-6,3),∴OC =2,CE =AD =3,OD =6,∴CD =OD -OC =4,OE =CE -OC =3-2=1,∴BE =4,∴点B 的坐标是(1,4).(10分)24.(1)证明:连接DB ,DC ,∵DG ⊥BC 且平分BC ,∴∠DGB =∠DGC =90°,BG =CG .又DG =DG ,∴△DGB ≌△DGC ,∴DB =DC .∵AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∠BED =∠AED =∠DFC =90°.(3分)在Rt△DBE 和Rt △DCF 中,⎩⎪⎨⎪⎧DB =DC ,DE =DF ,∴Rt △DBE ≌Rt △DCF (HL),∴BE =CF .(5分)(2)解:在Rt △ADE 和Rt △ADF 中,⎩⎪⎨⎪⎧AD =AD ,DE =DF ,∴Rt △ADE ≌Rt △ADF (HL),∴AE =AF .(7分)∵AC +CF =AF ,∴AE =AC +CF .∵AE =AB -BE ,∴AC +CF =AB -BE ,即6+BE =8-BE ,∴BE =1,∴AE =8-1=7.(10分)25.解:(1)∵△ABC 中,∠ACB =90°,∠B =60°,∴∠BAC =30°.(1分)∵AD ,CE 分别是∠BAC 和∠BCA 的平分线,∴∠FAC =12∠BAC =15°,∠FCA =12∠ACB =45°.∴∠AFC =180°-∠FAC -∠FCA =120°,∴∠EFD =∠AFC =120°.(4分)(2)结论:FE =FD .(5分)证明:如图,在AC 上截取AG =AE ,连接FG ,∵AD 是∠BAC 的平分线,∴∠EAF =∠GAF .在△FAE 和△FAG 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△AEF ≌△AGF (SAS),∴FE =FG ,∠AFE =∠AFG .(8分)∵∠EFD =120°,∴∠DFC =60°,∠AFG =∠AFE =60°,∴∠CFG =60°=∠DFC .∵EC 平分∠BCA ,∴∠DCF=∠FCG =45°.在△FGC 和△FDC 中,∵⎩⎪⎨⎪⎧∠GFC =∠DFC ,FC =FC ,∠FCG =∠FCD ,∴△FGC ≌△FDC (ASA),∴FG =FD ,∴FE =FD .(12分)人教版八年级数学上册第12章《全等三角形》单元测试题一、填空题(每题3分,共30分)1、如图1,在△ABC 中,AC>BC>AB ,且△ABC ≌△DEF ,则在△DEF 中,______<______<_______(填边)。

部编数学八年级上册第十二章全等三角形单元培优训练(解析版)含答案

部编数学八年级上册第十二章全等三角形单元培优训练(解析版)含答案

2022-2023学年八年级数学上册章节同步实验班培优题型变式训练(人教版)第十二章 全等三角形单元培优训练班级___________ 姓名___________ 学号____________ 分数____________考试范围:第12章 全等三角形,共23题; 考试时间:120分钟; 总分:120分一、选择题(本大题共6小题,每小题3分,共18分)1.(2022·全国·八年级单元测试)已知图中的两个三角形全等,则∠a 等于( )A .72oB .60oC .58oD .50o 【答案】D 【分析】根据全等三角形的性质:全等三角形对应角相等,即可得到结论.【详解】Q 图中的两个三角形全等,a Ð 为a 和c 的夹角又Q 第一个三角形中a 和c 的夹角为50°\ 50a Ð=°故选:D .【点睛】本题考查了全等三角形的性质,准确找到对应角是解题的关键.2.(2022·江苏·八年级单元测试)如图,14AB =,6AC =,AC AB ^,BD AB ^,垂足分别为A 、B .点P 从点A 出发,以每秒2个单位的速度沿AB 向点B 运动;点Q 从点B 出发,以每秒a 个单位的速度沿射线BD 方向运动.点P 、点Q 同时出发,当以P 、B 、Q 为顶点的三角形与CAP V 全等时,a 的值为( )A .2B .3C .2或3D .2或127【答案】D3.(2022·江苏·八年级专题练习)如图,AOB ADC △≌△,点B 和点C 是对应顶点,90O D Ð=Ð=°,记,,OAD ABO ABC ACB a b Ð=Ð=Ð=Ð,当//BC OA 时,a 与b 之间的数量关系为( )A .a b=B .2a b =C .90a b +=°D .2180a b +=°【答案】B 【分析】根据全等三角形对应边相等可得AB =AC ,全等三角形对应角相等可得∠BAO =∠CAD ,然后求出∠BAC =α,再根据等腰三角形两底角相等求出∠ABC ,然后根据两直线平行,同旁内角互补表示出∠OBC ,整理即可.【详解】∵AOB ADC △≌△,∴BAO CAD Ð=Ð,4.(2022·全国·八年级单元测试)如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE 的长是( )A.6cm B.5cm C.7cm D.无法确定【答案】C【分析】根据全等三角形的性质计算即可;【详解】∵△ABC≌△ADE,=,∴BC DE∵BC=7cm,∴7=;DE cm故答案选C.【点睛】本题主要考查了全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.∥,5.(2022·全国·八年级专题练习)如图,把△ABC沿线段DE折叠,使点B落在点F处;若AC DE∠A=70°,AB=AC,则∠CEF的度数为()A .55°B .60°C .65°D .70°【答案】D 【分析】由于折叠,可得三角形全等,运用三角形全等得出55B C Ð=Ð=°,利用平行线的性质可得出55DEB C Ð=Ð=°,则CEF Ð即可求.【详解】解:ABC Q V 沿线段DE 折叠,使点B 落在点F 处,BDE FDE \@V V ,DEB DEF \Ð=Ð,70A AB AC Ð=°=,Q ,12180705)5(B C \Ð=Ð=´°-°=°,AC DE ∥Q ,55DEB C DEF \Ð=Ð=°=Ð,18070FEC DEB DEF \Ð=°-Ð-Ð=°,故选:D .【点睛】本题考查了全等三角形的性质及三角形内角和定理、平行线的性质;解题的关键是理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决.6.(2022·全国·八年级专题练习)如图,已知△ABC ≌△DEF ,CD 平分∠BCA ,若∠A =30°,∠CGF =88°,则∠E 的度数是( )A .50°B .44°C .34°D .30°【答案】C二、填空题(本大题共6小题,每小题3分,共18分)7.(2022·江苏·八年级专题练习)如图,图中由实线围成的图形与①是全等形的有______.(填番号)【答案】②③【分析】根据全等图形的定义,两个图形必须能够完全重合才行.【详解】观察图形,发现②③图形可以和①图形完全重合故答案为:②③.【点睛】本题考查全等的概念,任何一组图形,要想全等,则这组图形必须能够完全重合.8.(2022·江苏·八年级专题练习)如图,△ABC 中,∠A :∠ABC :∠ACB =3:5:10,又△A ′B ′C ≌△ABC ,则∠BCA ′:∠BCB ′的值为_____.9.(2022·江苏·八年级专题练习)如图,,125,25,ABC ADE EAB CAD BAC Ð=°Ð=°ÐV V ≌的度数为___________.【答案】75°【分析】根据全等三角形的性质求出∠EAD =∠CAB ,求出∠DAB =∠EAC =50°,即可得到∠BAC 的度数.【详解】解:∵V ABC ≌V ADE ,10.(2022·全国·八年级专题练习)如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠P +∠Q =__________度.【答案】45【分析】如图,直接利用网格得出对应角P AQC ÐÐ=,进而得出答案.【详解】如图,易知ABP ACQ V V ≌,∴P AQC ÐÐ=,∵BQ 是正方形的对角线,∴45BQC BQA AQC P Q ÐÐ+Ð=Ð+Ð=°=,故答案为:45.【点睛】本题考查了全等三角形,正确借助网格分析是解题关键.11.(2022·全国·八年级课时练习)如图,已知△ABC ≌△ADE ,若AB=7,AC=3,则BE 的值为_________.【答案】4【分析】根据△ABC ≌△ADE ,得到AE=AC ,由AB=7,AC=3,根据BE=AB-AE 即可解答.【详解】解:∵△ABC ≌△ADE ,∴AE=AC ,∵AB=7,AC=3,∴BE=AB-AE=AB-AC=7-3=4.故答案为:4.【点睛】本题考查全等三角形的性质,解决本题的关键是熟记全等三角形的对应边相等.12.(2022·江西上饶·八年级期末)如图,在△ABC 中,90ACB Ð=°,AC =8cm ,BC =10cm .点C 在直线l 上,动点P 从A 点出发沿A →C 的路径向终点C 运动;动点Q 从B 点出发沿B →C →A 路径向终点A 运动.点P 和点Q 分别以每秒1cm 和2cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P 和Q 作PM ⊥直线l 于M ,QN ⊥直线l 于N .则点P 运动时间为____秒时,△PMC 与△QNC 全等.【答案】2或6##6或2【分析】设点P 运动时间为t 秒,根据题意化成两种情况,由全等三角形的性质得出CP CQ =,列出关于t 的方程,求解即可.【详解】解:设运动时间为t 秒时,△PMC ≌△CNQ ,∴斜边CP CQ =,分两种情况:①如图1,点P 在AC 上,点Q 在BC 上,图1∵AP t =,2BQ t =,∴8CP AC AP t =-=-,102CQ BC BQ t =-=-,∵CP CQ =,∴8102t t -=-,∴2t =;②如图2,点P 、Q 都在AC 上,此时点P 、Q 重合,图2∵8CP AC AP t =-=-,210CQ t =-,∴8210t t -=-,∴6t =;综上所述,点P 运动时间为2或6秒时,△PMC 与△QNC 全等,故答案为:2或6.【点睛】本题考查了全等三角形的性质和判定的应用,根据题意判断两三角形全等的条件是解题关键,同时要注意分情况讨论,解题时避免遗漏答案.三、(本大题共5小题,每小题6分,共30分)13.(2022·全国·八年级课时练习)如图,△ABD ≌△ACE ,写出对应边和对应角,并证明∠1=∠2.【答案】见解析,证明见解析Ð=Ð,根据等角的补角相等即可求【分析】根据全等三角形的性质写出对角与对应边,根据ADB AEC解.【详解】解:∵△ABD≌△ACE,\===,AB AC AD AE BD CE,,A ABC ADB AECÐ=ÐÐ=ÐÐ=Ð;,,Ð=Ð,证明:∵ADB AEC\°-Ð=°-Ð,ADB AEC180180即12Ð=Ð.【点睛】本题考查了全等三角形的性质,等角的补角相等,掌握全等三角形的性质是解题的关键.14.(2022·全国·八年级专题练习)如图所示,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;∥?(2)当△ABC满足什么条件时,BC DE【答案】(1)见解析∥(2)当∠ACB为直角时,BC DE【分析】(1)根据全等三角形的性质得出AE=BC,AC=DE,据此即可证得;(2)根据平行线的性质得出∠BCE=∠E,根据全等三角形的性质得出∠ACB=∠E,求出∠ACB=∠BCE,再求出答案即可.(1)证明:∵△ABC ≌△DAE ,∴AE =BC ,AC =DE ,又∵AE =AC +CE ,∴BC =DE +CE ;(2)解:∵BC DE ∥,∴∠BCE =∠E ,又∵△ABC ≌△DAE ,∴∠ACB =∠E ,∴∠ACB =∠BCE ,又∵∠ACB +∠BCE =180°,∴∠ACB =90°,即当△ABC 满足∠ACB 为直角时,BC DE ∥.【点睛】本题考查了全等三角形的性质和平行线的性质,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.15.(2022·全国·八年级专题练习)如图,点A ,B ,C 在同一直线上,点E 在BD 上,且ABD EBC V V ≌,2cm AB =,3cm BC =.(1)求DE 的长;(2)判断AC 与BD 的位置关系,并说明理由.(3)判断直线AD 与直线CE 的位置关系,并说明理由.【答案】(1)1cm DE =;(2)AC BD ^.理由见解析;(3)直线AD 与直线CE 垂直.理由见解析【分析】(1)由题意根据全等三角形的对应边相等得到BD=BC=5cm ,BE=AB=2cm ,计算即可;(2)由题意直接根据全等三角形的对应角相等和平角的定义解答;(3)由题意延长CE 交AD 于F ,进而根据全等三角形的对应角相等和三角形内角和定理进行分析解答即可.【详解】解:(1)ABD EBC Q △≌△,3cm BD BC \==,2cm BE AB ==,1cm DE BD BE \=-=.(2)AC BD ^.理由:ABD EBC Q △≌△,ABD EBC Ð=Ð\.又A Q ,B ,C 在同一直线上,90EBC \=а.AC BD \^.(3)直线AD 与直线CE 垂直.理由:如图,延长CE 交AD 于F .ABD EBC Q △≌△,D C \Ð=Ð.Q 在Rt ABD △中,90A D Ð+Ð=°,90A C +Ð=\а,90AFC \Ð=°,即直线AD 与直线CE 垂直.【点睛】本题考查的是全等三角形的性质,熟练掌握全等三角形的对应边相等以及全等三角形的对应角相等是解题的关键.16.(2022·全国·八年级专题练习)如图,A ,E ,C 三点在同一直线上,且△ABC ≌△DAE .(1)线段DE ,CE ,BC 有怎样的数量关系?请说明理由.(2)请你猜想△ADE 满足什么条件时,DE ∥BC ,并证明.【答案】(1)DE =CE +BC ,理由见解析(2)当△ADE满足∠AED=90°时,DE//BC.证明见详解【分析】(1)根据全等三角形的性质得出AE=BC,DE=AC,再求出答案即可;(2)根据全等三角形的性质得出∠AED=∠C,根据两直线平行,内错角相等,得出∠C=∠DEC,再根据邻补角互补得出∠AED+∠DEC=180°,再求出∠AED=90°即可.(1)解:DE=CE+BC.理由:∵△ABC≌△DAE,∴AE=BC,DE=AC.∵A,E,C三点在同一直线上,∴AC=AE+CE,∴DE=CE+BC.(2)猜想:当△ADE满足∠AED=90°时,DE//BC.证明:∵△ABC≌△DAE,∴∠AED=∠C,又∵DE∥BC,∴∠C=∠DEC,∴∠AED=∠DEC.又∵∠AED+∠DEC=180°,∴∠AED=∠DEC=90°,∴当△ADE满足∠AED=90°时,DE∥BC.【点睛】本题考查了全等三角形的性质、等量代换、平行线的性质、邻补角互补,解本题的关键在熟练掌握相关性质.17.(2022·全国·八年级专题练习)如图,已知△ABC≌△DEB,点E在AB上,AC与BD交于点F,AB=6,BC=3,∠C=55°,∠D=25°.(1)求AE的长度;(2)求∠AED的度数.【答案】(1)3AE =;(2)80AED Ð=°.【分析】(1)先根据全等三角形的性质可得3BE BC ==,再根据线段的和差即可得;(2)先根据全等三角形的性质可得55DBE C Ð=Ð=°,再根据三角形的外角性质即可得.【详解】解:(1)∵,3ABC DEB BC @=V V ,∴3BE BC ==,∵6AB =,∴633AE AB BE =-=-=;(2)∵ABC DEB @△△,∴55DBE C Ð=Ð=°,∵25D Ð=°,∴552580AED DBE D Ð=Ð+Ð=°+°=°.【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.四、(本大题共3小题,每小题8分,共24分)18.(2021·全国·八年级专题练习)如图,ABC DEB V V ≌,点E 在AB 上,DE 与AC 相交于点F ,若7DE =,4BC =,35D Ð=°,60C Ð=°.(1)求线段AE 的长;(2)求DFA Ð的度数.【答案】(1)3AE =;(2)130DFA Ð=°【分析】(1)根据全等三角形的性质解答即可;(2)根据全等三角形的性质以及三角形的外角性质解答即可.【详解】(1)∵ABC DEB V V ≌,∴7AB DE ==,4BC BE ==,∵点E 在AB 上,∴AE BE AB +=,∴743AE AB BE =-=-=;(2)∵ABC DEB V V ≌,∴∠A=∠D=35°,60C DBE °Ð=Ð=,95AEF DBE D Ð=Ð+Ð=°,130DFA AEF A °Ð=Ð+Ð=.【点睛】本题考查了全等三角形的性质,三角形的外角性质,关键是根据全等三角形的对应角和对应边相等分析.19.(2022·全国·八年级专题练习)如图,,ABF CDE B ÐV V ≌和D Ð是对应角,AF 和CE 是对应边.(1)写出ABF V 和CDE △的其他对应角和对应边;(2)若30,40B DCF Ð=°Ð=°,求EFC Ð的度数;(3)若10,2BD EF ==,求BF 的长.【答案】(1)其他对应角为BAF Ð和DCE Ð,AFB Ð和CED Ð;其他对应边为AB 和,CD BF 和DE ;(2)70EFC Ð=°;(3)6BF =.【分析】(1)根据全等三角形的性质,对应角相等,对应边相等,解答即可;(2)根据全等三角形的性质可得30D B Ð=Ð=°,运用三角形外角的性质即可解答;(3)根据全等三角形的性质可得BF DE =,进一步证明DF BE =,然后可得426BF BE EF =+=+=.【详解】(1)其他对应角为:BAF Ð和DCE Ð,AFB Ð和CED Ð;其他对应边为:AB 和,CD BF 和DE ;(2)∵,30ABF CDE B Ð=°V V ≌,20.(2022·浙江·八年级专题练习)如图,ABC V ≌ADE V ,AC 和AE ,AB 和AD 是对应边,点E 在边BC 上,AB 与DE 交于点F .(1)求证:CAE BAD Ð=Ð;(2)若35BAD Ð=°,求BED Ð的度数.【答案】(1)见解析;(2)35°【分析】(1)根据ABC V ≌ADE V ,可得∠BAC =∠DAE ,即可求证;(2)由(1)可得∠CAE =35°,再由ABC V ≌ADE V ,可得∠C =∠AED ,然后根据三角形外角的性质,可得∠BED =∠CAE ,即可求解.【详解】(1)证明:∵ABC V ≌ADE V ,∴∠BAC =∠DAE ,即∠CAE +∠BAE =∠BAD +∠BAE ,(2)∵35BAD Ð=°,CAE BAD Ð=Ð,∴∠CAE =35°,∵ABC V ≌ADE V ,∴∠C =∠AED ,∵∠AEB =∠C +∠CAE ,∠AEB =∠AED +∠BED ,∴∠BED =∠CAE =35°.【点睛】本题主要考查了全等三角形的性质,熟练掌握全等三角形的对应角相等,对应边相等是解题的关键.五、(本大题共2小题,每小题9分,共18分)21.(2022·全国·八年级课时练习)如图,已知△ABC ≌△DEF ,点B ,E ,C ,F 在同一直线上.(1)若∠BED =130°,∠D =70°,求∠ACB 的度数;(2)若2BE =EC ,EC =6,求BF 的长.【答案】(1)60°(2)12【分析】(1)根据三角形的外角的性质求出∠F ,再根据全等三角形的对应角相等解答;(2)根据题意求出BE 、BC ,再根据全等三角形的性质解答.(1)解:∵∠BED =130°,∠D =70°,∴∠F =∠BED -∠D =60°,∵V ABC ≌V DEF ,∴∠ACB =∠F =60°;(2)∵2BE =EC ,EC =6,∴BE =3,∴BC =BE +EC =9,∵V ABC ≌V DEF ,∴EF =BC =9,∴BF =EF +BE =12.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.22.(2021·全国·八年级单元测试)如图△ADF ≌△BCE ,∠B =40°,∠F =22°,BC =2cm ,CD =1cm .求:(1)∠1的度数;(2)AC 的长.【答案】(1)62°;(2)3cm【分析】(1)根据全等三角形的性质可得22E F Ð=Ð=°,由三角形外角的性质可得1B E Ð=Ð+Ð,即可求解;(2)由全等三角形的性质可得AD BC =,即可求解.【详解】解:(1)∵ADF BCEV V ≌∴22E F Ð=Ð=°由三角形外角的性质可得:162B E Ð=Ð+Ð=°∠1的度数为62°(2)∵ADF BCEV V ≌∴2AD BC cm==∴3AC AD CD cm=+=即AC 的长为3cm【点睛】此题考查了全等三角形的性质,涉及了三角形外角的性质,掌握全等三角形的有关性质是解题的关键.六、(本大题共12分)23.(2022·全国·八年级课时练习)如图,在ABC V 中,4cm,,4cm BC AE BC AE ==∥,点N 从点C 出发,沿线段CB 以2cm/s 的速度连续做往返运动,点M 从点A 出发沿线段AE 以1cm/s 的速度运动至点E .M 、N 两点同时出发,连结,MN MN 与AC 交于点D ,当点M 到达点E 时,M 、N 两点同时停止运动,设点M 的运动时间为(s)t .(1)当3t =时,线段AM 的长度=___________cm ,线段BN 的长度=___________cm .(2)当BN AM =时,求t 的值.(3)连接AN ,当ABN V 的面积等于ABC V 面积的一半时,直接写出所有满足条件的t 值.(4)当ADM CDN △≌△时,直接写出所有满足条件的t 值.。

人教版 八年级数学上册 第12章 全等三角形 综合培优训练(含答案)

人教版 八年级数学上册 第12章 全等三角形 综合培优训练(含答案)

人教版 八年级数学上册 第12章 全等三角形综合培优训练一、选择题(本大题共12道小题)1. 如果两个图形全等,那么这两个图形必定()A .形状、大小均不相同B .形状相同,但大小不同C .大小相同,但形状不同D .形状、大小均相同2. 如图1所示的图形中与图2中图形全等的是 ( )图1 图23. 如图,△ABC ≌△EDF ,DF=BC ,AB=ED ,AC=15,EC=10,则CF 的长是( )A .5B .8C .10D .154.如图,在△ABC 和△DEC 中,已知AB =DE ,还需添加两个条件才能使△ABC△△DEC ,不能添加的一组条件是( )A .BC =EC ,△B =△E B .BC =EC ,AC =DC C .BC =DC ,△A =△DD .△B =△E ,△A =△D5. (2019•临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A.0.5 B.1C.1.5 D.26. 下面是黑板上出示的尺规作图题,需要回答横线上符号代表的内容.如图,已知△AOB,求作:△DEF,使△DEF=△AOB.作法:(1)以__△__为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,__○__长为半径画弧交EG于点D;(3)以点D为圆心,__△__长为半径画弧交前弧于点F;(4)作__△__,则△DEF即为所求作的角.则下列回答正确的是()A.△表示点E B.○表示EDC.△表示OP D.△表示射线EF7. 如图,点B,F,C,E在一条直线上,AB△ED,AC△FD,那么添加下列一个条件后,仍无法判定△ABC△△DEF的是()A.AB=DE B.AC=DFC.△A=△D D.BF=EC8. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A.3B.-3C.2D.-29. 如图,OP平分∠AOB,点P到OA的距离为3,N是OB上的任意一点,则线段PN 的长度的取值范围为()A.PN<3B.PN>3C.PN≥3D.PN≤310. 如图,已知在四边形ABCD中,△BCD=90°,BD平分△ABC,AB=6,BC =9,CD=4,则四边形ABCD的面积是()A.24 B.30C.36 D.4211. 如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为51和38,则△EDF的面积为()A.6.5B.5.5C.8D.1312. 如图,∠AOB=120°,OP平分△AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A. 1个B. 2个C. 3个D. 3个以上二、填空题(本大题共12道小题)13. 如图,已知点B,C,F,E在同一直线上,△1=△2,△A=△D,要使△ABC△△DEF,还需添加一个条件,这个条件可以是____________(只需写出一个).14. 如图所示,把△ABC沿直线AC翻折,得到△ADC,则△ABC△________,AB 的对应边是________,AC的对应边是________,△BCA的对应角是________.15. 已知△ABC的三边长分别是6,8,10,△DEF的三边长分别是6,6x-4,4x +2.若两个三角形全等,则x的值为________.16. △ABC的周长为8,面积为10,若其内部一点O到三边的距离相等,则点O 到AB的距离为________.17. 如图K-10-10,CA=CD,AB=DE,BC=EC,AC与DE相交于点F,ED 与AB相交于点G.若△ACD=40°,则△AGD=________°.18. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E.若AE=12 cm,则DE的长为cm.19. 如图,要测量河岸相对两点A,B之间的距离,从B点沿与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续向前走50米到D处,在D处转90°沿DE方向再走17米到达E处,这时A,C,E三点在同一直线上,则A,B之间的距离为________米.20. 如图,AB△CD,点P到AB,BD,CD的距离相等,则△BPD的度数为________.21. 如图所示,AE=AD,∠B=∠C,BE=4,AD=5,则AC=.22. 如图所示,已知AD△BC,则△1=△2,理由是________________;又知AD =CB,AC为公共边,则△ADC△△CBA,理由是______,则△DCA=△BAC,理由是__________________,则AB△DC,理由是________________________________.23. 如图,若AB=AC,BD=CD,△A=80°,△BDC=120°,则△B=________°.24. 如图,在Rt△ABC中,∠C=90°,E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是.三、作图题(本大题共2道小题)△,请根据“S 25. 尺规作图(只保留作图痕迹,不要求写出作法):如图,已知ABCAS”基本事实作出DEF△≌△.△,使DEF ABC26. 如图,已知△ABC.求作:直线MN,使MN经过点A,且MN∥BC.(尺规作图,保留作图痕迹,不写作法)四、解答题(本大题共6道小题)27. 已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE、CF,求证:△ADE△△CDF.28. 已知:如图12-3-12,∠AOC=∠BOC,点P在OC上,.求证:.请你补全已知和求证,并写出证明过程.29. 如图,现有一块三角形的空地,其三条边长分别是20 m,30 m,40 m.现要把它分成面积比为2△3△4的三部分,分别种植不同种类的花,请你设计一种方案,并简单说明理由.(要求:尺规作图,保留作图痕迹,不写作法)30. 如图,BD是△ABC的平分线,AB=BC,点P在BD上,PM△AD,PN△CD,垂足分别是M,N.求证:PM=PN.31. 如图,已知△C=60°,AE,BD是△ABC的角平分线,且交于点P.(1)求△APB的度数.(2)求证:点P在△C的平分线上.(3)求证:△PD=PE;△AB=AD+BE.32. 如图,BE,CF都是△ABC的高,在BE上截取BD=AC,在射线CF上截取CG=AB,连接AG,AD.求证:(1)△BAD△△CGA;(2)AD △AG .人教版 八年级数学下册 第12章 全等三角形综合培优训练-答案一、选择题(本大题共12道小题)1. 【答案】D2. 【答案】B3. 【答案】A[解析] ∵△ABC ≌△EDF ,AC=15,∴EF=AC=15. ∵EC=10,∴CF=EF -EC=15-10=5.4. 【答案】C5. 【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .6. 【答案】D7. 【答案】C[解析] 选项A 中添加AB =DE 可用“AAS”进行判定,故本选项不符合题意;选项B 中添加AC =DF 可用“AAS”进行判定,故本选项不符合题意;选项C 中添加△A =△D 不能判定△ABC△△DEF ,故本选项符合题意; 选项D 中添加BF =EC 可得出BC =EF ,然后可用“ASA”进行判定,故本选项不符合题意. 故选C.8. 【答案】A[解析] 如图,过点D 作DE ⊥AB 于点 E.∵点D 的坐标是(0,-3), ∴OD=3.∵AD 是△OAB 的角平分线, ∴ED=OD=3,即点D 到AB 的距离是3.9. 【答案】C[解析] 作PM ⊥OB 于点M.∵OP 平分∠AOB ,PE ⊥OA ,PM ⊥OB ,∴PM=PE=3.∴PN ≥3.10. 【答案】B[解析] 过点D 作DH ⊥AB 交BA 的延长线于点H.∵BD 平分∠ABC ,∠BCD =90°, ∴DH =CD =4.∴四边形ABCD 的面积=S △ABD +S △BCD =12AB·DH +12BC·CD =12×6×4+12×9×4=30.11. 【答案】A[解析] 如图,过点D 作DH ⊥AC 于点H.∵AD 是△ABC 的角平分线,DF ⊥AB ,DH ⊥AC ,∴DF=DH.在Rt △DFE 和Rt △DHG 中,∴Rt △DFE ≌Rt △DHG. 在Rt △ADF 和Rt △ADH 中,∴Rt △ADF ≌△ADH. 设△EDF 的面积为x.由题意得,38+x=51-x ,解得x=6.5,∴△EDF 的面积为6.5.12. 【答案】D【解析】如解图,①当OM 1=2时,点N 1与点O 重合,△PMN 是等边三角形;②当ON 2=2时,点M 2与点O 重合,△PMN 是等边三角形;③当点M 3,N 3分别是OM 1,ON 2的中点时,△PMN 是等边三角形;④当取∠M 1PM 4=∠OPN 4时,易证△M 1PM 4≌△OPN 4(SAS),∴PM 4=PN 4,又∵∠M 4PN 4=60°,∴△PMN 是等边三角形,此时点M ,N 有无数个,综上所述,故选D.二、填空题(本大题共12道小题)13. 【答案】AB =DE(答案不唯一)14. 【答案】△ADCAD AC △DCA [解析] △ABC 与△ADC 重合,则△ABC△△ADC.15. 【答案】2[解析] 由全等三角形的对应边相等可知有以下两种情况:△4x +2=10,解得x =2; 6x -4=8, 解得x =2.由于2=2,所以此种情况成立. △4x +2=8,解得x =32; 6x -4=10,解得x =73.由于32≠73,所以此种情况不成立. 综上所述,x 的值为2.16. 【答案】2.5[解析] 设点O 到AB ,BC ,AC 的距离均为h ,△S △ABC =12×8·h=10,解得h =2.5,即点O 到AB 的距离为2.5.17. 【答案】40 [解析] 在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,AB =DE ,BC =EC ,△△ABC△△DEC(SSS). △△A =△D.又△△AFG =△DFC ,△△AGD =△ACD =40°.18. 【答案】12 [解析] 如图,连接BE.∵D 为Rt △ABC 中斜边BC 上的一点,过点D 作BC 的垂线,交AC 于点E ,∴∠A=∠BDE=90°.在Rt △DBE 和Rt △ABE 中,∴Rt △DBE ≌Rt △ABE (HL).∴DE=AE.∵AE=12 cm ,∴DE=12 cm .19. 【答案】17 [解析] 在△ABC 和△EDC 中,⎩⎨⎧∠ABC =∠EDC =90°,BC =DC ,∠ACB =∠ECD ,∴△ABC ≌△EDC(ASA).∴AB =ED =17米.20. 【答案】90° [解析] △点P 到AB ,BD ,CD 的距离相等,△BP ,DP 分别平分△ABD ,△BDC.△AB△CD ,△△ABD +△BDC =180°.△△PBD +△PDB =90°.故△BPD =90°.21. 【答案】 922. 【答案】两直线平行,内错角相等SAS 全等三角形的对应角相等 内错角相等,两直线平行23. 【答案】20 [解析] 如图,过点D 作射线AF.在△BAD 和△CAD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,△△BAD△△CAD(SSS).△△BAD =△CAD ,△B =△C.△△BDF =△B +△BAD ,△CDF =△C +△CAD ,△△BDF +△CDF =△B +△BAD +△C +△CAD ,即△BDC =△B +△C +△BAC.△△BAC =80°,△BDC =120°,△△B =△C =20°.24. 【答案】16 [解析] ∵BF ∥AC ,∴∠EBF=∠EAD.在△BFE 和△ADE 中,∴△BFE ≌△ADE (ASA).∴BF=AD.∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD.∵当FD ⊥AC 时,FD 最短,此时FD=BC=5,∴四边形FBCD 周长的最小值为5+11=16.三、作图题(本大题共2道小题)25. 【答案】如图,DEF △即为所求.26. 【答案】解:如图所示,作∠MAB=∠B ,则直线MN 即为所求(其他方法合理也可).四、解答题(本大题共6道小题)27. 【答案】证明:∵四边形ABCD 是菱形,∴AD =CD.(2分)又∵E 、F 分别为边CD 、AD 的中点,∴DE =DF.(4分)在△ADE 和△CDF 中,⎩⎨⎧AD =CD∠ADE =∠CDF DE =DF,∴△ADE ≌△CDF(SAS ).(8分)28. 【答案】解:PD ⊥OA ,PE ⊥OB ,垂足分别为D ,EPD=PE证明:∵PD ⊥OA ,PE ⊥OB ,∴∠PDO=∠PEO=90°.在△PDO 和△PEO 中,∴△PDO ≌△PEO (AAS).∴PD=PE.29. 【答案】解:(答案不唯一)如图,分别作△ACB 和△ABC 的平分线,相交于点P ,连接PA ,则△PAB ,△PAC ,△PBC 的面积之比为2△3△4.理由如下:如图,过点P 分别作PE△AB 于点E ,PF△AC 于点F ,PH△BC 于点H. △P 是△ABC 和△ACB 的平分线的交点,△PE =PF =PH.△S △PAB =12AB·PE =10PE ,S △PAC =12AC·PF =15PF ,S △PBC =12BC·PH =20PH , △S △PAB △S △PAC △S △PBC =10△15△20=2△3△4.30. 【答案】证明:△BD 是△ABC 的平分线,△△ABD =△CBD.在△ABD 和△CBD 中,⎩⎨⎧AB =CB ,△ABD =△CBD ,BD =BD ,△△ABD△△CBD(SAS).△△ADB =△CDB.△点P 在BD 上,PM△AD ,PN△CD ,△PM =PN.31. 【答案】解:(1)△AE ,BD 是△ABC 的角平分线,△△BAP =12△BAC ,△ABP =12△ABC.△△BAP +△ABP =12(△BAC +△ABC)=12(180°-△C)=60°.△△APB =120°.(2)证明:如图,过点P 作PF△AB ,PG△AC ,PH△BC ,垂足分别为F ,G ,H.△AE ,BD 分别平分△BAC ,△ABC ,△PF =PG ,PF =PH.△PH =PG.又△PG△AC ,PH△BC ,△点P 在△C 的平分线上.(3)证明:△△△C =60°,PG△AC ,PH△BC ,△△GPH =120°.△△GPE +△EPH =120°.又△△APB =△DPE =△DPG +△GPE =120°,△△EPH =△DPG.在△PGD 和△PHE 中,⎩⎨⎧△PGD =△PHE =90°,PG =PH ,△DPG =△EPH ,△△PGD△△PHE.△PD =PE.△如图,在AB 上截取AM =AD.在△ADP 和△AMP 中,⎩⎨⎧AD =AM ,△DAP =△MAP ,AP =AP ,△△ADP△△AMP.△△APD =△APM =60°.△△EPB =△MPB =60°.在△EBP 和△MBP 中,⎩⎨⎧△EPB =△MPB ,BP =BP ,△EBP =△MBP ,△△EBP△△MBP.△BE =BM.△AB =AM +BM =AD +BE.32. 【答案】证明:(1)∵BE ,CF 都是△ABC 的高,∴∠ABE +∠BAC =90°,∠ACF +∠BAC =90°.∴∠ABE =∠ACF.在△BAD 和△CGA 中,⎩⎨⎧AB =GC ,∠ABD =∠GCA ,BD =CA ,∴△BAD ≌△CGA(SAS).(2)∵△BAD ≌△CGA ,∴∠G =∠BAD.∵∠AFG =90°,∴∠GAD =∠BAD +∠BAG =∠G +∠BAG =90°.∴AD ⊥AG.。

(人教版)东莞八年级数学上册第十二章《全等三角形》复习题(培优)

(人教版)东莞八年级数学上册第十二章《全等三角形》复习题(培优)

一、选择题1.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .20D解析:D【分析】 根据△ABE ≌△CAF 得出△ACF 与△ABE 的面积相等,可得S △ABE +S △CDF =S △ACD ,即可得出答案.【详解】∵∠BED=∠CFD=∠BAC ,∠BED=∠BAE+∠ABE ,∠BAC=∠BAE+∠CAF ,∠CFD=∠FCA+∠CAF ,∴∠ABE=∠CAF ,∠BAE=∠FCA ,在△ABE 和△CAF 中,ABE CAF AB AC BAE FCA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CAF (ASA ),∴S △ABE =S △ACF , ∴阴影部分的面积为S △ABE +S △CDF =S △ACD ,∵S △ABC =30,BD=12DC , ∴S △ACD =20,故选:D .【点睛】本题考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,解题的关键是正确寻找全等三角形解决问题.2.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .64B解析:B【分析】 过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质求出OE =OD =OF =4,根据三角形的面积公式求出即可.【详解】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵点O 为∠ABC 与∠ACB 的平分线的交点,OD ⊥BC 于D ,OD =4,∴OE =OD =4,OF =OD =4,∵AB +AC =16,∴四边形ABOC 的面积S =S △ABO +S △ACO =1122AB OE AC OF ⨯+⨯ =114422AB AC ⨯+⨯ =42×(AB +AC ) =42×16 =32,故选:B .【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质得出OD =OE =OF =3是解此题的关键.3.下列说法正确的( )个.①0.09的算术平方根是0.03;②1的立方根是±1;③3.110<3.2;④两边及一角分别相等的两个三角形全等.A .0B .1C .2D .3B解析:B【分析】根据平方根、立方根、无理数的估算和三角形全等判定定理进行判断即可.【详解】解:①0.09的算术平方根是0.3,不是0.03,因此①不正确;②1的立方根是1,不是±1,因此②不正确;③因为3.12=9.91,3.22=10.24,而9.91<10<10.24,所以3.1<10<3.2,因此③正确;④只有两边夹角对应相等的两个三角形全等,而两边及一角分别相等的两个三角形不一定全等.因此④不正确;所以正确的只有③,故选:B .【点睛】本题考查平方根、立方根、无理数的估算以及三角形全等判定定理,掌握平方根、立方根的意义、掌握无理数的估算方法和三角形全等的判断方法是正确判断的前提.4.如图,AB =AC ,AD =AE ,∠A =105°,∠D =25°,则∠ABE 等于( )A .65°B .60°C .55°D .50°D解析:D【分析】 依据SAS 即可得判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠D =∠E =25°,由三角形内角和定理可求出答案.【详解】解:在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠D =∠E ,∵∠D =25°,∴∠E =25°,∴∠ABE =180°﹣∠A ﹣∠E =180°﹣105°﹣25°=50°.故选:D .【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,熟练掌握全等三角形的判定与性质是解题的关键.5.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm C解析:C【分析】 延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:延长AP 交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP =∠EBP ,∠APB =∠BPE =90∘,在△APB 和△EPB 中∠=∠⎧⎪=⎨⎪∠=∠⎩APB EPB BP BPABP EBP ∴△APB ≌△EPB (ASA ),∴APB EPB S S =△△,AP =PE ,∴△APC 和△CPE 等底同高,∴APC PCE S S =,∴PBC PCE PCE S S S =+△△△=12ABC S=1632⨯= 故选C . 【点睛】本题考查了三角形的面积和全等三角形的性质和判定的应用,关键是求出PBC PCE PCE S S S =+△△△=12ABC S .6.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒C解析:C【分析】 先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.7.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .1.5B . 2C .22D 10B解析:B【分析】 根据已知条件可以得出∠E=∠ADC=90︒,进而得出∆CEB ≅∆ADC ,就可以得出BE=DC ,进而求出DE 的值.【详解】∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90︒,∴∠EBC+∠BCE=90︒,∵∠BCE+∠ACD=90︒,∴∠EBC=∠DCA,在∆CEB和∆ADC中,∠E=∠ADC,∠EBC=∠DCA,BC=AC,∴∆CEB≅∆ADC(AAS),∴BE=DC=1,CE=AD=3,∴DE=EC-CD=3-1=2,故选:B.【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解决问题的关键.8.如图,已知AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是()A.BD+ED=BC B.∠B=2∠DACC.AD平分∠EDC D.ED+AC>AD B解析:B【分析】利用角平分线的性质定理判断A;利用直角三角形两锐角互余判断B;证明△AED≌△ACD,由此判断C;利用三角形三边关系得到AC+CD>AD,由此判断D.【详解】∵AC⊥BC,DE⊥AB,AD平分∠BAC,∴DE=DC,∠BAD=∠DAC,∵BD+DC=BC,∴BD+ED=BC,故A正确;∵∠C=90︒,∴∠B+∠BAC=90︒,∴∠B+2∠DAC=90︒,故B错误;∵DE⊥AB,∴∠AED=∠C=90︒,又∵∠BAD=∠DAC,DE=CD,∴△AED≌△ACD,∴∠ADE=∠ADC,∴AD 平分∠EDC ,故C 正确;在△ACD 中,AC+CD>AD ,∴ED +AC >AD ,故D 正确;故选:B .【点睛】此题考查三角形的三边关系,角平分线的性质定理,全等三角形的判定及性质,直角三角形两锐角互余的性质,熟记各知识点并应用解决问题是解题的关键.9.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b B解析:B【分析】 在线段AC 上作AF=AB ,证明△AEF ≌△AEB 可得∠AFE=∠B ,∠AEF=∠AEB ,再证明△CEF ≌△CED 可得CD=CF ,即可求得四边形ABDC 的周长.【详解】解:在线段AC 上作AF=AB ,∵AE 是BAC ∠的平分线,∴∠CAE=∠BAE ,又∵AE=AE ,∴△AEF ≌△AEB (SAS ),∴∠AFE=∠B ,∠AEF=∠AEB ,∵AB ∥CD ,∴∠D+∠B=180°,∵∠AFE+∠CFE=180°,∴∠D=∠CFE ,∵AE CE ⊥,∴∠AEF+∠CEF=90°,∠AEB+∠CED=90°,∴∠CEF=∠CED ,在△CEF 和△CED 中∵D CFE CEF CED CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CEF ≌△CED (AAS )∴CE=CF ,∴四边形ABDC 的周长=AC+AB+BD+CD=AC+AF+CF+BD=2AC+BD=2a b +,故选:B .【点睛】本题考查全等三角形的性质和判断.能正确作出辅助线构造全等三角形是解题关键. 10.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD C解析:C【分析】 在△ACD 和△ABD 中,AD=AD ,AB=AC ,由全等三角形判定定理对选项一一分析,排除不符合题意的选项即可.【详解】解:添加A 选项中条件可用HL 判定两个三角形全等,故选项A 不符合题意;添加B 选项中的条件可用SSS 判定两个三角形全等,故选项B 不符合题意;添加C 选项中的条件∠1=∠2可得∠CDA=∠BDA ,结合已知条件不SS 判定两个三角形全等,故选项C 符合题意;添加D 选项中的条件可用SAS 判定两个三角形全等,故选项D 不符合题意.故选:C .【点睛】本题考查了全等三角形的判定,判定三角形全等的方法:SSS 、SAS 、ASA 、AAS ,判断直角三角形全等的方法:“HL”.二、填空题11.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).或或【分析】要判定△ABC ≌△ADC 已知AC 是公共边具备了一组边和一组角对应相等故添加CB=CD ∠BAC=∠DAC ∠B=∠D 后可分别根据SASASAAAS 能判定△ABC ≌△ADC 【详解】解:添加CB解析: BC DC =或CAB CAD ∠=∠或B D ∠=∠【分析】要判定△ABC ≌△ADC ,已知ACB ACD ∠=∠,AC 是公共边,具备了一组边和一组角对应相等,故添加CB=CD 、∠BAC=∠DAC 、∠B=∠D 后可分别根据SAS 、ASA 、AAS 能判定△ABC ≌△ADC .【详解】解:添加CB=CD ,结合ACB ACD ∠=∠,AC=AC ,根据SAS ,能判定△ABC ≌△ADC ; 添加∠BAC=∠DAC ,结合ACB ACD ∠=∠,AC=AC ,根据ASA ,能判定△ABC ≌△ADC ; 添加∠B=∠D ,结合ACB ACD ∠=∠,AC=AC ,根据AAS ,能判定△ABC ≌△ADC ; 故添加的条件是 BC DC =或CAB CAD ∠=∠或B D ∠=∠.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.如图,在ABC 中,=6AB ,=4AC ,点D ,E 分别在边AB ,AC 上,2BD AE CE ===,//CE AB 交DE 的延长线于点F ,则CF 的长为_____________.4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD 再求出AD 的长即可【详解】解:∵AB=6BD=2∴AD=AB-BD=6-2=4∵∴∠BAC=∠FCE 在△ADE 和△CFE 中∴△ADE ≌△CFE ∴解析:4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD ,再求出AD 的长即可.【详解】解:∵AB=6,BD=2∴AD=AB-BD=6-2=4∵//CE AB∴∠BAC=∠FCE ,在△ADE 和△CFE 中BAC FCE AE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CFE∴CF=AD=4.故答案为:4.【点睛】此题主要考查了全等三角形的判定与性质,证明△ADE ≌△CFE 是解答此题的关键. 13.如图,D ,E 分别是AB ,AC 上的点,AD=AE ,请添加一个条件,使得ABE ≌ACD .这个条件可以为_____(只填一个条件即可).∠B=∠C (或∠ADC=∠AEB 或AB=AC )【分析】根据已知条件知两个三角形已经具有∠A=∠AAD=AE 两个条件对应相等故再添加一组对应角相等或是AB=AC 即可得到ABE ≌ACD 【详解】∵∠A=∠解析:∠B=∠C (或∠ADC=∠AEB 或AB=AC )【分析】根据已知条件知两个三角形已经具有∠A=∠A ,AD=AE 两个条件对应相等,故再添加一组对应角相等或是AB=AC 即可得到ABE ≌ACD . 【详解】∵∠A=∠A ,AD=AE ,∴当∠B=∠C 时,可利用AAS 证明ABE≌ACD ; 当∠ADC=∠AEB 时,可利用ASA 证明ABE ≌ACD ; 当AB=AC 时,可利用SAS 证明ABE ≌ACD ; 故答案为:∠B=∠C (或∠ADC=∠AEB 或AB=AC ). 【点睛】此题考查添加一个条件证明三角形全等,熟记三角形全等的判定定理是解题的关键. 14.如图,点D 、E 分别在线段AB 、AC 上,BE 与CD 相交于点O .若AB AC =,AD AE =,60A ∠=︒,80ADC ∠=︒,则B 的度数为______.40°【分析】由全等三角形的判定证得△ABE ≌△ACD (SAS )由全等三角形的性质可得∠B =∠C 根据三角形内角和定理求出∠C 继而即可求解【详解】在△ABE 和△ACD 中∴△ABE ≌△ACD (SAS )∴解析:40°【分析】由全等三角形的判定证得△ABE ≌△ACD (SAS ),由全等三角形的性质可得∠B =∠C ,根据三角形内角和定理求出∠C ,继而即可求解.【详解】在△ABE 和△ACD 中,AB AC AD AE A A ==∠=∠⎧⎪⎨⎪⎩∴△ABE ≌△ACD (SAS )∴∠B =∠C∵60A ∠=︒,80ADC ∠=︒,∴∠C =180°-∠A -∠ADC =40°,∴∠B=40°故答案为:40°.【点睛】本题考查全等三角形的判定和性质,三角形内角和定理,解题的关键是熟练掌握全等三角形的判定和性质证得∠B =∠C .15.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.【分析】如图延长AEBC 交于点M 通过条件证明再证明可知即可求解出结果【详解】解:如图延长AEBC 交于点MAE 平分又BE 平分BE=BE 故答案为:【点睛】本题考查全等三角形的综合问题需要熟练掌握全等三角解析:212cm【分析】如图,延长AE ,BC 交于点M ,通过条件证明()ABE MBE AAS ≅,再证明()ADE MCE ASA ≅,可知ADE MCE SS =,=2ABE ABCD S S 四边形即可求解出结果.【详解】 解:如图,延长AE ,BC 交于点M ,AE 平分DAB ∠,BAE DAE ∴∠=∠,//AD BC ,//AD BM ∴,BAE DAE CME ∴∠=∠=∠,又 BE 平分CBA ∠,ABE MBE ∴∠=∠,BAE CME ABE MBE ∠=∠∠=∠,,BE=BE ,()ABE MBE AAS ∴≅,90BEA BEM AE ME ∴∠=∠=︒=,,DAE CME AE ME ∠=∠=,,AED MEC ∠=∠,()ADE MCE ASA ∴≅,ADE MCE S S ∴=,3cm AE =,4cm BE =,21==2234122ABM ABE ABCD S S S cm ∴=⨯⨯⨯=四边形, 故答案为:212cm .【点睛】本题考查全等三角形的综合问题,需要熟练掌握全等三角形的判定定理和性质,能根据条件和图像做出合适的辅助线是解决本题的关键.16.已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上.【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可【详解】解:∵点P (2mm-1)在二四象限的角平分线上∴2m=-(m-1)解得m=故答案为:【点睛】本题考查了点的坐标熟记第解析:1 3【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可.【详解】解:∵点P(2m,m-1)在二、四象限的角平分线上,∴2m=-(m-1),解得m=13.故答案为:13.【点睛】本题考查了点的坐标,熟记第二四象限角平分线上点的横坐标与纵坐标互为相反数是解题的关键.17.在Rt△ABC中,∠C=90°,AC=15cm,BC=8cm,AX⊥AC于A,P、Q两点分别在边AC和射线AX上移动.当PQ=AB,AP=_____时,△ABC和△APQ全等.8cm或15cm【分析】分情况讨论:①AP=BC=8cm时Rt△ABC≌Rt△QPA(HL);②当P运动到与C点重合时Rt△ABC≌Rt△PQA (HL)此时AP=AC=15cm【详解】解:①当P运动解析:8cm或15cm【分析】分情况讨论:①AP=BC=8cm时,Rt△ABC≌Rt△QPA(HL);②当P运动到与C点重合时,Rt△ABC≌Rt△PQA(HL),此时AP=AC=15cm.【详解】解:①当P运动到AP=BC时,如图1所示:在Rt △ABC 和Rt △QPA 中,AB QP BC PA =⎧⎨=⎩, ∴Rt △ABC ≌Rt △QPA (HL ),即AP =B =8cm ;②当P 运动到与C 点重合时,如图2所示:在Rt △ABC 和Rt △PQA 中,AB PQ AC PA =⎧⎨=⎩, ∴Rt △ABC ≌Rt △PQA (HL ),即AP =AC =15cm .综上所述,AP 的长度是8cm 或15cm .故答案为:8cm 或15cm .【点睛】本题考查了三角形全等的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键,注意分类讨论,以免漏解.18.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.3【分析】过D 作DE ⊥BC 于EDE 即为DP 长的最小值由题意可以得到△BAD ≌△BED 从而得到DE 的长度【详解】解:如图过D 作DE ⊥BC 于EDE 即为DP 长的最小值由题意知在△BAD 和△BED 中∴△BA解析:3【分析】过D 作DE ⊥BC 于E ,DE 即为DP 长的最小值,由题意可以得到△BAD ≌△BED ,从而得到DE 的长度.【详解】解:如图,过D 作DE ⊥BC 于E ,DE 即为DP 长的最小值,由题意知在△BAD 和△BED 中,A DEB ABD EBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△BED ,∴ED=AD=3,故答案为3.【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定和性质是解题关键.19.如图,在ABC 中,AD 平分BAC ∠,P 为线段AD 上的一个动点,PE AD ⊥交直线BC 于点E .若35B ∠=︒,85ACB ∠=︒,则E ∠的度数为______.25°【分析】利用三角形内角和定理得出∠BAC 的度数进而得出∠ADC 的度数再利用三角形内角和定理和外角性质得出即可【详解】解:∵∠B=35°∠ACB=85°∴∠BAC=60°∵AD 平分∠BAC ∴∠B解析:25°【分析】利用三角形内角和定理得出∠BAC 的度数,进而得出∠ADC 的度数,再利用三角形内角和定理和外角性质得出即可.【详解】解:∵∠B=35°,∠ACB=85°,∴∠BAC=60°,∵AD 平分∠BAC ,∴∠BAD=30°,∴∠ADC=35°+30°=65°,∵∠EPD=90°,∴∠E 的度数为:90°-65°=25°.故答案为:25°.【点睛】此题主要考查了三角形内角和定理以及角平分线的性质和三角形外角的性质,根据已知得出∠BAD 度数是解题关键.20.如图,△ABC 的面积为1cm 2,AP 垂直∠ABC 的平分线BP 于P ,则△PBC 的面积为___.cm2【分析】如图延长AP 交BC 于T 利用全等三角形的性质证明AP=PT 即可解决问题【详解】解:如图延长AP 交BC 于T ∵BP ⊥AT ∴∠BPA=∠BPT=90°∵BP=BP ∠PBA=∠PBT ∴△BPA ≌ 解析:12cm 2 【分析】如图,延长AP 交BC 于T .利用全等三角形的性质证明AP=PT 即可解决问题.【详解】解:如图,延长AP 交BC 于T .∵BP ⊥AT ,∴∠BPA=∠BPT=90°,∵BP=BP ,∠PBA=∠PBT , ∴△BPA ≌△BPT (ASA ),∴PA=PT ,∴BPA BPT CAP CPT S S S S ==,1122PBC ABC S S ∴==, 故答案为12cm 2. 【点睛】 本题考查全等三角形的判定和性质,三角形的面积,等高模型等知识,解题的关键是学会添加常用辅助线吗,构造全等三角形解决问题.三、解答题21.如图,点B 、E 、C 、F 在同一条直线上,A D ∠=∠,//AB DE ,BE CF =.求证://AC DF .解析:见解析.【分析】根据//AB DE 可知B DEF ∠=∠,又根据∠A=∠D ,BE=CF 可以判定ABC DEF △≌△,即可求证//AC DF ;【详解】∵//AB DE ,∴B DEF ∠=∠,∵BE CF =,∴BC EF =,∴在ABC 和DEF 中,A DB DEF BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△,∴ACB F ∠=∠,∴//AC DF .【点睛】本题考查了三角形全等的性质与判定的应用以及两直线平行的判定定理,解此题的关键是推出ABC DEF △≌△,注意全等三角形的对应边相等;22.如图,AD 是ABC 的角平分线,AB AC >,求证:AB AC BD CD ->-.解析:见解析【分析】在 AB 上取 AE = AC ,然后证明ADC ≌()SAS ADE △,根据全等三角形对应边相等得到DC DE =,再根据三角形的任意两边之差小于第三边证明即可.【详解】证明:如解图,在AB 上截取AE AC =,连接DE ,∵ AD 是ABC 的角平分线,∴ CAD EAD ∠=∠.在ADC 和ADE 中,,,,AC AE CAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴ ADC ≌()SAS ADE △.∴ DC DE =.∵在BDE 中,BE BD ED >-,∵ AB AE BE -=,∴ AB AC BD CD ->-.【点睛】本题主要考查全等三角形的判定和全等三角形对应边相等的性质以及三角形的三边关系,作辅助线构造全等三角形是解题的关键.23.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.解析:(1)见解析;(2)见解析【分析】(1)由已知可证∠B=∠F ,BC=EF ,然后根据SAS 可以得到结论;(2)同(1)有∠B=∠F ,再结合已知条件和对顶角相等可以证得ΔABO ≅ΔDFO ,从而得到OB=OF ,所以点O 为BF 中点 .【详解】证明:(1)∵AB//DF ,∴∠B=∠F ,∵BE=CF ,∴BE+CE=CF+CE ,即BC=EF ,∴在ΔABC 和ΔDFE 中,AB DF B F BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ΔABC ≅ΔDFE (SAS );(2)与(1)同理有∠B=∠F ,∴在ΔABO 和ΔDFO 中,AOB DOF B F AB DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔABO ≅ΔDFO (AAS ),∴OB=OF ,∴点O 为BF 中点 .【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定与性质并灵活应用是解题关键. 24.如图,点C 在BE 上,AB ⊥BE ,DE ⊥BE ,且AB =CE ,AC =CD .判断AC 和CD 的关系并说明理由.解析:AC ⊥CD ,理由见解析【分析】根据条件证明△ABC ≌△CED 就得出∠ACD=90°,则可以得出AC ⊥CD .【详解】解:AC ⊥CD .理由:∵AB ⊥BE ,DE ⊥BE ,∴∠B =∠E =90°.在Rt △ABC 和Rt △CED 中,AB CE AC CD=⎧⎨=⎩, ∴Rt △ABC ≌Rt △CED (HL ),∴∠A =∠DCE ,∠ACB =∠D .∵∠A+∠ACB =90°,∴∠DCE+∠ACB =90°.∵∠DCE+∠ACB+∠ACD =180°,∴∠ACD =90°,∴AC ⊥CD .【点睛】本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,解答时证明三角形全等是关键.25.已知矩形ABCD 中,点E 是AD 中点,连接CE ,经过点A ,B ,E 三点作O ,交BC 于点F ,过点F 作FH CE ⊥于H .(1)求证:直线FH 是O 的切线;(2)若42AD =,且点H 恰好为CE 中点时,判断此时CE 与O 的位置关系?说明理由,并求出弧EF ,线段EH ,FH 围成的图形的面积.解析:(1)见解析;(2)EC 与O 相切,理由见解析,4π-【分析】 (1)连接BE ,OF ,易得出BE 是圆的直径,根据全等三角形的判定证得△EAB ≌△EDC ,继而根据平行线的性质和切线的判定即可求证结论;(2)连接EF ,易求得四边形OFHE 的边长,再利用面积的和差即可求解.【详解】(1)连接BE ,OF∵四边形ABCD 是矩形,∴90A D ∠=∠=︒,AB CD =,∵90A ∠=︒,∴BE 是O 的直径,∵点E 是AD 中点,∴EA EC =,∴△EAB ≌△EDC ,∴EB EC =,∴EBC ECB ∠=∠,∵OB OF =,∴ECB OFB ∠=∠,∴ECB OFB ∠=∠,∴//OF EC ,∴OFH FHC ∠=∠,∵FH CE ⊥,∴90FHC OFH ∠=∠=︒,又∵OF 是O 的半径,∴直线FH 是O 的切线.(2)EC 与O 相切. 理由如下:连接EF ,由(1)知,BE 是O 直径,∴90EFB EFC ∠=∠=︒,∵点H 是CE 中点,∴FH EH HC ==,∵FH CE ⊥,∴90FHC ∠=︒,∴45ECF HFC ∠=∠=︒,∴90BEC ∠=︒,又∵OE 是O 的半径,∴直线EC 与圆O 相切.由上可知四边形ABFE 和四边形OFHE 都是正方形, ∴11422222AE AB AD ===⨯= ∴224BE AB AE =+=,∴2OE OF ==, ∴2290π224π360OFHE OEFS S S ⨯=-=-=-正方形扇形. 【点睛】本题考查直线与圆的位置关系,矩形的性质,全等三角形的判定和性质、切线的判定、勾股定理,解题的关键是综合运用所学知识.26.(教材呈现)数学课上,赵老师用无刻度的直尺和圆规按照华师版教材八年级上册87页完成角平分线的作法,方法如下:试一试如图,AOB ∠为已知角,试按下列步骤用直尺和圆规准确地作出AOB ∠的平分线.第一步:在射线OA 、OB 上,分别截取OD 、OE ,使0;OD E =第二步:分别以点D 和点E 为圆心,适当长(大于线段DE 长的一半)为半径作圆弧,在AOB ∠内,两弧交于点C ;第三步:作射线OC .射线OC 就是所要求作的AOB ∠的平分线(问题1)赵老师用尺规作角平分线时,用到的三角形全等的判定方法是__________________.(问题2)小明发现只利用直角三角板也可以作AOB ∠的角平分线,方法如下: 步骤:①利用三角板上的刻度,在OA 、OB 上分别截取OM 、ON ,使OM ON =. ②分别过点M 、N 作OM 、ON 的垂线,交于点P .③作射线OP ,则OP 为AOB ∠的平分线.请根据小明的作法,求证OP 为AOB ∠的平分线.解析:【问题1】边边边(或SSS );【问题2】见解析【分析】问题1:根据三角形全等的SSS 定理解答;问题2:证明Rt △ONP ≌Rt △OMP ,根据全等三角形的性质证明即可.【详解】解:问题1:张老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS , 故答案为:SSS ;问题2:由作图得:OM ON =,PN OB ⊥,PM OA ⊥.∴90PNO PMO ∠=∠=︒.∴PNO 和PMO △是直角三角形.∵OP OP =,∴ONP OMP ≌.∴AOP BOP ∠=∠.∴OP 为AOB ∠的平分线.【点睛】本题考查了全等三角形的应用及基本作图的知识,同学们注意仔细审题,理解这些作角平分线的方法,按照题目意思解答.27.已知:AB BD ⊥,ED BD ⊥,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.解析:(1)AC CE ⊥,见解析;(2)成立,理由见解析;(3)成立,理由见解析【分析】(1)先用HL 判断出Rt Rt ABC CDE ≌△△,得出A DCE ∠=∠,进而判断出90DCE ACB ∠+∠=︒,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论.【详解】解:(1)AC CE ⊥理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒在Rt ABC △和Rt CDE △中AC CE BC DE =⎧⎨=⎩∴()Rt Rt HL ABC CDE △△≌, ∴A DCE ∠=∠∵90B ∠=︒,∴90A ACB ∠+∠=︒,∴()18090ACE DCE ACB ∠=︒-∠+∠=︒,∴AC CE ⊥;(2)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒,在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵90B ∠=︒,∴190B A AC ∠+∠=︒,∴2190DC E AC B ∠+∠=︒,在12C FC 中,()122118090C FC DC E AC B ∠=︒-∠+∠=︒,∴12AC C E ⊥;(3)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴190ABC D ∠=∠=︒在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵190ABC ∠=︒,∴190B A AC ∠+∠=︒,在12C FC 中,()2112180=90C FC DC E AC B ∠=︒-∠+∠︒,∴12AC C E ⊥.【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,判断出12Rt Rt ABC C DE ≌△△是解本题的关键.28.已知:如图,AB = AD .请添加一个条件使得△ABC ≌△ADC ,然后再加以证明.解析:BC=CD,证明见解析(答案不唯一).【分析】已知两组对应边相等,则找另一组边相等或找另一组对应角相等均可证明△ABC ≌△ADC .【详解】解:若添加条件为:BC=CD,证明如下: 在△ABC 和△ADC 中AC AC BC CD AB AD =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC (SSS )(答案不唯一).【点睛】本题主要考查了全等三角形的判定,灵活运用全等三角形的判定方法是解答本题的关键.。

第12章《全等三角形》人教版八年级上册培优练习题(含答案)

第12章《全等三角形》人教版八年级上册培优练习题(含答案)

人教版2020年八年级上册第12章《全等三角形》培优练习题一.选择题1.如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F2.如图,已知AB⊥BC于B,CD⊥BC于C,BC=13,AB=5,且E为BC上一点,∠AED =90°,AE=DE,则BE=()A.13B.8C.6D.53.平面内,到三角形三边距离相等的点有()个.A.4B.3C.2D.14.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AF平分∠DAC交CD于点F,点E为AB上一点,AE=AC,连接EF,若∠B=56°,则∠AEF=()A.34°B.46°C.56°D.60°5.如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处6.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°7.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1B.2C.3D.48.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.609.如图,已知点E、F在线段BC上,BE=CF,DE=DF,AD⊥BC,垂足为点D,则图中共有全等三角形()对.A.2B.3C.4D.510.如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则下列结论:①DF+AE>AD;②DE=DF;③AD⊥EF;④S△ABD:S△ACD=AB:AC,其中正确结论的个数是()A.1个B.2个C.3 个D.4个二.填空题11.如图,∠1=∠2,BC=EC,请补充一个条件:能使用“AAS”方法判定△ABC ≌△DEC.12.如图,OP平分∠MON,P A⊥ON,垂足为A,Q是射线OM上的一个动点,若P、Q两点距离最小为8,则P A=.13.如图为6个边长相等的正方形的组合图形,则∠1﹣∠2+∠3=.14.如图,AB=AC,AD=AE,点B、D、E在一条直线上,∠BAC=∠DAE,∠1=35°,∠2=30°,则∠3=度.15.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为48和26,求△EDF的面积.16.如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P 从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动秒时,△BCA与点P、N、B为顶点的三角形全等.三.解答题17.已知:如图,∠BAC=∠DAC.请添加一个条件,使得△ABC≌△ADC,然后再加以证明.18.小明家门前有一条小河,村里准备在河面上架上一座桥,但河宽AB无法直接测量,爱动脑的小明想到了如下方法:在与AB垂直的岸边BF上取两点C、D使CD=,再引出BF的垂线DG,在DG上取一点E,并使A、C、E在一条直线上,这时测出线段的长度就是AB的长.(1)按小明的想法填写题目中的空格;(2)请完成推理过程.19.在△ABC中,D是AB的中点,E是CD的中点.过点C作CF∥AB交AE的延长线于点F,连接BF.求证:DB=CF.20.如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若BF=3,求CE的长度.21.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.22.如图,AD是△ABC的角平分线,点F、E分别在边AC、AB上,连接DE、DF,且∠AFD+∠B=180°.(1)求证:BD=FD;(2)当AF+FD=AE时,求证:∠AFD=2∠AED.23.如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB 的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动.同时,点Q在线段CA上由C点以a厘米/秒的速度向A点运动.设运动的时间为t秒.(1)直接写出:①BD=厘米;②BP=厘米;③CP=厘米;④CQ=厘米;(可用含t、a的代数式表示)(2)若以D,B,P为顶点的三角形和以P,C,Q为顶点的三角形全等,试求a、t的值;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动.设运动的时间为t秒;直接写出t=秒时点P与点Q第一次相遇.24.如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)(1)运动秒时,AE=DC;(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;(3)若△ABD≌△DCE,∠BAC=α,则∠ADE=(用含α的式子表示).参考答案一.选择题1.解:A、添加AC=DF,满足SAS,可以判定两三角形全等;B、添加∠B=∠E,满足ASA,可以判定两三角形全等;C、添加BC=EF,不能判定这两个三角形全等;D、添加∠C=∠F,满足AAS,可以判定两三角形全等;故选:C.2.解:在△ABE和△ECD中∴△ABE≌△ECD(AAS).∴CE=AB=5.∴BE=BC﹣CE=13﹣5=8.故选:B.3.解:如图,△ABC外角平分线的交点共有3个,内角平分线的交点有1个,所以,到三边距离相等的点共有3+1=4个.故选A.4.解:∵AF平分∠DAC,∴∠CAF=∠EAF,又∵AC=AE,AF=AF,∴△ACF≌△AEF,∴∠AEF=∠ACF,又∵CD⊥AB,∠ACB=90°,∴∠B+∠BAC=90°=∠ACD+∠DAC,∴∠B=∠ACD,∴∠AEF=∠B=56°,故选:C.5.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三角形外角平分线的交点,共三处.故选:A.6.解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选:A.7.解:以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选:D.8.解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故选:B.9.解:∵BE=CF,DE=DF,AD⊥BC,∴AD垂直平分BC,AD垂直平分EF,∴AB=AC,AE=AF,又∵AD=AD,∴△ABD≌△ACD(SSS),△AED≌△AFD(SSS),∵BE=CF,DE=DF,∴BF=CE,又∵AB=AC,AE=AF,∴△ABF≌△ACE(SSS),∵AB=AC,AE=AF,BE=CF,∴△ABE≌△ACF(SSS),∴图形中共有全等三角形4对,故选:C.10.解:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴∠AED=∠AFD=90°,DE=DF,故②正确;在Rt△AED和Rt△AFD中,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,故③正确;∵在△AFD中,AF+DF>AD,又∵AE=AF,∴AE+DF>AD,故①正确;∵S△ABD=,S△ACD=,DE=DF,∴S△ABD:S△ACD=AB:AC,故④正确;即正确的个数是4个,故选:D.二.填空题11.解:可以添加∠A=∠D,理由是:∵∠1=∠2,∴∠ACB=∠DCE,∴在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).故答案是:∠A=∠D.12.解:过点P作PQ⊥OM,垂足为Q,则PQ长为P、Q两点最短距离,∵OP平分∠MON,P A⊥ON,PQ⊥OM,∴P A=PQ=8,故答案为:8.13.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1﹣∠2+∠3=90°﹣45°=45°.故答案为:45°.14.解:如图所示:∵∠BAC=∠DAE,∠BAC=∠1+∠DAC,∠DAE=∠DAC+∠4,∴∠1=∠4,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ADB=∠AEC,又∵∠2+∠4+∠AEC=180°,∴∠AEC=115°,∴∠ADB=115°,又∠ADB+∠3=180°,∴∠3=65°,故答案为65.15.解:如图,作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,DH⊥AC,∴DF=DH,在Rt△FDE和Rt△HDG中,,∴Rt△FDE≌Rt△HDG(HL),同理,Rt△FDA≌Rt△HDA(HL),设△EDF的面积为x,由题意得,48﹣x=26+x,解得x=11,即△EDF的面积为11,故答案为:11.16.解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6﹣2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为:0或4或8或12.三.解答题17.解:若添加的条件为:AB=AD,则在△ABC与△ADC中,,∴△ABC≌△ADC(SAS).若添加的条件为:∠B=∠D,则在△ABC与△ADC中,,∴△ABC≌△ADC(AAS).若添加的条件为:∠ACB=∠ACD,则,∴△ABC≌△ADC(ASA).故答案为:AB=AD(或∠B=∠D或∠ACB=∠ACD)(答案不唯一).18.解:(1)在与AB垂直的岸边BF上取两点C、D使CD=CB,再引出BF的垂线DG,在DG上取一点E,并使A、C、E在一条直线上,这时测出线段DE的长度就是AB的长.故答案为:CB,DE;(2)由题意得DG⊥BF,∴∠CDE=∠CBA=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴DE=AB(全等三角形的对应边相等).19.证明:∵E为CD的中点,∴CE=DE,∵∠AED和∠CEF是对顶角,∴∠AED=∠CEF.∵CF∥AB,∴∠EDA=∠ECF.在△EDA和△ECF中,,∴△ADE≌△FCE(ASA),∴AD=FC,∵D为AB的中点,∴AD=BD.∴DB=CF.20.解:如图所示:(1)∵AD⊥BC,BE⊥AC,∴∠FDB=∠FEA=∠ADC=90°,又∵∠FDB+∠1+∠BFD=180°,∠FEA+∠2+AFE=180°,∠BFD=∠AFE,∴∠1=∠2,又∠ABC=45°,∴BD=AD,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA)∴BF=AC;(2)∵BF=3,∴AC=3,又∵BE⊥AC,∴CE=AE==.21.证明:(1)∵BE⊥CD,∴∠BEC=∠DEA=90°,又∵BE=DE,BC=DA,∴△BEC≌△DEA(HL);(2)∵△BEC≌△DEA,∴∠B=∠D.∵∠D+∠DAE=90°,∠DAE=∠BAF,∴∠BAF+∠B=90°.即DF⊥BC.22.证明:(1)过点D作DM⊥AB于M,DN⊥AC于N,如图1所示:∵DM⊥AB,DN⊥AC,∴∠DMB=∠DNF=90°,又∵AD平分∠BAC,∴DM=DN,又∵∠AFD+∠B=180°,∠AFD+∠DFN=180°,∴∠B=∠DFN,在△DMB和△DNF中,∴△DMB≌△DNF(AAS)∴BD=FD;(2)在AB上截取AG=AF,连接DG.如图2所示,∵AD平分∠BAC,∴∠DAF=∠DAG,在△ADF和△ADG中.,∴△ADF≌△ADG(SAS).∴∠AFD=∠AGD,FD=GD又∵AF+FD=AE,∴AG+GD=AE,又∵AE=AG+GE,∴FD=GD=GE,∴∠GDE=∠GED又∵∠AGD=∠GED+∠GDE=2∠GED.∴∠AFD=2∠AED23.解(1)由题意得:①BD=12,②BP=4t;③CP=16﹣4t,④CQ=at,故答案为:①12,②4t,③(16﹣4t),④at;(2)∵BP=4t,BD=12,CP=16﹣4t,CQ=at,∵∠B=∠C,∴分两种情况:①若△DBP≌△QCP,则,∴,∴,②若△DBP≌△PCQ,则,∴,∴;(3)①若a=4 时,P,Q不能相遇,②若a=6 时,由题意得:6t﹣4t=48,t=24,答:t=24秒时点P与点Q第一次相遇.故答案为:24.24.解:(1)由题可得,BD=CE=2t,∴CD=12﹣2t,AE=8﹣2t,∴当AE=DC,时,8﹣2t=(12﹣2t),解得t=3,故答案为:3;(2)当△ABD≌△DCE成立时,AB=CD=8,∴12﹣2t=8,解得t=2,∴运动2秒时,△ABD≌△DCE能成立;(3)当△ABD≌△DCE时,∠CDE=∠BAD,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∠B=∠180°﹣∠BAD﹣∠ADB,∴∠ADE=∠B,又∵∠BAC=α,AB=AC,∴∠ADE=∠B=(180°﹣α)=90°﹣α.故答案为:90°﹣α.。

人教版八年级数学上册《全等三角形》培优专题训练(含答案)

人教版八年级数学上册《全等三角形》培优专题训练(含答案)

《全等三角形》培优专题训练1 全等三角形的概念两个能够完全重合的三角形叫做全等三角形.把两个全等三角形重合在一起,重合的角叫做对应角,重合的边叫做对应边.全等三角形的对应角相等,对应边相等. 经典例题如图所示,ABC DEF ∆≅∆,30A ∠=︒,50B ∠=︒,2BF =.求DFE ∠的度数与EC 的长.解题策略在ABC ∆中,+180A B ACB ∠∠+∠=︒ (三角形内角和为180°).因为30A ∠=︒,50B ∠=︒(已知),所以1803050100ACB ∠=︒-︒-︒=︒ 因为ABC DEF ∆≅∆ (已知),所以ACB DFE ∠=∠(全等三角形对应角相等) BC EF =(全等三角形对应边相等), 因此100DFE ∠=︒,所以2EC EF FC BC FC BF =-=-== 画龙点睛1. 在解答与全等三角形有关的问题时,要充分利用全等三角形的定义所得到的对应边相等、对应角相等的结论.2. 在本题中求EC 的长时,不能直接求,可将之转化为两条线段的差,这也是将来求线段长的一种常用的转化方法.举一反三1. 如图,若ABC ADE ∆≅∆,则这对全等三角形的对应边是 ;对应角是 .2. 如图,若ABD ACD ∆≅∆,试说明AD 与BC 的位置关系.3. 如图所示,斜折一页书的一角,使点A 落在同一页书内'A 处,DE 为折痕,作DF平分'A DB ∠,试猜想FDE ∠等于多少度,并说明理由.融会贯通4. 如图,ABE ∆和ACD ∆是ABC ∆分别沿着AB 、AC 边翻折180°形成的,若θ∠的度数50°,则BAC ∠的度数是 .2 三角形全等的判定判断两个三角形全等,并非需要证明两个三角形的三条边以及三个角均对应相等,而只需满足全等三角形的判定定理就可以了. 经典例题已知:如图,AO 平分EAD ∠和EOD ∠,求证:(1)AOE AOD ∆≅∆;(2) BOE COD ∆≅∆.解题策略证明:(1)因为AO 平分EAD ∠和EOD ∠,所以OAD OAE ∠=∠,AOE AOD ∠=∠,又因为AO AO =,所以AOE AOD ∆≅∆ ( ASA).(2)由AOE AOD ∆≅∆,得OE OD =,且AEO ADO ∠=∠.又180BEO AEO ∠=︒-∠,180CDO ADO ∠=︒-∠,所以B E O C D O ∠=∠.在AOE ∆和AOD ∆中,因为B E O C D O ∠=∠,OE OD =,BOE COD ∠=∠,所以B O E C O D ∆≅∆(ASA). 画龙点睛1. 判定两个三角形全等,往往需要三个条件,根据题目已知的条件可以得到两个条件(要注意公共角及公共边),这时.设法证明所缺的条件也成立就是证题的关键了. 2. 要证明两条线段或者两个角相等,常用的方法是证明它们是一对全等三角形的对应边或者对应角.举一反三1. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆≅∆的是( ).(A) CB CD = (B)BAC DAC ∠=∠ (C)BCA DCA ∠=∠ (D)90B D ∠=∠=︒2. 如图所示,点D 、C 在BF 上,//AB EF ,A E ∠=∠,BC DF =.求证AB EF =.3. 如图,AB 交CD 于点O ,AD 、CB 的延长线相交于点E ,且OA OC =,EA EC =,你能证明A C ∠=∠吗?点O 在AEC ∠的平分线上吗?融会贯通4. 如图所示,已知BD 、CE 分别是ABC ∆的边AC 和AB 上的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =.求证:(1)AP AQ =;(2)AP AQ ⊥.3 全等三角形的应用全等三角形的判定和性质被广泛地应用于几何证明题中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵CD:BD=3:4. 设 CD=3x,则 BD=4x, ∴BC=CD+BD=7x, ∵BC=21, ∴7x=21, ∴x=3, ∴CD=9, 过点 D 作 DE⊥AB 于 E, ∵AD 是∠BAC 的平分线,∠C=90°, ∴DE=CD=9, ∴点 D 到 AB 边的距离是 9, 故选:B. 3.解:已知 AB=DE,AC=DF,添加的一个条件是∠ABC=∠DEF,根据条件不可以证明△ABC ≌△DEF,故选项 A 符合题意; 已知 AB=DE,AC=DF,添加的一个条件是∠A=∠D,根据 SAS 可以证明△ABC≌△DEF,

19.如图 1,CA=CB,CD=CE,∠ACB=∠DCE=α (1)求证:BE=AD; (2)当 α=90°时,取 AD,BE 的中点分别为点 P、Q,连接 CP,CQ,PQ,如图②,判断 △CPQ 的形状,并加以证明.
20.如图,△ABC 中,AB=AC,点 D 在 AB 边上,点 E 在 AC 的延长线上,且 CE=BD,连接 5 / 16
A.9
B.12
C.15 2 / 16
D.18
9.如图,在△ABC 中,∠C=90°,DE⊥AB 于点 E,CD=DE,∠CBD=26°,则∠A 的度数为 ()
A.40°
B.34°
C.36°
D.38°
10.如图,已知△ABC 中,AB=AC=12cm,BC=10cm,点 D 为 AB 的中点,如果点 P 在线段
度.
15.如图,P(2,2),A(m,0),B(0,n),且 m>2,n<0,PA=PB,则 m+n 的值是

三.解答题 16.如图,四边形 ABCD 中,AD∥BC,DE=EC,连接 AE 并延长交 BC 的延长线于点 F,连接
BE. (1)求证:AE=EF; (2)若 BE⊥AF,求证:BC=AB﹣AD.
18.请将下面的说理过程和理由补充完整.
如图,点 B,E,C,F 在一条直线上,BE=CF,AB∥DE,AB=DE,说明 AC=DF.
解:∵BE=CF,(已知)
∴BE+EC=CF+
.(等式的性质)
即 BC=

∵AB∥DE,(已知).
∴∠B=
.(

又∵AB=DE,(已知)
∴△ABC≌△DEF.(

∴AC=DF.(
17.如图,AB=AC=16cm,BC=10cm,点 D 为 AB 的中点,点 P 在边 BC 上以每秒 2cm 的速度 由点 B 向点 C 运动,同时,点 M 在边 CA 上由点 C 向点 A 匀速运动. (1)当点 M 的运动速度与点 P 的运动速度相同,经过 1 秒后,△BPD 与△CMP 是否全等? 请说明理由; (2)若点 M 的运动速度与点 P 的运动速度不相等,当点 M 的运动速度为多少时,能够使 △BPD 与△CMP 全等? 4 / 16
BC 上以 2cm/s 的速度由点 B 向 C 点运动,同时,点 Q 在线段 AC 上由点 A 向 C 点以 4cm/s
的速度运动.经过( )秒后,△BPD 与△CQP 全等.
A.2
B.3
C.2 或 3
D.无法确定
二.填空题
11.如图所示,AC=DB,若想证明∠ACB=∠DBC,需要证明∠ACB 与∠DBC 所在的三角形全
等,即△ABC≌△DCB,则还需要添加的条件是

12.如图,△EFG≌△NMH,EH=2.4,HN=5.1,则 GH 的长度是

13.如图,已知△ABC 的周长是 20,OB,OC 分别平分∠ABC 和∠ACB,OD⊥BC 于点 D,且 OD
=2,△ABC 的面积是

3 / 16
14.如图,在 3×3 的正方形网格中,∠1+∠2=
CAD=25°,则∠ABE 的度数为( )
1 / 16
A.30°
B.15°
C.25°
D.20°
5.如图,在△ABC 中,AB=AC,∠A=112°,E,F,D 分别是 AB,AC,BC 上的点,且 BE=
CD,BD=CF,则∠EDF 的度数为( )
A.30°
B.34°
C.40°
D.56°
6.下列判断正确的个数是( )
(1)能够完全重合的两个图形全等;
(2)两边和一角对应相等的两个三角形全等;
(3)两角和一边对应相等的两个三角形全等;
(4)全等三角形对应边相等.
A.1 个
B.2 个
C.3 个
D.4 个
7.如图,△ABC 中,AB=5,AC=4,以点 A 为圆心,任意长为半径作弧,分别交 AB、AC 于
D 和 E,再分别以点 D、E 为圆心,大于二分之一 DE 为半径作弧,两弧交于点 F,连接 AF
到 AB 边的距离为( )
A.7
B.9
C.11
D.14
3.如图,点 B,E,C,F 在同一条直线上,已知 AB=DE,AC=DF,添加下列条件还不能判
定△ABC≌△DEF 的是( )
A.∠ABC=∠DEF B.∠A=∠D
C.BE=CF
D.BC=EF
4.如图,在△ABC 中,AD⊥BC 于点 D,BE⊥AC 于点 E,AD 与 BE 相交于点 F,若 BF=AC,∠
并延长交 BC 于点 G,GH⊥AC 于 H,GH=2,则△ABG 的面积为( )
A.4
B.5
C.9
D.10
8.如图,在等腰△ABC 中,AB=AC,AB>BC,点 D 在边 BC 上,且 = ,点 E、F 在线段
AD 上,满足∠BED=∠CFD=∠BAC,若 S△ABC=20,则 S△ABE+S△CDF 是多少?( )
人教版八年级上册第十二章《全等三角形》 培优训练题
一.选择题 1.如图,AB=AC,若要使△ABE≌△ACD.则添加的一个条件不能是( )
A.∠B=∠C
B.∠ADC=∠AEB C.BD=CE
D.BE=CD
2.如图,已知△ABC 中,∠C=90°,AD 平分∠BAC,且 CD:BD=3:4.若 BC=21,则点 D
DE 交 BC 于点 F. (1)求证:EF=DF; (2)过点 D 作 DG⊥BC,垂足为 G,求证:BC=2FG.
6 / 16
参考答案
一.选择题 1.解:A、添加∠B=∠C 可利用 ASA 定理判定△ABE≌△ACD,故此选项不合题意;
B、添加∠ADC=∠AEB 可利用 AAS 定理判定△ABE≌△ACD,故此选项不合题意; C、添加 BD=CE 可得 AD=AE,可利用利用 SAS 定理判定△ABE≌△ACD,故此选项不合题 意; D、添加 BE=CD 不能判定△ABE≌△ACD,故此选项符合题意; 故选:D. 2.解:如图,
相关文档
最新文档