硫化

合集下载

第13章 硫化工艺

第13章 硫化工艺

2、了解常用硫化介质及特点
3、了解热硫化方法
4、掌握硫化条件的选取和确定
§13.1 正硫化及其测定方法
一.正硫化及正硫化时间
二.正硫化的测定方法
(一)物理-化学法 (二)物理性能测定法 (三)专用仪器法
一.正硫化及正硫化时间

正硫化:又称最宜硫化,指橡胶的主要性能达到 或接近最佳值的硫化状态。 正硫化时间:橡胶达到正硫化状态所需要的时间。 正硫化是一个范围,而不是一个点。 理论正硫化时间:扭矩最高点对应的时间; 工艺正硫化时间:扭矩达到M90对应的时间; 工程正硫化时间:生产上主要的性能指标达到最 佳值所需要的正硫化时间。对薄的橡胶制品(厚 度少于6mm),工程正硫化时间等于由硫化仪测 得的工艺正硫化时间,而厚度大于6mm时,胶料 的导热性差及骨架材料的复杂性使硫化时间的确 定变得复杂,一般取最小和最大硫化效应的时间 范围作为工程正硫化时间.
4T 4T + 2S +M H+ H + 2S ++ M
8
二.正硫化的测定方法
门尼值
(三)专用仪器法

门尼粘度计法:早期使用的 仪器。取T5为门尼焦烧时间, T35 为门尼硫化时间,则正硫 化时间为:
正硫化时间=T5+10(T35-T5)
转矩
△30 T5
△5
T35 硫化时间

硫化仪法 适用于薄制品
第13章 硫化工艺


硫化是橡胶加工的最后一个工艺,也是 最重要的工艺。 硫化温度、压力和时间是硫化的三要素。 硫化工艺的任务就是合理地选取和确定 正确的工艺条件。

一、本章主要内容
(一)正硫化及预测方法. (二)硫化条件的选取和确定. (三)硫化介质 (四)硫化方法

橡胶工艺----硫化篇

橡胶工艺----硫化篇

橡胶工艺----硫化篇1.硫化对橡胶性能和影响1)、定伸强度通过硫化,橡胶单个分子间产生交联,且随交联密度的增加,产生一定变形(如拉伸至原长度的200%或300%)所需的外力就随之增加,硫化胶也就越硬。

字串5对某一橡胶,当试验温度和试片形状以及伸长一定时,则定伸强度与MC(两个交联键之间橡胶分子的平均分子量)成反比,也就是与交联度成正比。

这说明交联度大,即交联键间链段平均分子量越小,定伸强度也就越高。

2)、硬度与定伸强度一样,随交联度的增加,橡胶的硬度也逐渐增加,测量硬度是在一定形变下进行的,所以有关定促强度的上述情况也基本适用于硬度。

字串93)、抗张强度抗张强度与定伸强度和硬度不同,它不随交联键数目的增加而不断地上升,例如使硫磺硫化的橡胶,当交联度达到适当值后,如若继续交联,其抗张强度反会下降。

在硫黄用量很高的硬质胶中,抗张强度下降后又复上升,一直达到硬质胶水平时为止。

字串54)、伸长率和永久变形橡胶的伸长率随交联度的增加而降低,永久变形也有同样的规律。

有硫化返原性的橡胶如天然橡胶和丁基橡胶,在过硫化以后由于交联度不断降低,其伸长率和永久变形又会逐渐增大。

5)、弹性未硫化胶受到较长时间的外力作用时,主要发生塑性流动,橡胶分子基本上没有回到原来的位置的倾向。

橡胶硫化后,交联使分子或链段固定,形变受到网络的约束,外力作用消除后,分子或链段力图回复原来构象和位置,所以硫化后橡胶表现出很大的弹性。

交联度的适当增加,这种可逆的弹性回复表现得更为显著。

2.硫化过程的四个阶段胶料在硫化时,其性能随硫化时间变化而变化的曲线,称为硫化曲线。

从硫化时间影响胶料定伸强度的过程来看,可以将整个硫化时间分为四个阶段:硫化起步阶段、欠硫阶段、正硫阶段和过硫阶段。

1)、硫化起步阶段(又称焦烧期或硫化诱导期)硫化起步的意思是指硫化时间胶料开始变硬而后不能进行热塑性流动那一点的时间。

硫起步阶段即此点以前的硫化时间。

在这一阶段内,交联尚未开始,胶料在模型内有良好的流动性。

【考研化学】第十章 硫化

【考研化学】第十章 硫化

★混气硫化:在硫化的第一阶段以热空气为介 质.在第二阶段再通入蒸汽作介质。胶鞋硫化 采用该方法。
(3)过热水
优点:既能保持较高的温度,又能赋予较 大的压力,因此常用于高压硫化场合。
缺点:热含量小,导热效率低,且温度不 易掌握均匀。 典型的用途是轮胎硫化时,将过热水充注 于水胎中,以保持内温。
(4)热水
二、欠硫阶段(预硫)
含义:焦烧期以后橡胶开始交联的阶段。 交联程度逐渐增加,橡胶的物理机械性能逐 渐上升。制品轻微欠硫时,强度、弹性、伸长率 未达到预期的水平,但抗撕裂性、耐磨性等却优 于正硫化胶料。
欠料的配方。
三、正硫阶段
含义:橡胶的交联反应达到一定的程度,此 时的各项物理机械性能均达到或接近最佳值,其 综合性能最佳。 正硫化温度
正硫化时间取决于制品性能要求和断面厚薄, 需考虑到“后硫化”。
抗张强度最高值略前的时间
正硫化时间=
强伸积(抗张强度×伸长率) 最高值的时间
四、过硫阶段
含义:正硫化以后继续硫化便进入过硫阶段。 氧化及热断链反应占主导地位,胶料性能下降。 硫化返原;断链多于交联
非返原性:交联继续占优势
过硫阶段胶料的性能变化情况反映了硫化平 坦期的长短。超促进剂,交联键能低,硫化温度 高,则平坦期短。
(1)饱和蒸汽
优点:热含量大、导热效率高、成本低、 压力和温度易调节。 缺点:加热温度要受到压力的牵制;对硫 化容器内壁有较大腐蚀作用。
(2)热空气
优点: 加热温度不受压力影响,比较干燥, 不含水分,产品表面光滑,外观漂亮,而且不 受罐壁腐蚀的影响。 缺点: 含热量低,导热效率很低,硫化时 间长,同时含有大量氧气,在高温高压下易使 制品氧化。
1.中间化合物的生成

促进剂的硫化曲线

促进剂的硫化曲线

促进剂的硫化曲线
硫化曲线指的是在橡胶硫化过程中,不同时间和温度下橡胶中硫化程度的变化曲线。

硫化是橡胶加工工艺中非常重要的步骤,通过硫化可以使橡胶获得优良的弹性、耐热、耐腐蚀等性能。

在硫化曲线中,通常可以分为几个阶段:
1. 延迟期(t0到t1):橡胶在橡胶-硫混合物中,尚未出现硫
化反应,此时橡胶材料保持弹性。

2. 加速期(t1到t2):在此阶段,橡胶中的硫化反应开始加速,硫化速度逐渐增加,橡胶材料的硫化程度也逐渐增加。

橡胶开始变得发硬。

3. 高速期(t2到t3):硫化反应在此阶段达到最高速度,橡
胶材料的硫化程度迅速增加。

此时橡胶开始形成网络结构,整体硬化。

4. 减速期(t3到t4):硫化反应速度开始减慢,硫化程度的
增加趋于平缓。

橡胶变得更加耐磨和耐热。

5. 稳定期(t4到t5):硫化反应基本结束,硫化程度变化很小。

橡胶材料的硫化程度达到最高水平。

不同类型的橡胶和硫化体系会有不同的硫化曲线特征,这取决于使用的促进剂、硫化温度和时间等因素。

硫化曲线的了解有助于合理选择硫化条件,以获得符合要求的橡胶制品。

橡胶硫化原理

橡胶硫化原理

橡胶硫化原理
橡胶硫化是一种将天然橡胶或合成橡胶转化为具有较好弹性和耐磨性的过程。

它的原理是通过将硫元素添加到橡胶分子链中,从而形成交叉链结构。

硫化剂通常是硫或含有硫的化合物,如硫醇、硫含量较高的化合物和多硫化物。

在硫化过程中,硫与橡胶中的双键发生反应,使橡胶链之间形成交联。

这种交联结构能够增强橡胶的强度、耐磨性和耐老化性。

硫化反应需要在适当的温度和压力下进行。

通常,使用硫化机或硫化炉将橡胶制品置于高温和压力下进行硫化。

在硫化过程中,硫与橡胶中的双键发生加成反应,形成硫醇中间体,然后再与其他硫醇或橡胶分子链发生反应,形成交链结构。

交联结构的形成使橡胶变得坚固耐用。

交联结构可以限制橡胶分子链的自由运动,从而提高橡胶的强度和弹性。

另外,交联还能够使橡胶对温度、化学品和老化等外界环境的变化具有更好的耐性。

橡胶硫化是橡胶工业中一项重要的工艺,它使橡胶制品具有更广泛的应用。

硫化过程中的交联结构为橡胶制品提供了优良的性能,使其能够在汽车、轮胎、皮革制品、密封件和电气绝缘材料等领域发挥重要作用。

硫化基本原理及硫化过程中常见的问题资料

硫化基本原理及硫化过程中常见的问题资料
所以我们在确定硫化工艺时要保证硫化时 间处于正硫化阶段,不能过硫。否则产品性能会 急剧下降。
Page 9
1.3 硫化三要素
硫化三要素
硫化温度 硫化压力
硫化时间
硫化三要素对产品硫化质量有决定性的影响
Page 10
1.3 硫化三要素—硫化的温度
直接影响到硫化速度和产品质量。硫化温度高,硫 化速度快,生产效率高,易生成较多的低硫交联键; 反之,硫化速度慢,生产效率低,易生成较多的多 硫交联键。
硫 化的定 义 硫 化的四个阶段 硫 化的三要素
第二部分:常见问题及解决办法
橡胶与金属粘接不牢 气泡 炸边 缺胶、硫 痕 缩孔
Page 2
第一部分 硫化的基本原理
1.1 硫化的定义
通俗的说法 硫化就是从生胶变成熟胶的过程;
教科书上的定义 硫化是指橡胶线型结构的大分子链通过化
学交联而构成三维网状结构的大分子的化学变 化过程,并使胶料的物理机械性能及其他性能 随之发生根本变化的过程。也就是从塑性胶变 成弹性胶的过程。
通常在硫化时,随着硫化压力的增大,硫化胶的很多物理 机械性能,如强度、动态模数、耐疲劳性、耐磨性及与骨 架材料的粘着性等相应提高。但过高的压力反而使橡胶的 某些性能降低,是因为高压同高温一样会加速橡胶分子的 热解作用。
一般来说,对硫化压力的选取根据胶料的配方、可塑性和产品 结构等来决定,在工艺上遵循的原则是:塑性大,压力宜小; 产品厚、层数多、结构复杂,压力宜大;薄制品压力宜低,甚 至可用常压。
硫化效应可以简单的理解为在给定的硫化温度、 压力和时间的条件下橡胶硫化所达到的效果;
一般来说,要达到相同的硫化效应,提升硫化温 度,则必须减少硫化时间,这也就是我们现在实 行的高温快速硫化;

硫化的名词解释

硫化的名词解释

硫化的名词解释硫化是一个在化学领域中常见的术语,它指的是将硫元素与其他物质发生化学反应,形成硫化物的过程。

硫化物是由硫和其他元素组成的化合物,其形成的途径多种多样,涵盖了不同的化学反应和条件。

1. 自然硫化物的形成自然界中有许多硫化物形成的例子。

一个著名的实例是黄铁矿(FeS2),即常见的黄铁矿石。

黄铁矿是地壳中最常见的硫化物之一,其形成是由于地下热液与铁和硫元素相遇并反应。

类似地,许多其他硫化物在地质学过程中也会自然形成,如黄铜矿(CuFeS2)、辉锑饰石(Sb2S3)等。

2. 工业硫化的应用硫化也在工业上得到广泛应用。

其中一个常见的应用是在橡胶工业中。

橡胶在制造过程中需要和硫化剂反应,形成硫化橡胶,以提高弹性、耐磨性和耐湿性。

硫化橡胶还具有抗氧化性能和耐候性,可用于制造轮胎、密封件等。

另一个重要的应用领域是冶金工业。

硫化物可以用于提取金属,如铜矿石中的黄铜矿。

在冶金过程中,黄铜矿首先经过破碎和浮选处理,然后通过热加工和氨浸出来提取金属铜。

此外,硫化还在化学合成中发挥重要作用。

硫化作为一种强还原剂,可以用于许多有机合成反应中。

硫化剂常用于还原醛、酮等功能团。

3. 硫化的环境影响虽然硫化在许多领域中应用广泛,但是硫化物也可能对环境产生负面影响。

硫化物在一些工业过程中会产生具有刺激性臭味的硫化氢气体(H2S)。

硫化氢不仅对人体健康有害,还对大气环境造成污染。

此外,硫化物还会在自然界中形成硫酸,导致酸雨的形成。

酸雨对大气环境、水源和生态系统都会造成很大危害。

因此,减少硫化物的排放是保护环境的重要任务之一。

在一些工业生产中,采取合适的净化措施以降低硫化物排放量已成为一项紧迫的工作。

4. 硫化的潜在进展随着科学技术和化学研究的不断发展,硫化在许多领域的应用可能会继续扩展。

例如,硫化物在能量存储和储氢技术中展现出巨大的潜力。

硫化物类化合物可以用作电池材料,储存大量的电能。

此外,硫化化合物还可以作为储氢材料,以便将氢气用作清洁能源。

硫化基本原理及硫化过程中常见的问题培训资料

硫化基本原理及硫化过程中常见的问题培训资料


人类被赋予了一种工作,那就是精神 的成长 。

企业发展需要的是机会,而机会对于 有眼光 的领导 人来说 ,一次 也就够 了。22. 3.2422. 3.24

发展和维护他们的家;至于女子呢?则 是努力 维护家 庭的秩 序,家 庭的安 适和家 庭的可 爱。

犹豫不决固然可以免去一些做错事的 可能, 但也失 去了成 功的机 会。
硫化温度的高低决定于胶料配方中的橡胶品种和硫 化体系,也与产品形状、大小、厚薄等因素有关。
过高的温度会引起橡胶分子链的裂解和发生硫化返 原现象,使性能下降。
11
影响硫化温度的因素
A、胶种 B、硫化体系(同种胶料采用不同的硫化剂时,性能水平有很大差异) C、硫化方法(现在一般采用高温硫化,即中模部分温度150℃以上)

时间和结构。00:2322.3.2422.3.24

南怀瑾说:“心中不应该被蓬茅堵住, 而应海 阔天空 ,空旷 得纤尘 不染。 道家讲 ‘清虚’ ,佛家 讲空, 空到极 点,清 虚到极 点,这 时候的 智慧自 然高远 ,反应 也就灵 敏。”00: 2300:2 3:0222. 3.2400: 23

再实践。2022年3月24日星期四12时23 分2秒

世上并没有用来鼓励工作努力的赏赐 ,所有 的赏赐 都只是 被用来 奖励工 作成果 的。

除了心存感激还不够,还必须双手合 十,以 拜佛般 的虔诚 之心来 领导员 工。202 2年3月 24日12 时23分 00:23:0 2

预防是解决危机的最好方法。
气泡的主要原因
橡胶表皮气泡产生原因一般为胶料本身夹裹气体,加压过程中不能被 排出模具外,随胶料一起硫化,从而在制品表面出现气泡 海绵气泡也是因为模具型腔局部滞留气体,从而影响传热和胶料受热 硫化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微波橡胶硫化技术原理及优点1. 橡胶硫化的原理及微波橡胶硫化的优点生橡胶受热变软,遇冷变硬、发脆,不易成型,容易磨损,易溶于汽油等有机溶剂,分子内具有双键,易起加成反应,容易老化。

为改善橡胶制品的性能,生产上要对生橡胶进行一系列加工过程,在一定条件下,使胶料中的生胶与硫化剂发生化学反应,使其由线型结构的大分子交联成为立体网状结构的大分子,使从而使胶料具备高强度、高弹性、高耐磨、抗腐蚀等等优良性能。

这个过程称为橡胶硫化。

一般将硫化过程分为四个阶段,诱导-预硫-正硫化-过硫。

为实现这一反应,必须外加能量使之达到一定的硫化温度,然后让橡胶保温在该硫化温度范围内完成全部硫化反应。

橡胶硫化可以采用各种方法。

传统方法是将胶料采用蒸汽或远红外加热等硫化工艺。

但由于加热温度是由介质外部向内部慢慢地热传导,因为橡胶物料是不良导热材料,对橡胶来说加热依靠物料表面向里层其传热速率是很慢的,大部分时间耗费在让橡胶达到硫化温度上。

所以加热时间长、效率低、硫化均匀性不好。

尤其旧工艺为消除橡胶粘连而使用硅酸镁(滑石粉),致使橡胶生产车间中粉尘弥漫,空气中粉尘含量远超过国家环保部门规定的标准。

而且橡胶整体硫化状态并不理想,这是因为,常规热传导情况下,被硫化胶料表面升温与里层的时间不一,出现硫化不均匀的现象。

微波加热与传统加热方式完全不同,是将微波能量穿透到被加热介质内部直接进行整体加热,因此加热迅速,高效节能,大大缩短了橡胶硫化时间,使其加热均匀性更好,硫化质量较高。

可以在较短的时间内越过橡胶极易发生粘连的诱导阶段进入预硫阶段,革除了旧工艺过程中使用滑石粉的操作,达到环保要求,该生产工艺可使大多数生产工序集中在一条生产线上完成,自动化程度高,能耗低,节省人力,生产稳定,产品质量均匀等,大大改善了生产劳动条件。

2. 微波橡胶硫化技术的应用现状:微波橡胶硫化技术自20世纪70年代问世以来得到迅速推广,特别是橡胶微波连续硫化生产线在橡胶挤出制品生产中的推广应用,其发展之迅速是史无前例的。

日本是微波连续硫化技术发展较快的国家,至今已累计生产450多条微波连续硫化生产线,并向世界各国出口100余条。

微波硫化技术在国外工业化国家已成为普遍的生产方式。

不仅广泛用于各种挤压胶条、胶管的硫化预热,而且已用于各类轮胎的硫化预热。

我国已从德国、日本、西班牙、英国等国家引进了几十条微波密封条连续硫化生产线。

但进口的微波硫化生产线也存在很多问题,如价格高、维修成本高,微波箱体设计不合理、微波效率低,控制的自动化程度不够。

随着国内微波能应用技术的发展,国内相继仿造和改造了多条采用微波硫化橡胶工艺的设备,有些引进设备的厂家与微波能应用厂家合作,开始着手对进口橡胶硫化设备所存在的问题进行改造,使其产品质量和产量有了较大提高。

2000年以来随着多管型微波硫化设备的开发成功,使得设备成本及维修难度降低,目前橡胶的微波硫化技术已日益走向成熟,设备不断完善,向着高度自动化、省能源、减少环境污染方向努力,以满足广大用户不断提高的需求,有着巨大潜力和广阔的市场。

橡胶硫化工艺方法一、传统橡胶硫化工艺1、影响硫化工艺过程的主要因素:硫磺用量。

其用量越大,硫化速度越快,可以达到的硫化程度也越高。

硫磺在橡胶中的溶解度是有限的,过量的硫磺会由胶料表面析出,俗称“喷硫”。

为了减少喷硫现象,要求在尽可能低的温度下,或者至少在硫磺的熔点以下加硫。

根据橡胶制品的使用要求,硫磺在软质橡胶中的用量一般不超过3%,在半硬质胶中用量一般为20%左右,在硬质胶中的用量可高达40%以上。

硫化温度。

若温度高10℃,硫化时间约缩短一半。

由于橡胶是不良导热体,制品的硫化进程由于其各部位温度的差异而不同。

为了保证比较均匀的硫化程度,厚橡胶制品一般采用逐步升温、低温长时间硫化。

2、硫化时间:这是硫化工艺的重要环节,时间过短,硫化程度不足(亦称欠硫)。

时间过长,硫化程度过高(俗称过硫)。

只有适宜的硫化程度(俗称正硫化),才能保证最佳的综合性能二、橡胶硫化工艺方法按硫化条件可分为冷硫化、室温硫化和热硫化三类。

1、冷硫化可用于薄膜制品的硫化,制品在含有2%~5%氯化硫的二硫化碳溶液中浸渍,然后洗净干燥即可。

2、室温硫化时,硫化过程在室温和常压下进行,如使用室温硫化胶浆(混炼胶溶液)进行自行车内胎接头、修补等。

3、热硫化是橡胶制品硫化的主要方法。

根据硫化介质及硫化方式的不同,热硫化又可分为直接硫化、间接硫化和混气硫化三种方法。

①直接硫化,将制品直接置入热水或蒸汽介质中硫化。

②间接硫化,制品置于热空气中硫化,此法一般用于某些外观要求严格的制品,如胶鞋等。

③混气硫化,先采用空气硫化,而后再改用直接蒸汽硫化。

此法既可以克服蒸汽硫化影响制品外观的缺点,也可以克服由于热空气传热慢,而硫化时间长和易老化的缺点。

三、橡胶硫化工艺:橡胶在未硫化之前,分子之间没有产生交联,因此缺乏良好的物理机械性能,实用价值不大。

当橡胶加入硫化剂以后,经热处理或其他方式能使橡胶分子之间产生交联,形成三维网状结构,从而使其性能大大改善,尤其是橡胶的定伸应力、弹性、硬度、拉伸强度等一系列物理机械性能都会大大提高。

橡胶大分子在加热下与交联剂硫磺发生化学反应,交联成为立体网状结构的过程。

经过硫化后的橡胶称硫化胶。

硫化是橡胶加工中的最后一个工序,可以得到定型的具有实用价值的橡胶制品。

四、注压成型硫化工艺:普通模压与注压最明显的区别在于前者胶料是以冷的状态充入模腔的,而后者则是将胶料加热混合,并在接近硫化温度下注入模腔。

因而,在注压过程中,加热模板所提供的热量仅仅只用于维持硫化,它能很快将胶料加热到190℃-220℃。

在模压过程中,由加热模板所提供的热量首先要用于预热胶料,由于橡胶的导热性能差,如果制品很厚,热量要传导到制品中心需要较长的时间。

采用高温硫化也可在一定程度上缩短操作时间,但往往导致靠近热板的制品边缘出现焦烧。

采用注压法硫化,可以缩短成型周期,实现自动化操作,这对大批量生产最为有利。

注压还具有以下优点:可以省去半成品准备、起模和制品修边等工序;可以生产出尺寸稳定、物理机械性能优异的高质量产品;减少硫化时间,提高生产效率,减少胶料用量,降低成本,减少废品,提高企业经济效益。

五、注压成型硫化工艺注意事项:采用合理的螺杆转速、背压,控制适当的注射机温度。

一般地,应保持出料口胶温和控制循环温度之差不大于30度为宜。

注射机螺杆的用途是在选定的和均匀的温度下为每一循环制备足够量的胶料;它明显地影响着注射机的产量。

背压是通过放慢注射缸中出油口的流量而产生的,并对注射机所射出胶料,对注射油缸的推挤作用进行限制。

实践中,背压只会稍微增加对胶料的剪切,而不会引起硫化制品物理性能的降低。

喷嘴的设计:喷嘴连接注射机头和模具,同时对热平衡有一定作用。

经过喷嘴的压力损失会经由注射而转换成为热量。

胶料绝不允许在这个部位硫化。

因此,选择合适的喷嘴直径非常重要,它影响着喷嘴部位的摩擦生热、胶料注射时所需要的压力和充模时间。

合适的模具温度,最佳的硫化条件。

在选择好胶料的最佳配合之后,重要的就是注射成型条件与硫化条件的相互配合。

注压成型与模压成型相比,由于模具表面、内部温度分布不同,要实现良好的硫化就必须对温度进行高精度控制,使模具表面、内部同时达到最佳硫化条件。

高温会增大橡胶的收缩率,但二者关系是线性的,在生产前应有充分的估计。

此外,就成型压力而言,高压成型是极为有利的,因为压力与收缩成反比关系。

安全合理的胶料配方设计。

对于进行注压硫化成型的胶料,要求其具有以下特性:胶料的门尼焦烧时间应当尽可能的长,以获得最大的安全性。

通常,门尼焦烧时间应比胶料在机筒中的停留时间长2倍。

硫化速度快,通过对不同胶料硫化体系的合理选择,添加合适的促进剂,使胶料在注压硫化时有令人满意的效率。

流动性良好,良好的流动性能减少胶料的停留时间,减少注压时间,并提高防焦烧能力。

六、氮气硫化工艺采用充氮气硫化的主要优点是节能和延长胶囊寿命,可节省蒸汽80%,胶囊使用寿命可延长1倍。

轮胎在硫化过程中要消耗大量热能和电能,因此开发和推广节能硫化工艺意义重大。

由于氮气分子量小、热容很小,氮气充入轮胎胶囊内腔时,不会吸热而引起温度降低,也不易造成胶囊氧化裂解破坏。

七、氮气硫化的工艺特点先通高温高压蒸汽,若干分钟后切换通入氮气,利用充氮硫化的“保压变温”工艺硫化至结束。

因为最初通入几分钟蒸汽的热量足够保持硫化一条轮胎,理论上只要在完成硫化之前温度不降到150℃以下即可。

但是,采用氮气硫化时,首先通入的是高温高压蒸汽,会造成上下胎侧的温差,要消除上下胎侧的硫化温差,必须合理布置硫化介质喷射的位置,改进密封和热工管路系统。

硫化用氮气的纯度要求达99.99%,最好达到99.999%,并建议企业自配制氮系统,以降低使用成本。

氮气纯度不够,会影响胶囊的使用寿命。

将氮气硫化的“保压变温”硫化原理应用于传统循环过热水硫化工艺的改造,人们又开发出了用高温高压蒸汽加过热水的硫化工艺取代常规的循环过热水硫化工艺。

硫化时,先通入高温高压蒸汽,若干分钟后切换通入循环过热水,再过若干分钟后关闭回水阀停止循环,直到利用潜热硫化至结束。

采用这种新的加热硫化方法,据理论计算,其能耗仅是传统硫化工艺方法的1/2。

八、变温硫化工艺变温硫化工艺过程的关键因素根据成品物理性能试验和生产经验,缩短硫化时间。

这在一定程度上减轻了过硫化程度。

采用高温硫化。

近年来小型轮胎硫化工艺逐渐向高温硫化方向发展,且考虑后硫化效应,硫化时间短,对减轻过硫和提高硫化程度的均匀性有一定作用。

进行硫化测温,找到制品中的最慢硫化点,以该点为依据来确定硫化时间,效果较前两种好。

利用该法可不同程度地提高硫化效率,改善硫化程度的均匀性。

但由于实际生产中只考察外温,轮胎各部位的实际温度并不确知,加上并不是每次温度固定不变,因此根据测温计算出的结果与实际硫化的结果有较大误差。

橡胶厚制品硫化过程温度场模拟仿真与预测表明,温度不均匀是造成轮胎外胎硫化程度不均匀的主要因素。

橡胶工业普遍认为外温恒定是保证质量的重要条件,从设备上要千方百计地实现恒温。

这对非厚橡胶制品来说是正确的,而对轮胎外胎等厚橡胶制品则不然。

轮胎在模型中加热硫化,热经由模型传到外胎各部位。

橡胶是热的不良导体,温升慢,加热早期外胎各部位存在明显的温度梯度,经过较长时间才能达到平衡。

相关文档
最新文档