面板数据模型与应用
面板数据模型与应用

经济增长的面板数据模型分析通常涉及对国家或地区GDP、人均GDP、工业增加值等经济指标的时间序列数 据进行建模,以揭示经济增长的规律和趋势。通过面板数据模型,可以分析不同国家或地区经济增长的差异
及其原因,探究经济增长与投资、劳动力、技术进步等变量之间的关系,为政策制定提供科学依据。
案例二:劳动力市场的面板数据模型分析
面板数据模型的改进与创新
模型优化
针对现有面板数据模型的不足,未来将不断对其进行 优化,以提高模型的预测精度和稳定性。
新型面板数据模型的提出
随着统计分析技术的发展,将会有更多新型的面板数据 模型被提出,以满足不同领域的数据分析需求。
面板数据模型的应用拓展
跨学科应用
面板数据模型将在更多学科领域得到应用, 如经济学、社会学、生物学等,以解决各学 科领域的实际问题。
特点
面板数据模型能够同时考虑时间和个 体效应对数据的影响,提供更全面的 分析视角,有助于揭示数据背后的复 杂关系。
面板数据模型的适用场景
1 2 3
经济领域
面板数据模型在经济领域应用广泛,如分析国家 、地区或行业的经济增长、消费、投资等数据。
社会学领域
社会学研究常涉及长时间跨度和多个观察对象的 数据,面板数据模型适用于分析社会现象和趋势 。
面板数据模型与应 用
contents
目录
• 面板数据模型概述 • 面板数据模型的类型 • 面板数据模型的估计方法 • 面板数据模型的应用领域 • 面板数据模型的应用案例 • 面板数据模型的未来发展与展望
01
CATALOGUE
面板数据模型概述
定义与特点
定义
面板数据模型是一种统计分析方法, 用于分析时间序列和截面数据的结合 ,即同时包含多个个体在一段时间内 的数据。
面板数据模型在经济研究中的应用研究

面板数据模型在经济研究中的应用研究随着数字化时代的到来,数据成为了我们获取信息和认知经验的主要途径之一。
尤其是在经济学领域,越来越多的研究者开始将数据分析和计量经济学技术应用到实际的研究中。
其中,面板数据模型是一种非常常见的研究工具,它将多个时间点和多个个体之间的数据汇总到一个数据集中进行分析,可以充分利用数据的横向比较和纵向比较来提高研究的准确性和可信度。
本文将介绍面板数据模型在经济研究中的应用,并阐述它的优点和局限性。
一、面板数据模型的基本概念面板数据模型也被称为“长期跟踪数据模型”,是一种将多个时间点和多个个体之间的数据结合到一个数据集中分析的模型。
在面板数据模型中,时间是面板数据的第一维,个体是面板数据的第二维。
它可以用来把控制时间和个体差异的因素,并且得到更为精确的估计值。
面板数据模型在经济学领域中的应用越来越广泛。
二、面板数据模型在经济研究中的应用1. 解决经验模型的偏误问题传统的截面数据分析和时间序列分析都存在估计的偏误问题,因为它们无法处理不同的个体之间的异质性以及不同时间之间的异质性。
因此,面板数据模型被广泛应用,可解决这种偏误问题。
例如,当研究房价与犯罪率之间的关系时,面板数据模型包括了所有街区的数据,并考虑了时间和街区之间的差异来解决异质性问题。
2. 增加实证分析的不确定性面板数据模型可以用来分析关于发展和财政政策影响的问题。
例如,如果我们想知道GDP是否增长导致了财政赤字减少,我们可以运用面板数据模型并掌握全球数据和多个时间点为基础构建模型。
这样构建的模型可以降低不确定性和提高实证分析的准确性。
3. 评估政策影响的效果面板数据模型的应用还可以帮助评估政策对经济变量的影响。
例如,政策制定者可以利用面板数据分析平房项目对经济改革的影响,监控执行效果,并作出必要的调整。
三、面板数据模型的优点1. 提高模型的准确性有比较多的时间序列和更多的观测值,面板数据集具有更高的准确性,并且还可以用来确认模型的预测和效果。
面板数据模型与stata软件应用

政治学领域
政治学研究中,面板数据模型可用于分析国 家治理、政策效果评估等。
环境科学领域
环境科学研究中,面板数据模型可用于分析 环境变化、生态保护等。
面板数据模型与OLS模型的比较
OLS模型
OLS模型是经典回归分析方法,适用于横截面数据,通过最小化残差平方和来估计参数。OLS模型简单易用,但 无法控制个体和时间固定效应,可能导致估计偏误。
04
Stata软件在面板数据模型中的 应用
数据导入与整理
导入数据
使用`import delimited`命令将数据导入 Stata中,支持多种文件格式,如CSV、 Excel等。
数据清洗
检查数据中的缺失值、异常值和重复值,并进行相 应的处理。
数据转换
对变量进行必要的转换,如对数转换、标准 化等。
面板数据模型的估计
模型选择
01
根据研究目的和数据特点选择合适的面板数据模型,如固定效
应模型、随机效应模型等。
模型估计
02
使用Stata提供的命令(如`xtreg, fe`或`xtreg, re`)对模型进行
估计。
结果解读
03
解释模型估计结果,包括系数、显著性水平等。
模型诊断与检验
异方差性检验
使用Stata提供的命令(如`estat hettest`)对模型进行异方差性 检验。
面板数据模ห้องสมุดไป่ตู้与Stata软件应 用
• 面板数据模型概述 • Stata软件介绍 • 面板数据模型的估计方法 • Stata软件在面板数据模型中的应用 • 面板数据模型的案例分析 • Stata软件在面板数据模型中的进阶
应用
01
面板数据模型概述
面板数据模型

面板数据模型引言概述:面板数据模型是一种经济学和统计学领域常用的数据分析方法,它能够有效地处理时间序列和横截面数据的结合。
本文将介绍面板数据模型的概念、应用领域以及其在实证研究中的优势。
一、概述面板数据模型1.1 面板数据模型的定义面板数据模型是一种将时间序列和横截面数据结合起来的统计模型。
它包含了多个个体(cross-section)在多个时间点(time period)上的观测数据。
面板数据模型可以分为固定效应模型和随机效应模型两种类型。
1.2 面板数据模型的应用领域面板数据模型广泛应用于经济学、金融学、社会科学等领域的实证研究中。
它可以用于分析个体间的差异、时间变化以及两者之间的相互作用。
面板数据模型可以匡助研究者更准确地捕捉数据的动态特征,从而提高研究的可信度和准确性。
1.3 面板数据模型的优势面板数据模型相比于传统的时间序列或者横截面数据模型具有以下优势:(1)更多的信息:面板数据模型结合了时间序列和横截面数据,可以提供更多的信息,从而增加了研究的可靠性。
(2)更强的效率:面板数据模型可以利用个体间和时间间的差异,提高模型的效率和准确性。
(3)更广泛的应用:面板数据模型可以适合于各种数据类型,包括面板数据、平衡面板数据和非平衡面板数据等。
二、固定效应模型2.1 固定效应模型的基本原理固定效应模型假设个体间存在不可观测的个体固定效应,即个体特征对因变量的影响在模型中是固定的。
通过控制个体固定效应,固定效应模型可以更准确地估计其他变量对因变量的影响。
2.2 固定效应模型的估计方法固定效应模型的估计方法包括最小二乘法(OLS)和差分法(Difference-in-Differences)。
最小二乘法可以通过控制个体固定效应来估计其他变量的系数。
差分法则通过个体间的差异来估计因果效应。
2.3 固定效应模型的应用案例固定效应模型可以应用于许多实证研究中,例如研究个体间的收入差距、教育对收入的影响等。
面板数据模型 (2)

面板数据模型1. 引言面板数据模型(Panel Data Model)是一种针对面板数据分析的统计模型。
面板数据也称为纵向数据或者长期追踪数据,在经济学和社会科学领域广泛应用。
面板数据由包含多个个体和多个时间点的观测数据组成,可以提供比截面数据(cross-sectional data)更多的信息。
本文将介绍面板数据模型的基本概念、应用领域、建模方法和相关统计分析技术。
2. 面板数据模型的基本概念2.1 面板数据的构成面板数据由个体维度和时间维度两个维度构成。
个体维度指的是一组被观察的个体,可以是人、公司、地区等;时间维度指的是一段时间内的观测点,可以是年、月、季度等。
面板数据是在个体和时间维度上的交叉观测数据。
2.2 面板数据的类型面板数据分为平衡面板数据和非平衡面板数据。
平衡面板数据指的是所有个体在每个时间点上都有观测值;非平衡面板数据指的是个体在某些时间点上缺少观测值。
2.3 面板数据模型的优势相比于截面数据和时间序列数据,面板数据有以下几个优势:•能够控制个体固定效应:面板数据模型可以减少个体固定效应的干扰,提高模型的解释能力;•能够捕捉个体间的异质性:面板数据模型可以捕捉个体之间的差异和变动,提供更全面的分析结果;•提供更多的信息和数据点:面板数据相对于时间序列数据,提供了更多的观测点,可以提高统计分析的准确性。
3. 面板数据模型的应用领域面板数据模型在经济学、金融学、社会学等领域广泛应用,具体领域包括但不限于:•劳动经济学:分析个体的劳动供给行为和工资决定因素;•金融学:评估公司和证券的风险和收益;•医学研究:研究药物治疗的效果和副作用;•教育经济学:评估教育政策的效果和影响;•发展经济学:分析发展中国家的经济增长和贫困问题。
4. 面板数据模型的建模方法面板数据模型的建模方法主要包括固定效应模型(Fixed Effects Model)和随机效应模型(Random Effects Model)。
面板数据模型在经济学领域中的应用分析

面板数据模型在经济学领域中的应用分析面板数据模型是经济学中一种常用的数据分析方法,它能够同时考虑时间序列和横截面的数据,如市场数据、劳动经济数据、金融数据等。
由于其具有优良的理论特性和实证应用效果,它已经成为现代经济学研究中不可或缺的一部分。
1. 面板数据模型的定义面板数据模型指的是,在经济学研究中,将时间序列和横截面的数据结合在一起,用来分析一类具有规则性的经济现象。
所谓时间序列是指相同单位的时间上的一系列数据,例如国家的国内生产总值(GDP)、居民消费指数(CPI)等。
所谓横截面是指一次观测中多个不同单位上的数据,例如各个城市的GDP、CPI等。
面板数据模型的主要应用领域是应用经济学,如劳动力市场、金融市场、国际贸易等。
利用面板数据模型可以检验不同时间段内各个不同单位的数据之间的联系,比如残酷的月均工资水平和不同城市之间的经济发展的关系。
此外,面板数据也可用于评估公共政策实施的效果等。
2. 面板数据模型的分类面板数据模型可以分为固定效应模型和随机效应模型。
固定效应模型是指各个横截面单位之间存在固定的差异。
例如,在研究某个城市的GDP数据时,固定效应模型可以考虑到这个城市的历史和地理位置等特征,从而将它和其他城市的GDP数据进行比较。
随机效应模型则是指不同的横截面单位之间存在随机差异,如企业之间的经济成长差异。
与固定效应模型不同,随机效应模型可以更精确地反映个体的差异,并且可以将个体的随机差异分解成真实成分和误差成分,从而更好地评估与经济现象相关的因素。
3. 面板数据模型的应用面板数据模型的应用一般分为两类:静态和动态。
静态面板数据模型的目的是分析各横截面单位之间的差异,如产业之间的不同,或者不同样本类型之间的差异。
例如,在确定某个职业群体的工资水平时,可以使用静态面板数据模型来观察不同样本中各种经济因素的影响因素之间的关系。
动态面板数据模型则被广泛应用于加强理论建模以解释经济变化、研究市场结构和现象、以及预测未来趋势等。
面板数据模型与应用-张晓峒课件

8.4
8.6
8.8
9.0
9.2
9.4
9.6
LOG(IPCROSS)
图6
对数的人均消费对收入的面板数据散点图
图 7 对数的人均消费对收入的面板数据散点图
3
CP_IAH CP_IBJ CP_IFJ CP_IHB CP_IHLJ
CP_IJL CP_IJS CP_IJX CP_ILN CP_INMG
11000 CP_ISD CP_ISH 10000 CP_ISX 9000 CP_ITJ CP_IZJ 8000 7000 6000 5000 4000 3000 2000 2000 4000 6000 8000 10000 12000 IP_I 14000
1996
(每条连线表示同一年度 15 个地区的收入值)
1999
9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 8.0
LOG(CP1996) LOG(CP1997) LOG(CP1998) LOG(CP1999)
LOG(CP2000) LOG(CP2001) LOG(CP2002)
8.2
为了观察得更清楚,图 8 给出北京和内蒙古 1996-2002 年消费对收入散点图。从图中可 以看出,无论是从收入还是从消费看内蒙古的水平都低于北京市。内蒙古 2002 年的收入与 消费规模还不如北京市 1996 年的大。 图 9 给出该 15 个省级地区 1996 和 2002 年的消费对收 入散点图。6 年之后 15 个地区的消费和收入都有了相应的提高。
安徽 1996
14000 12000 10000 8000 6000 4000 浙江 山西 山东 辽宁 2000 江苏 黑龙江 2000 2002 0
面板数据模型

面板数据模型面板数据模型,又称固定效应模型,是计量经济学中常用的一种数据分析方法。
它适用于时间序列和截面数据的联合分析,具有较高的灵活性和强大的解释能力。
本文将对面板数据模型的基本原理、应用场景以及估计方法进行介绍,并通过实例说明其实际运用。
第一部分:面板数据模型的基本原理面板数据模型基于以下假设:每个个体(又称单位)在不同时间点都有观测值,并且个体之间的观测值具有相关性。
面板数据模型通常由固定效应模型和随机效应模型两种形式。
固定效应模型假设个体特定的不变因素对观测值产生了影响,这些不变因素可能包括个体的性别、年龄、学历等。
固定效应模型可以通过引入个体固定效应变量来捕捉这些影响因素,并以此来解释观测值的变动。
第二部分:面板数据模型的应用场景面板数据模型在经济学、金融学、社会学等领域得到了广泛的应用。
例如,在经济学中,研究人员可以利用面板数据模型来分析不同国家或地区的经济增长情况,探讨政策对经济发展的影响;在金融学领域,研究人员可以运用面板数据模型来研究股票价格的波动和影响因素。
第三部分:面板数据模型的估计方法面板数据模型有多种估计方法,常见的有固定效应模型估计和随机效应模型估计。
固定效应模型估计通常采用最小二乘法,即通过对个体固定效应进行回归分析来求解模型参数。
随机效应模型估计则假设个体固定效应是误差项的一部分,通过对固定效应进行随机化处理得到模型的估计结果。
实例应用:假设我们需要研究不同地区的教育水平对经济增长的影响,我们可以使用面板数据模型来分析这个问题。
我们收集了10个地区在2010年到2020年的经济增长率和教育水平数据。
我们可以利用固定效应模型来探究教育水平对经济增长的影响。
首先,我们创建一个包含个体固定效应的面板数据模型,并使用最小二乘法来估计参数。
然后,我们通过分析模型的显著性水平、参数估计结果以及模型拟合程度来得出结论。
通过面板数据分析,我们可以发现教育水平对经济增长确实存在显著的正向影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 面板数据模型估计方法
• 混合最小二乘(Pooled OLS)估计 (适用于混合模型) • 平均数(between)OLS估计 (适用于混合模型和个体随机效应模型) • 离差变换(within)OLS估计
(适用于个体固定效应回归模型)
• 一阶差分(first difference)OLS估计 (适用于个体固定效应模型)
2.2.2 时点固定效应模型(time fixed effects model)
如果一个面板数据模型定义为, yit = t + Xit ' +it, i = 1, 2, …, N
其中t 是模型截距项,随机变量,表示对于 T 个截面有 T 个不同 的截距项,且其变化与 Xit 有关系;yit 为被回归变量(标量) ,it 为误差项(标量) ,满足通常假定条件。Xit 为 k 1 阶回归变量列 向量(包括 k 个回归变量) ,为 k 1 阶回归系数列向量,则称此 模型为时点固定效应模型。
2.3 随机效应模型
对于面板数据模型 yit = i + Xit' +it, i = 1, 2, …, N; t = 1, 2, …, T 如果i 为随机变量,其分布与 Xit 无关; Xit 为 k 1 阶回归变量列向 量(包括 k 个回归量) ,为 k 1 阶回归系数列向量,对于不同个体回 归系数相同,yit 为被回归变量(标量) ,it 为误差项(标量) ,这种模 型称为个体随机效应回归模型(随机截距模型、随机分量模型) 。其 假定条件是 i iid(, 2) it iid(0, 2) 都被假定为独立同分布,但并未限定何种分布。 同理也可定义时点随机效应回归模型和个体时点随机效应回归模型, 但个体随机效应回归模型最为常用。
2.2.2 时点固定效应模型(time fixed effects model)
设定时点固定效应模型的原因。假定有面板数据模型 yit = 0 + 1 xit +2 zt +it, i = 1, 2, …, N; t = 1, 2, …, T 其中0 为常数,不随时间、截面变化;对于 T 个截面有 T 个不同的 截距项,zt 表示随不同截面(时点)变化,但不随个体变化的难以 观测的变量。令t = 0 +2 zt,上式变为 yit = t + 1 xit +it, i = 1, 2, …, N; t = 1, 2, …, T 这正是时点固定效应模型形式。对于每个截面,回归函数的斜率 相同(都是1) ,t 却因截面(时点)不同而异。可见时点固定效应 模型中的截距项t 包括了那些随不同截面(时点)变化,但不随个 体变化的难以观测的变量的影响。t 是一个随机变量。 以家庭消费性支出与可支配收入关系为例, “全国零售物价指数” 就是这样的一个变量。对于不同时点,这是一个变化的量,但是对 于不同省份(个体) ,这是一个不变化的量。
2.1 混合模型(Pooled model)。
如果一个面板数据模型定义为,
yit = + Xit ' +it, i = 1, 2, …, N; t = 1, 2, …, T
其中yit为被回归变量(标量),表示截距项,Xit为k 1阶回归变量列 向量(包括k个回归量),为k 1阶回归系数列向量,it为误差项(标 量)。则称此模型为混合回归模型。混合回归模型的特点是无论对任何 个体和截面,回归系数和都相同。 如果模型是正确设定的,解释变量与误差项不相关,即Cov(Xit,it) = 0。 那么无论是N,还是T,模型参数的混合最小二乘估计量 (Pooled OLS)都是一致估计量。
1.面板数据定义
面板数据(panel data)也称作时间序列与截面混合数据(pooled time series and cross section data)。面板数据是截面上个体在不同时点的 重复观测数据。 panel 原指对一组固定调查对象的多次观测,近年来panel data已经成 为专业术语。
2.2.3 个体时点固定效应模型
如果一个面板数据模型定义为, yit = 0 +i +t + Xit ' +it, i = 1, 2, …, N; t = 1, 2, …, T 其中 yit 为被回归变量(标量) ;i 是随机变量,表示对于 N 个个体有 N 个不同的截距项,且其变化与 Xit 有关系;t 是随机变量,表示对于 T 个截面(时点)有 T 个不同的截距项,且其变化与 Xit 有关系;Xit 为 k 1 阶回归变量列向量(包括 k 个回归量) ;为 k 1 阶回归系数 列向量;it 为误差项(标量)满足通常假定(it Xit, i, t) = 0;则称此 模型为个体时点固定效应模型。 如果模型形式是正确设定的,并且满足模型通常的假定条件,对模型 进行混合 OLS 估计,全部参数估计量都是不一致的。正如个体固定 效应回归模型可以得到一致的、甚至有效的估计量一样,一些计算方 法也可以使个体时点双固定效应模型得到更有效的参数估计量。
2.3 随机效应模型
对于个体随机效应模型,E(i Xit) = ,则有,E(yit xit) = + Xit', 对 yit 可以识别。所以随机效应模型参数的混合 OLS 估计量具有一致 性,但不具有有效性。 注意:术语“随机效应模型”和“固定效应模型”用得并不十分恰当。 其实固定效应模型应该称之为“相关效应模型” ,而随机效应模型应 该称之为“非相关效应模型” 。因为固定效应模型和随机效应模型中 的i 都是随机变量。
N=30,T=50的面板数据示意图
中国各省级地区消费性支出占可支配收入比例走势图
1.面板数据定义
面板数据分两种特征:(1)个体数少,时间长。(2)个体数多,时间 短。面板数据主要指后一种情形。 面板数据用双下标变量表示。
yi t, i = 1, 2, …, N; t = 1, 2, …, T
i对应面板数据中不同个体。N表示面板数据中含有N个个体。t对应面板 数据中不同时点。T表示时间序列的最大长度。
利用面板数据建立模型的好处是:(1)由于观测值的增多,可以增加 估计量的抽样精度。(2)对于固定效应回归模型能得到参数的一致估 计量,甚至有效估计量。(3)面板数据建模比单截面数据建模可以获 得更多的动态信息。
2.面板数据模型分类
用面板数据建立的模型通常有3种,即混合模型、固定效应模型和随机 效应模型。
• 可行GLS(feasible GLS)估计
(适用于随机效应模型)
3.面板数据模型估计方法
面板数据模型中的估计量既不同于截面数据估计量,也不同于时间序列 估计量,其性质随设定固定效应模型是否正确而变化。 3.1 混合最小二乘(Pooled OLS)估计 混合 OLS 估计方法是在时间上和截面上把 NT 个观测值混合在一起,然 后用 OLS 法估计模型参数。给定混合模型 yit = + Xit ' +it, i = 1, 2, …, N; t = 1, 2, …, T 如果模型是正确设定的,且解释变量与误差项不相关,即 Cov(Xit,it) = 0。 那么无论是 N,还是 T,模型参数的混合最小二乘估计量都具有 一致性。 对于经济序列每个个体 i 及其误差项来说通常是序列相关的。NT 个相关 观测值要比 NT 个相互独立的观测值包含的信息少。 从而导致误差项的标 准差常常被低估,估计量的精度被虚假夸大。
ቤተ መጻሕፍቲ ባይዱ
2.2 固定效应模型(fixed effects model) 。
解释设定个体固定效应模型的原因。假定有面板数据模型 yit = 0 + 1 xit +2 zi +it, i = 1, 2, …, N; t = 1, 2, …, T 其中0 为常数, 不随时间、 截面变化;每个个体回归函数的斜率1 相同; zi 表示随个体变化,但不随时间变化的难以观测的变量。上述模型可以 被解释为含有 N 个截距,即每个个体都对应一个不同截距的模型。令 i = 0 +2 zi,于是变为 yit = i + 1 xit +it, i = 1, 2, …, N; t = 1, 2, …, T 以家庭消费性支出与可支配收入关系为例, 省家庭平均人口数就是这样 的一个变量,即对于短期面板,这是一个基本不随时间变化的量,但是 对于不同的省份,这个变量的值是不同的。 因为 zi 是不随时间变化的量, 所以当对个体固定效应模型中的变量进行 差分时,可以剔除那些随个体变化,但不随时间变化的 zi 的影响。
3.2 平均数(between)OLS 估计
平均数 OLS 估计法的步骤是首先对面板数据中的每个个体求平均数,共得到 N 个平均数(估计值) 。然后利用 yit 和 Xit 的 N 组观测值估计参数。以个体固 定效应回归模型 yit = i + Xit ' +it 为例,首先对面板中的每个个体求平均数,从而建立模型
第 4 章 面板数据模型与应用
1.面板数据定义 2.面板数据模型分类 3.面板数据模型估计方法 4.面板数据模型检验与设定方法 5.面板数据建模案例分析 6.面板数据的单位根检验 7.EViwes 应用 8.面板数据模型的协整检验
file:5panel02 file:5panel01
《面板数据的计量经济分析》,白仲林著,张晓峒主审, 南开大学出版社,2008,书号ISBN978-7-310-02915-0。
2.2 固定效应模型(fixed effects model) 。
个体固定效应模型的强假定条件是, E(iti, Xit) = 0, i = 1, 2, …, N
i 作为随机变量描述不同个体建立的模型间的差异。 因为i 是不可观测
的,且与可观测的解释变量 Xit 的变化相联系,所以称为个体固定效应 模型。 注意: (1) 在 EViews 输出结果中i 是以一个不变的常数部分和随个体变化的 部分相加而成。 (2)在 EViews 5.0 以上版本个体固定效应对话框中的回归因子选项中 填不填 c 输出结果都会有固定常数项。 (3)个体固定效应回归模型的估计方法有多种,首先设法除去i 的影 响,从而保证估计量的一致性。