历年生化考研西医综合试题重要知识点
西医综合考研生物化学真题

西医综合考研生物化学真题西医综合考研生物化学真题在西医综合考研中,生物化学是一个重要的科目。
为了更好地备考生物化学,我们可以通过做一些真题来提高自己的理解和应试能力。
本文将介绍一些常见的西医综合考研生物化学真题,并对其进行分析和解答。
一、酶的特性及其调节酶是生物体内催化化学反应的蛋白质。
在考研生物化学中,经常会涉及酶的特性、酶动力学以及酶的调节等内容。
例如,一道常见的题目是:酶的催化作用与非酶催化作用的区别是什么?请分别举例说明。
酶的催化作用与非酶催化作用的主要区别在于速度和特异性。
酶催化作用速度快,可以使反应速率增加数百倍甚至上千倍,而非酶催化作用速度相对较慢。
此外,酶对底物的选择性较高,只催化特定的底物,而非酶催化作用对底物的特异性较低。
举例来说,酶催化作用可以通过酶葡萄糖激酶将葡萄糖催化为葡萄糖-6-磷酸,而非酶催化作用则需要高温或强酸碱条件下才能使葡萄糖发生反应。
二、蛋白质的结构与功能蛋白质是生物体内最重要的大分子有机物之一,它在生物体内具有多种功能。
在考研生物化学中,经常会涉及蛋白质的结构与功能的相关问题。
例如,一道常见的题目是:蛋白质的二级结构有哪些类型?请简要描述其结构特点。
蛋白质的二级结构主要有α-螺旋和β-折叠两种。
α-螺旋是由多个氨基酸残基通过氢键相互连接而成的螺旋结构,其特点是每个氨基酸残基之间的氢键距离相等,使得螺旋结构紧密稳定。
β-折叠则是由多个氨基酸残基通过氢键相互连接而成的折叠结构,其特点是氨基酸残基在空间中呈现出折叠的形态,使得结构更加稳定。
三、代谢与能量转化代谢是生物体内各种化学反应的总称,其中能量转化是代谢的重要组成部分。
在考研生物化学中,经常会涉及代谢与能量转化的相关问题。
例如,一道常见的题目是:三磷酸腺苷(ATP)是细胞内的重要能量物质,请简要描述ATP的结构特点以及其在能量转化中的作用。
ATP是由腺苷和三个磷酸基团组成的化合物,其磷酸基团之间通过高能键相互连接。
西医综合考试知识点总结

西医综合考试知识点总结西医综合考试是对西医专业学生综合医学知识的考核,包括解剖学、生理学、病理学、药理学、临床医学等多个方面的知识。
在考试中,考生需要全面掌握这些知识点,并能够灵活运用到实际临床工作中。
下面将从不同方面对西医综合考试的知识点进行总结。
1. 解剖学解剖学是西医综合考试的重要内容之一,考生需要掌握人体各个系统的结构和组织,以及器官之间的关系。
比较重要的知识点包括:人体的骨骼系统:考生需要了解人体的主要骨骼组成,包括颅骨、躯干骨、四肢骨等,以及各个骨骼之间的连接方式和功能。
人体的肌肉系统:考生需要熟悉人体的主要肌肉,包括骨骼肌、平滑肌、心肌等,以及肌肉的结构和功能。
人体的神经系统:考生需要掌握人体的主要神经组织和神经传导方式,包括中枢神经系统、周围神经系统等。
人体的循环系统:考生需要了解心脏、血管、血液等组成部分,以及血液的循环方式和功能。
2. 生理学生理学是研究生物体内部各种生命现象和生物功能的科学,包括细胞生理学、器官系统生理学和整体生理学等内容。
考生需要了解人体各个器官系统的结构和功能,以及细胞内的生物化学反应等。
主要知识点包括:细胞生理学:考生需要了解细胞的结构和功能,包括细胞膜、细胞器等,以及细胞内的新陈代谢过程和信号传导方式。
神经生理学:考生需要熟悉神经元的结构和功能,以及神经冲动的传导过程和调节机制。
肌肉生理学:考生需要了解肌肉组织的结构和功能,以及肌肉收缩的机制和调节方式。
心血管生理学:考生需要了解心脏的结构和功能,以及心脏的兴奋传导系统和心脏收缩的机制。
呼吸生理学:考生需要了解呼吸器官的结构和功能,以及呼吸的调节机制和气体交换过程。
消化生理学:考生需要了解消化器官的结构和功能,以及消化过程中的物质转运和代谢过程。
3. 病理学病理学是研究疾病的起因、发展和转归规律的科学,包括基础病理学、病理生理学和临床病理学等内容。
考生需要了解各种常见疾病的病因、病理生理过程和临床表现等。
西医综合考研复习之生理病理药理重点总结

1生理学细胞基本功能1.物质转运→单纯扩散(放屁):高浓度→低浓度(只要是扩散就是高到低);不耗能;主要转运气体易化扩散:高浓度→低浓度:通道:离子载体:葡萄糖、氨基酸(营养物质)主动转运→耗能(男主动追女、花钱)低浓度→高浓度(男人结婚之前是孙子、结婚之后是大爷)代表:钠—钾泵“单纯扩散是个P、易化扩散离子养(营养)、主动转运钠钾泵”“葡萄糖进入红细胞、普通细胞→易化扩散;葡萄糖进入肠、肾等器官→继发性主动转运”神经末梢释放的神经递质属于出胞(大分子)2.细胞生物电、兴奋性兴奋性的核心:“电”(男人见到美女兴奋、放电)正常细胞:内钾外钠(和谐家庭→男人下班要回家,在外面女人流泪→咸的)电位:静息电位:静息状态(K+通透性增加、外流,把正电荷带到外面)→“静钾动钠”极化:“外+内-”→和谐家庭:男人(外)赚钱(+)、妇人(内)花钱、花到透支(-)K+外流→外+增加→外+内-(极化)超极化:负值增大(-70~-100mV)去极化:负值减小(-70~-50mV)复极化:从去极化恢复到“外+内-”(-50~-70mV)动作电位:受刺激、兴奋状态(Na+通透性增加、内流)上升支:Na+内流;下降支:K+外流阈值:是指能引起动作电位的最小刺激强度;阈值越高、兴奋性越低绝对不应期:兴奋性为0兴奋传导特点:“两根电线”(平行线):完整性(缺一不可);绝缘性(电线外面裹了一层绝缘皮);安全性(绝缘了就安全了);双向性(2根线、2个方向);不疲劳性、不衰减性(持续供电)3.骨骼肌收缩功能:“ACCA”→“神经肌肉接头前膜进去Ca2+出来ACh(乙酰胆碱)”Ca2+进入大脑、发出指令、释放ACh兴奋-收缩藕联的结构基础是三联管、藕联因子是Ca2+血液1.血液组成、特性内环境与稳态→内环胞外(内环境指的是细胞外液)301(3个液,1个0:组织液、血浆、脑脊液、淋巴)动态平衡是稳态(内环境稳态是理化动态平衡)血液→组成:血浆+血细胞血浆蛋白:组成:白蛋白、纤维蛋白原、免疫球蛋白功能:形成胶体渗透压;参与血液凝固、抗凝和纤溶;抵御微生物入侵(与上面对应)“鲜蛋(纤维蛋白)用白(白蛋白)胶(胶渗)水凝固(鲜蛋作用)后、有免疫(球蛋白)抵抗作用”理化特征:亮晶晶大盐粒调节细胞内外水平衡(晶体渗透压由无机盐—NaCl形成,调节细胞内外水平衡);粘乎乎的鸡蛋清调节血管内外水平衡(胶体渗透压主要由白蛋白组成,调节血管内外水平衡)考试的时候99.99%的物质合成部位都在肝,只有EPO的合成在肾。
考研:西医综合生物化学知识点总结(3)

以下是考研为大家整理的“2019考研:西医综合生物化学知识点总结(3)”的相关内容,希望对考研的同学有所帮助,一起来看看吧!五、蛋白质结构与功能关系1、蛋白质一级结构是空间构象和特定生物学功能的基础。
一级结构相似的多肽或蛋白质,其空间构象以及功能也相似。
尿素或盐酸胍可破坏次级键β-巯基乙醇可破坏二硫键2、蛋白质空间结构是蛋白质特有性质和功能的结构基础。
肌红蛋白:只有三级结构的单链蛋白质,易与氧气结合,氧解离曲线呈直角双曲线。
血红蛋白:具有4个亚基组成的四级结构,可结合4分子氧。
成人由两条α-肽链(141个氨基酸残基)和两条β-肽链(146个氨基酸残基)组成。
在氧分压较低时,与氧气结合较难,氧解离曲线呈S状曲线。
因为:第一个亚基与氧气结合以后,促进第二及第三个亚基与氧气的结合,当前三个亚基与氧气结合后,又大大促进第四个亚基与氧气结合,称正协同效应。
结合氧后由紧张态变为松弛态。
六、蛋白质的理化性质1、蛋白质的两性电离:蛋白质两端的氨基和羧基及侧链中的某些基团,在一定的溶液PH条件下可解离成带负电荷或正电荷的基团。
2、蛋白质的沉淀:在适当条件下,蛋白质从溶液中析出的现象。
包括:a.丙酮沉淀,破坏水化层。
也可用乙醇。
b.盐析,将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,破坏在水溶液中的稳定因素电荷而沉淀。
3、蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失。
主要为二硫键和非共价键的破坏,不涉及一级结构的改变。
变性后,其溶解度降低,粘度增加,结晶能力消失,生物活性丧失,易被蛋白酶水解。
常见的导致变性的因素有:加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂、超声波、紫外线、震荡等。
4、蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm 处有特征性吸收峰,可用蛋白质定量测定。
5、蛋白质的呈色反应a.茚三酮反应:经水解后产生的氨基酸可发生此反应,详见二、3b.双缩脲反应:蛋白质和多肽分子中肽键在稀碱溶液中与硫酸酮共热,呈现紫色或红色。
西医综合经典考点已考的重要命题点

已考的重要命题点生理学部分(一)绪论1生理功能的神经调节、体液调节和自身调节2体内的反馈控制系统。
(二)细胞的基本功能1细胞膜的物质转运(原发性和继发性)、出胞与入胞。
2神经和骨骼肌细胞的生物电现象:细胞膜的静息电位和动作电位。
3.兴奋.兴奋性和可兴奋细胞(或组织)。
4.生物电现象产生的机制:静息电位和钾平衡电位。
动作电位和电压门控离子通道。
5.兴奋在同一细胞上的传导机制。
6.神经—骨骼肌接头的兴奋传递。
(三)血液1.细胞内液与细胞外液。
2.血液的组成和理化特性。
3.血细胞及其机能。
4.血液凝固与止血。
5.ABO和Rh血型系统及其临床意义。
(四)血液循环1.心脏的泵血功能:心动周期,心脏泵血的过程和原理,心脏泵血功能的评价和调节。
2.心肌的生物电现象和生理特性;心肌的生物电现象及其简要原理,心肌的电生理特性,自主神经对心肌生物电活动和收缩功能的影响。
3.血管生理:动脉血压相对稳定性及其生理意义.动脉血压的形成和影响因素。
静脉血压、中心静脉压及影响静脉回流的因素。
微循环。
组织液和淋巴液的生成和回流。
4.心血管活动的调节:心脏及血管的神经支配及作用,心血管中枢.颈动脉窦和主动脉弓压力感受性反射、化学感受性反射及其他反射。
5.冠脉循环和脑循环的特点和调节。
(五)呼吸1.肺通气:肺通气的动力和阻力。
肺容量.肺通气量和肺泡通气量。
2.呼吸气体的交换:气体交换的原理。
气体在肺的交换。
3.气体在血液中的运输:物理溶解、化学结合及它们的关系。
氧的运输及氧解离曲线。
二氧化碳的运输。
4.呼吸运动的调节:呼吸中枢及呼吸节律的形成。
呼吸的反射性调节。
外周及中枢化学感受器。
二氧化碳对呼吸的调节,低氧对呼吸的调节。
运动时呼吸的变化及其调节。
(六)消化与吸收1.概述:消化管平滑肌的特性。
2.口腔内消化:唾液分泌的调节。
3.胃内消化:胃液的性质、成分及作用。
胃液分泌的调节。
胃的容受性舒张和蠕动。
胃排空及其调节。
呕吐。
4.小肠内消化:胰液、胆汁的成分和作用,以及它们分泌和排出的调节。
西医综合之生理生化考点

一、生理学(一)绪论1.体液、细胞内液和细胞外液。
机体的内环境和稳态。
2.生理功能的神经调节、体液调节和自身调节。
3.体内反馈控制系统。
(二)细胞的基本功能1.细胞的跨膜物质转运:单纯扩散、经载体和经通道易化扩散、原发性和继发性主动转运、出胞和入胞。
2.细胞的跨膜信号转导:由G蛋白偶联受体、离子通道受体和酶偶联受体介导的信号转导。
3.神经和骨骼肌细胞的静息电位和动作电位及其简要的产生机制。
4.刺激和阈刺激,可兴奋细胞(或组织),组织的兴奋,兴奋性及兴奋后兴奋性的变化。
电紧张电位和局部电位。
5.动作电位(或兴奋)的引起和它在同一细胞上的传导。
6.神经-骨骼肌接头处的兴奋传递。
7.横纹肌的收缩机制、兴奋-收缩偶联和影响收缩效能的因素。
(三)血液1.血液的组成、血量和理化特性。
2.血细胞(红细胞、白细胞和血小板)的数量、生理特性和功能。
3.红细胞的生成与破坏。
4.生理性止血,血液凝固与体内抗凝系统、纤维蛋白的溶解。
5.ABO和Rh血型系统及其临床意义。
(四)血液循环1.心肌细胞(主要是心室肌和窦房结细胞)的跨膜电位及其简要的形成机制。
2.心肌的生理特性:兴奋性、自律性、传导性和收缩性。
3.心脏的泵血功能:心动周期,心脏泵血的过程和机制,心音,心脏泵血功能的评定,影响心输出量的因素。
4.动脉血压的正常值,动脉血压的形成和影响因素。
5.静脉血压、中心静脉压及影响静脉回流的因素。
6.微循环、组织液和淋巴液的生成与回流。
7.心交感神经、心迷走神经和交感缩血管神经及其功能。
8.颈动脉突和主动脉弓压力感受性反射、心肺感受器反射和化学感受性反射。
9.肾素-血管紧张素系统、肾上腺素和去甲肾上腺素、血管升压素、血管内皮生成的血管活性物质。
10.局部血液调节(自身调节)。
11.动脉血压的短期调节和长期调节。
12.冠脉循环和脑循环的特点和调节。
(五)呼吸1.肺通气的动力和阻力,胸膜腔内压,肺表面活性物质。
2.肺容积和肺容量,肺通气量和肺泡通气量。
考研西综生化讲义共114页

蛋白质变性后, 其溶解度降低、粘度增加、结晶能力消失、生物活性丧 失, 易被蛋白酶水解。
若蛋白质变性程度较轻, 去除变性因素后, 有些蛋白质仍可恢复或 部分恢复其原有的构象和功能, 称为复性。
11
核酸的化学组成与结构
29
酶的调节
酶的调节
酶促反应速率的 调节(快速调节)
酶含量的调节 (缓慢调节)
变构调节
化学修饰调节: 某些化学基团与酶的共价 结合与分离
酶原的激活 实际上酶活性中心暴露的过 程
酶蛋白合成的诱导和阻遏
酶蛋白的降解
溶酶体蛋白酶降解
依赖ATP和泛素的降解
30
生物化学
物质代谢及其调节
31
糖代谢
一、糖的无氧氧化
变构激活剂: 1,6-二磷酸果糖
(六)糖酵解的生理意义 糖酵解最主要的生理意义在于迅速提供能量, 这对肌收缩更为重要。
红细胞没有线粒体, 完全依赖糖酵解供应能量。
33
糖的有氧氧化 (一)葡萄糖循糖酵解途径分解为丙酮酸 (二)丙酮酸进入线粒体氧化脱羧生成乙酰CoA (1)关键酶:丙酮酸脱氢酶复合体 (2)辅酶:硫胺素焦磷酸酯(TPP)、硫辛酸、FAD.NAD十及CoA (三) 三羧酸循环(TCA循环)又称柠檬酸循环或Krebs循环
(四)加氢反应: 丙酮酸被还原为乳酸 所需的氢原子由NADH+H+提供,后者来自3-磷酸甘油醛的脱氢反应
32
(五)糖酵解的调节
调节糖酵解途径流量最重要的是6-磷酸果糖激酶-1的活性。
6-磷酸果糖激酶-1
变构抑制剂: ATP和柠檬酸
丙酮酸激酶
医学考研西综各科真题十大高频考点

TOP10病理高频考点及章节01急性炎症的病理学类型及其病理特点。
(四)炎症02病毒性肝炎的病因、发病机制及基本病理变化,肝炎的临床病理类型及其病理学特点。
(九)消化系统疾病03肿瘤的命名和分类,良性肿瘤和恶性肿瘤的区别,癌和肉瘤的区别。
(五)肿瘤04膜性肾小球病、微小病变性肾小球病、局灶性节段性肾小球硬化、膜增生性肾小球肾炎、系膜增生性肾小球肾炎的病因、发病机制、病理变化和临床病理联系。
(十一)泌尿系统疾病05炎症的概念、病因、基本病理变化及其机制(包括炎症介质的来源及其作用,炎细胞的种类和功能)。
(四)炎症06坏死的概念、类型、病理变化及结局。
(一)细胞和组织的适应与损伤07细胞适应(肥大、增生、萎缩、化生)的概念及分类。
(一)细胞和组织的适应与损伤08血栓形成的概念和条件,血栓的类型、形态特点、结局及对机体的影响。
(三)局部血液循环障碍09肿瘤的概念、肉眼形态、组织结构、异型性及生长方式。
肿瘤生长的生物学特征,转移的概念、途径、对机体的影响,侵袭和转移的机制。
(五)肿瘤10非霍奇金淋巴瘤的病理学类型、病理变化及其临床病理联系。
(十)淋巴造血系统疾病TOP10生理学高频考点及章节01细胞的电活动:静息电位,动作电位,兴奋性及其变化,局部电位。
(二)细胞的基本功能02心脏的泵血功能:心动周期,心脏泵血的过程和机制,心音,心输出量和心脏做功,心泵功能储备,影响心输出量的因素,心功能的评价。
(四)血液循环03跨细胞膜的物质转运:单纯扩散、易化扩散、主动转运和膜泡运输。
(二)细胞的基本功能04心血管活动的调节:神经调节、体液调节、自身调节和血压的长期调节。
(四)血液循环05O2和CO2在血液中的运输:存在和运输形式,氧解离曲线及其影响因素。
(五)呼吸06胰液和胆汁的性质、成分、作用及其分泌调节,小肠运动及其调节。
(六)消化和吸收07视觉:眼的折光系统及其调节,眼的折光异常,房水和眼内压;眼的感光换能功能,色觉及其产生机制;视敏度、暗适应、明适应、视野、视觉融合现象和双眼视觉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★历年考研西医综合试题重要知识点(按照7版教材顺序):(一)生物大分子的结构和功能Unit 1★属于亚氨基酸的是:脯氨酸(Pro)[蛋白质合成加工时被修饰成:羟脯氨酸]★蛋白质中有不少半胱氨酸以胱氨酸形式存在。
★必需氨基酸:甲硫氨酸(蛋氨酸Met)、亮氨酸(Leu)、缬氨酸(Val)、异亮氨酸(Ile)、苯丙氨酸(Phe)、赖氨酸(Lys)、色氨酸(Trp)、苏氨酸(Thr)★含有两个氨基的氨基酸:赖氨酸(Lys)、精苷酸(Arg)“拣来精读”★含有两个羧基的氨基酸:谷氨酸(Glu)、天冬氨酸(Asp)“三伏天”★含硫氨基酸:胱氨酸、半胱氨酸(Cys)、蛋氨酸(Met)★生酮氨基酸:亮氨酸(Leu)、赖氨酸(Lys)“同样来”★生糖兼生酮氨基酸:异亮氨酸(Ile)、苯丙氨酸(Phe)、酪氨酸(Tyr)、色氨酸(Trp)、苏氨酸(Thr)“一本落色书”★天然蛋白质中不存在的氨基酸:同型半胱氨酸★不出现于蛋白质中的氨基酸:瓜氨酸★含有共轭双键的氨基酸:色氨酸(Trp)[主要]、酪氨酸(Tyr)紫外线最大吸收峰:280nm★对稳定蛋白质构象通常不起作用的化学键是:酯键★维系蛋白质一级结构的化学键:肽键;维系蛋白质二级结构(α-螺旋、β-折叠、β-转角和无规卷曲)的化学键:氢键维系蛋白质三级结构(整条肽链中全部氨基酸残基的相对空间位置)的化学键:次级键(疏水键、盐健、氢键和Van der Waals力)维系蛋白质四级结构的化学键:氢键和离子键★蛋白质的模序结构(模体:具有特殊功能的超二级结构)举例:锌指结构、亮氨酸拉链结构★当溶液中的pH与某种氨基酸的pI(等电点)一致时,该氨基酸在此溶液中的存在形式是:兼性离子★蛋白质的变性:蛋白质空间结构破坏,生物活性丧失,一级结构无改变。
变性之后:溶解度降低,黏度增加,结晶能力消失,易被蛋白酶水解,紫外线(280nm)吸收增强。
★电泳的泳动速度取决于蛋白质的分子量、分子形状、所在溶液的pH值、所在溶液的离子强度:球状>杆状;带电多、分子量小>带电少、分子量大;离子强度低>离子强度高★凝胶过滤(分子筛层析)时:大分子蛋白质先洗脱下来★目前常用于测定多肽N末端氨基酸的试剂是:丹(磺)酰氯Unit 2★RNA与DNA的彻底分解产物:核糖不同,部分碱基不同(嘌呤相同,嘧啶不同)★黄嘌呤:核苷酸代谢的中间产物,既不存在于DNA中也不存在于RNA中。
★在核酸中,核苷酸之间的连接方式是:3’,5’-磷酸二酯键★DNA双螺旋结构:反向平行;右手螺旋,螺距为3.54nm,每个螺旋有10.5个碱基对;骨架由脱氧核糖和磷酸组成,位于双螺旋结构的外侧,碱基位于内侧;碱基配对原则为C≡G,A=T,所以A+G/C+T=1★生物体内各种mRNA:长短不一,相差很大★hnRNA含有许多外显子和内含子,在mRNA成熟过程中,内含子被剪切掉,使得外显子连接在一起,形成成熟的mRNA。
★含有稀有核苷酸的核酸:tRNA★tRNA三叶草结构(二级结构):5’端的一个环为DHU环;有一个反密码子环;有一个TψC环;3’端都是以CCA-OH结构结束的★核糖体rRNA构成:原核生物小亚基16S;大亚基23S + 5S真核生物小亚基18S;大亚基28S + 5.8S + 5S★核酶(ribozyme):具有催化功能的小RNA(无蛋白质及辅酶参与)核酸酶(RNA酶):具有催化功能的蛋白质★嘌呤和嘧啶都含有共轭双键,紫外线最大吸收值在260nm附近。
★DNA的变性(双链DNA解离为单链):增色效应(DNA在260nm处的吸光度增加,而最大吸收峰的波长不会发生转移)、溶液黏度降低。
★DNA的解链温度(Tm,即50%的DNA解离成单链时的温度):Tm值与DNA长短(分子越长,Tm值越大)和GC含量(GC含量越高,Tm值越大)相关;此外,如果DNA是均一的则Tm值范围较小,如果DNA是不均一的则Tm值范围较大;Tm值较高的核酸常常是DNA,而不是RNA。
Unit 3★单纯酶:仅由氨基酸残基构成(推论:并非所有酶的活性中心都含有辅酶)结合酶:酶蛋白+辅助因子(金属离子/辅酶)=全酶(只有全酶才有催化功能)[酶蛋白决定反应的特异性,辅酶决定反应的种类与性质]酶的活性中心:酶分子结合底物并发挥催化作用的关键性三维结构区(所有的酶都有活性中心)。
酶活性中心内的必需基团有两类:结合基团、催化基团。
必需基团:酶活性中心内的必需基团+酶活性中心外的必需基团(推论:并非酶的必需基团都位于活性中心内;并非所有的抑制剂都作用于酶的活性中心)★参与组成脱氢酶的辅酶:尼克酰胺(Vit PP);参与组成转氨酶的辅酶:吡哆醛参与组成辅酶Q:泛醌;参与组成辅酶A:泛酸;参与组成黄酶:核黄素(Vit B2)含有腺嘌呤的辅酶:NAD+、NADP+、FAD、辅酶A(都带“A”)★同工酶:指催化相同化学反应,但酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。
★人体各组织器官中乳酸脱氢酶(LDH)同工酶的分布:LDH1主要存在于心肌;LDH2主要存在于红细胞;LDH3主要存在于胰腺;LDH5主要存在于肝脏★通常测定酶活性的反应体系中:应选择该酶作用的最适pH;反应温度宜接近最适温度;合适的(足够的)底物浓度;合适的温育时间;有的酶需要加入激活剂。
★米氏方程:V=Vmax[S]/Km+[S](计算题要用到)当[S]<<Km时,反应速率与底物浓度呈正比;当[S]>>Km时,反应速率达最大速率。
Km值:酶促反应速率为最大速率一半时的底物浓度,是酶的特性常数之一(其他如:酶的最适温度、最适pH等均不是酶的特性常数),只与酶的结构、底物和反应环境有关,与酶的浓度无关(推论:同一种酶的各种同工酶的Km值常不同);Km值可用来表示酶对底物的亲和力,Km值愈小,酶对底物的亲和力愈大(举例:脑己糖激酶的Km值低于肝己糖激酶的Km 值血糖,因此在血糖浓度低时脑仍可摄取葡萄糖而肝不能)。
★竞争性抑制作用(竞争酶的活性中心):Vmax不变,Km值增大举例:丙二酸对琥珀酸脱氢酶的抑制作用;磺胺类药物对二氢叶酸合成酶的抑制(磺胺类药物的化学结构与对氨基苯甲酸相似)非竞争性抑制作用(结合酶活性中心外的必需基团):Vmax降低,Km值不变反竞争性抑制作用(与酶和底物形成的中间产物结合):Vmax和Km同时降低★酶的变构调节:变构剂与酶的调节部位(变构部位)可逆地结合,使酶发生变构而改变其催化活性(促进或抑制)。
受变构调节的酶称作变构酶或别构酶;导致变构效应的物质称为变构效应剂;有时底物本身就是变构效应剂。
代谢途径中的关键酶(限速酶)多受变构调节;变构酶催化非平衡反应(不可逆反应)。
变构酶分子常含有多个(偶数)亚基,酶分子的催化部位(活性中心)和调节部位有的在同一亚基内,有的不在同一亚基内(这种情况下才有催化亚基和调节亚基之分;推论:并非所有变构酶都有催化亚基和调节亚基)。
变构酶不遵守米氏方程;酶的变构调节是体内代谢途径的重要快速调节方式之一。
★酶的化学修饰调节(共价修饰):指酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性(无活性/有活性)的过程。
酶的化学修饰是体内快速调节的另一种重要方式。
磷酸化与脱磷酸化是最常见的共价修饰方式,属于酶促反应(由两种催化不可逆反应的酶所催化),消耗ATP。
(二)物质代谢及其调节Unit 4★糖酵解的三个关键酶:1.己糖激酶:促进:胰岛素;抑制:6-磷酸葡萄糖(反馈)、长链脂酰CoA(变构)2.6-磷酸果糖激酶-1(最重要):变构激活剂:AMP、ADP、1,6-二磷酸果糖和2,6-二磷酸果糖(其中,2,6-二磷酸果糖是最强的变构激活剂)变构抑制剂:ATP、柠檬酸3.丙酮酸激酶:变构激活剂:1,6-二磷酸果糖抑制:ATP、丙氨酸(肝内)、胰高血糖素★糖酵解过程中的两次底物水平磷酸化:第一次:1,3-二磷酸甘油酸→3-磷酸甘油酸(磷酸甘油酸激酶,可逆)第二次:磷酸烯醇式丙酮酸→丙酮酸(丙酮酸激酶,不可逆)★糖酵解过程中生成NADH+H+的反应:3-磷酸甘油醛→1,3-二磷酸甘油酸(3-磷酸甘油醛脱氢酶)NADH+H+的去向:用于还原丙酮酸生成乳酸(缺氧时);进入呼吸传递链氧化(有氧时)。
产能:获得ATP的数量取决于NADH进入线粒体的穿梭机制(2中可能):经苹果酸穿梭,一分子NADH+H+产生2.5ATP;经磷酸甘油酸穿梭,一分子NADH+H+产生1.5ATP ★糖酵解、糖异生、磷酸戊糖途径、糖原合成与分解代谢的交汇点:6-磷酸葡萄糖★磷酸甘油酸激酶:在糖酵解和糖异生过程中均起作用(可逆反应)★糖酵解的生理意义:1.迅速提供能量;2.机体缺氧或剧烈运动肌局部血流不足时,能量主要通过糖酵解获得;3.红细胞完全依赖糖酵解供应能量。
★三羧酸循环的主要部位:线粒体★丙酮酸脱氢酶复合体的辅酶有:硫胺素焦磷酸酯(TPP)、硫辛酸、FAD、NAD+、CoA ATP/AMP比值增加可抑制丙酮酸脱氢酶复合体;Ca2+可激活丙酮酸脱氢酶复合体。
丙酮酸→乙酰CoA的反应不可逆,因此乙酰CoA不能异生为糖,只能经三羧酸循环彻底氧化,或是合成脂肪酸;糖代谢产生的乙酰CoA通常不会转化为酮体。
★三羧酸循化“一二三四”归纳:1.一次底物水平磷酸化:琥珀酰CoA→琥珀酸(由琥珀酰CoA合成酶催化,生成的高能化合物为:GTP)2.二次脱羧:(1)异柠檬酸→α-酮戊二酸(异柠檬酸脱氢酶)(2)α-酮戊二酸→琥珀酰CoA(α-酮戊二酸脱氢酶复合体)3.三个关键酶:(1)柠檬酸合酶:变构激活剂:ADP;抑制:ATP、柠檬酸、NADH、琥珀酰CoA(2)异柠檬酸脱氢酶:激活:ADP、Ca2+;抑制:ATP(3)α-酮戊二酸脱氢酶复合体:激活:Ca2+;抑制:琥珀酰CoA、NADH4.四次脱氢:(1)异柠檬酸→α-酮戊二酸(异柠檬酸脱氢酶,生成NADH+H+)(2)α-酮戊二酸→琥珀酰CoA(α-酮戊二酸脱氢酶复合体,生成NADH+H+)(3)琥珀酸→延胡索酸(琥珀酸脱氢酶,生成FADH2)(4)苹果酸→草酰乙酸(苹果酸脱氢酶,生成NADH+H+)经氧化呼吸链产能:一分子NADH+H+生成2.5ATP;一分子FADH2生成1.5ATP ★琥珀酰CoA的代谢去路:1.糖异生:琥珀酰CoA→草酰乙酸(三羧酸循环)→磷酸烯醇式丙酮酸(磷酸烯醇式丙酮酸羧激酶)→糖异生2.有氧氧化:(接上式)磷酸烯醇式丙酮酸→丙酮酸→有氧氧化(三羧酸循环)3.合成其他物质:(接上式)丙酮酸→乙酰CoA(1)合成酮体;(2)合成胆固醇;(3)合成脂酸3.参与酮体的氧化:乙酰乙酸 + 琥珀酰CoA→琥珀酸 + 乙酰乙酰CoA4.合成血红素:琥珀酰CoA + 甘氨酸 + Fe2+ →血红素★草酰乙酸的代谢去路:见上述★乙酰CoA和酮体不能异生为糖,所以脂酸、生酮氨基酸不能进行糖异生;除生酮氨基酸外的氨基酸都可进行糖异生。