参数检验和非参数检验
非参数检验的基本原理

非参数检验的基本原理非参数检验是一种利用统计方法来检验假设的一种方法,与参数检验相比,非参数检验不需要对总体的分布做出假设,更为灵活。
本文将介绍非参数检验的基本原理。
一、概述非参数检验是一种统计方法,既不要求数据符合特定分布,也不对总体参数做出假设。
与之相反,参数检验通常假设数据服从特定的分布,例如正态分布。
非参数检验的主要优点是可以更全面地处理数据,更适用于复杂的情况。
然而,非参数检验的统计效率通常较低,需要更多的样本来达到相同的置信水平。
二、基本原理1. 秩次转换非参数检验通常使用秩次转换来处理数据。
所谓秩次转换是将原始的数值转换为它们在样本中的秩次,从而消除数值的大小差异。
对于同一组数据,秩次转换后,可以应用更广泛的统计方法。
2. Wilcoxon符号秩检验Wilcoxon符号秩检验是一种非参数检验方法,主要应用于配对样本或者两组独立样本之间的差异比较。
它的基本思想是对每个观测值计算它们的符号秩,然后通过比较两组样本的秩和来判断差异是否显著。
3. Mann-Whitney U检验Mann-Whitney U检验是一种非参数检验方法,用于比较两组独立样本之间的差异。
它的基本原理是将两组样本中的所有观测值汇总,然后对这些观测值进行秩次转换,并计算两组样本排名和。
通过比较两组样本排名和的大小来判断差异是否显著。
4. Kruskal-Wallis H检验Kruskal-Wallis H检验是一种非参数的方差分析方法,用于比较三组或以上独立样本之间的差异。
它的基本原理是将所有样本的观测值汇总,然后进行秩次转换,并计算各组样本排名和的平均值。
通过比较平均排名和的大小来判断差异是否显著。
三、案例研究为了更好地理解非参数检验的原理,我们以某家公司销售部门的两个月销售额作为例子进行案例研究。
假设第一个月公司销售额为[100, 80, 120, 90, 110],第二个月公司销售额为[95, 85, 115, 100, 105]。
参数检验和非参数检验

参数检验和非参数检验参数检验和非参数检验是统计学中两种常用的假设检验方法。
参数检验假设总体服从其中一种特定的概率分布,而非参数检验则不对总体的概率分布进行特定的假设。
本文将分析和比较这两种假设检验方法,并讨论它们的优缺点和适用范围。
参数检验的基本思想是假设总体的概率分布属于一些已知的参数化分布族,例如正态分布或泊松分布。
然后根据样本数据计算出统计量的观察值,并基于它们进行假设检验。
常见的参数检验方法有t检验、F检验和卡方检验等。
以t检验为例,它适用于研究两个样本均值之间是否存在显著差异的情况。
假设我们有两组样本数据,分别服从正态分布。
可以使用t检验来计算两组样本均值的差异是否显著。
t检验基于样本均值和标准差来估计总体均值的差异,并通过计算t值和查表或计算p值来判断差异是否显著。
参数检验的优点是它们对总体概率分布的假设比较明确,计算方法相对简单,适用于数据符合特定分布的情况。
此外,参数检验通常具有较好的效率和统计性质。
然而,参数检验也有一些限制和缺点。
首先,参数检验通常对数据的分布假设要求较高,如果数据不符合指定的分布假设,则结果可能不可靠。
另外,参数检验对样本大小的要求较高,需要较大的样本才能获得可靠的检验结果。
此外,参数检验对异常值和离群值比较敏感,这可能会导致统计结论的错误。
与参数检验相比,非参数检验更加灵活,不需要对总体的概率分布做出特定的假设。
它适用于更广泛的数据类型和样本分布。
常见的非参数检验方法有Wilcoxon符号秩检验、Mann-Whitney U检验和Kruskal-Wallis检验等。
以Wilcoxon符号秩检验为例,它适用于比较两个相关样本的差异。
这个检验不要求样本数据满足正态分布的假设,它基于样本差值的秩次来判断差异是否显著。
非参数检验的优点在于其适用范围广泛,不需要对总体分布做出特定假设,对数据平均性和对称性的要求较低,对异常值和离群值的鲁棒性较好。
此外,非参数检验对样本大小的要求较低,可以在较小的样本情况下获得可靠的结果。
spss分析

spss分析SPSS (Statistical Package for the Social Sciences) 是一种常用的统计软件,可以进行各种数据分析。
SPSS分析方法如下:1. 描述性统计分析:对数据进行描述性统计,包括平均数、中位数、众数、标准差、方差等。
2. 参数检验:通过参数检验可以判断总体参数是否符合预期,常见的参数检验方法有t检验、方差分析(ANOVA)、卡方检验等。
3. 非参数检验:非参数检验方法用于处理数据样本不满足正态分布或方差齐性的情况,常见的非参数检验方法有Wilcoxon秩和检验、Kruskal-Wallis检验等。
4. 相关分析:用于分析两个或多个变量之间的关系,常见的相关分析方法有Pearson相关系数、Spearman秩相关系数等。
5. 回归分析:通过建立回归方程来研究自变量与因变量之间的关系,常见的回归分析方法有线性回归、多元回归等。
6. 方差分析:用于比较不同因素对结果的影响,常见的方差分析方法有单因素方差分析、多因素方差分析等。
7. 聚类分析:将数据集中的个体划分为不同的类别,常见的聚类分析方法有K均值聚类、层次聚类等。
8. 判别分析:用于确定将个体划分到已知类别中的判别准则,常见的判别分析方法有线性判别分析、逻辑回归等。
9. 生存分析:用于分析个体在某个时间段内生存的概率,常见的生存分析方法有Kaplan-Meier生存曲线、Cox比例风险模型等。
10. 因子分析:用于确定影响多个变量的共同因素,常见的因子分析方法有主成分分析、因子旋转等。
以上只是SPSS分析的一部分,还有很多其他的分析方法可以在SPSS中实现。
具体选择哪种分析方法取决于研究目的和数据特点。
【统计分析】非参数检验

3. 查表与结论 查T界值表,T0.05(11)=10~56,T=3.5,在界 值范围外,P<0.05,拒绝H0。
符号检验(Sign test)
z n n 1 n
二、两样本比较的秩和检验 (Wilcoxon法)
适用条件:完全随机设计的两个样本比较,若不满足参数 检验的应用条件,则用本法;两个等级资料比较。
-0.45
-1
13
15.20
5.50
9.70
11
14
16.50
9.00
7.50
8.5
步骤
1. 建立假设:H0:差值的总体中位数=0, H1:差值的总体中位数0;
=0.05 2. 计算统计量
计算差值d,由小到大的顺序编秩次,并冠以原d 的正负号,然后分别求正负秩和,得到T+=73, T-=5,取秩和较小者作为检验统计量T=5 3. 查表及结论
1.0
2.5
4
17.00
6.50
10.50
12
5
13.00
5.50
7.50
8.5
6
18.00
13.50
4.50
5
7
17.50
10.00
7.50
8.5
8
10.20
10.20
0.00
-
9
10.00
10.00
0.00
-
10
10.50
9.50
1.00
2.5
11
13.80
6.80
7.00
6
12
3.03
3.48
假设检验——非参数检验

假设检验(二)——非参数检验假设检验的统计方法,从其统计假设的角度可分为两类:参数检验与非参数检验。
上一节我们所介绍的Z 检验、t 检验,都是参数检验。
它们的共同特点是总体分布正态,并满足某些总体参数的假定条件。
参数检验就是要通过样本统计量去推断或估计总体参数。
然而,在实践中我们常常会遇到一些问题的总体分布并不明确,或者总体参数的假设条件不成立,不能使用参数检验。
这一类问题的检验应该采用统计学中的另一类方法,即非参数检验。
非参数检验是通过检验总体分布情况来实现对总体参数的推断。
非参数检验法与参数检验法相比,特点可以归纳如下:(1)非参数检验一般不需要严格的前提假设;(2)非参数检验特别适用于顺序资料;(3)非参数检验很适用于小样本,并且计算简单;(4)非参数检验法最大的不足是没能充分利用数据资料的全部信息;(5 )非参数检验法目前还不能用于处理因素间的交互作用。
非参数检验的方法很多,分别适用于各种特点的资料。
本节将介绍几种常用的非参数检验方法。
一.2检验2检验主要用于对按属性分类的计数资料的分析,对于数据资料本身的分布形态不作任何假设,所以从一定的意义上来讲,它是一种检验计数数据分布状态的最常用的非参数检验方法。
22检验的方法主要包括适合性检验和独立性检验。
(一)2检验概述2是实得数据与理论数据偏离程度的指标。
其基本公式为:2 ( f0 f e)(公式11—9)fe式中,f0 为实际观察次数,f e 为理论次数。
分析公式可知,把实际观测次数和依据某种假设所期望的次数(或理论次数)的差数平方,除以理论次数,求出比值,再将n 个比值相加,其和就是2。
观察公式可发现,如果实际观察次数与理论次数的差异越小, 2值也就越小。
当 f 0 与 f e 完全相同时,2值为零。
际次数与理论次数之差的大小而变化利用2值去检验实际观察次数与理论次数的差异是否显著的方法称为2检验有两个主要的作第一,可以用来检验各种实际次数与理论次数是否吻合的这类问题统称为适合性检验; 第二, 判断计数的两组或多组资料是否相互关联还是相互独立的问 题,这类问题统称为独立性检验。
参数检验与非参数检验的区别与应用

参数检验与非参数检验的区别与应用统计学中的参数检验和非参数检验是两种常用的假设检验方法。
本文将详细介绍参数检验和非参数检验的区别以及它们在实际应用中的具体场景。
一、参数检验参数检验是建立在对总体分布形态有所假定的基础上,通过对样本数据进行统计推断,来对总体参数进行假设检验。
它通常要求总体分布服从特定的概率分布,如正态分布。
参数检验的常见方法有:1. 单样本t检验:用于检验样本均值是否与已知总体均值有显著差异。
2. 独立样本t检验:用于比较两个独立样本的均值是否存在显著差异。
3. 配对样本t检验:用于比较同一组样本在不同条件下的均值是否存在显著差异。
4. 方差分析:用于比较多个样本组之间的均值是否存在显著差异。
参数检验的优势在于其具有较高的效率和灵敏度,适用于对总体分布形态有所了解的情况。
但它也有一些限制,如对分布形态的假设可能不成立,以及对样本量和数据类型的要求较高。
二、非参数检验非参数检验是对总体分布形态没有具体假设的情况下,通过对样本数据进行统计推断,来对总体参数进行假设检验。
非参数检验不少于参数检验的分析方法,常见的包括:1. Wilcoxon符号秩检验:用于比较两个相关样本的差异是否存在显著差异。
2. Mann-Whitney U检验:用于比较两个独立样本的中位数是否存在显著差异。
3. Kruskal-Wallis检验:用于比较多个样本组的中位数是否存在显著差异。
非参数检验的优势在于对总体分布形态没有具体要求,适用于对总体分布了解较少或不了解的情况。
它相对于参数检验来说更具广泛的适用性,但由于其推断效果较差,需要更大的样本量才能达到相同的检验效果。
三、参数检验与非参数检验的区别1. 假设要求:参数检验对总体分布形态有假设要求,如正态分布假设,而非参数检验对总体分布形态没有具体要求。
2. 统计量选择:参数检验基于已知概率分布,可以选择特定的统计量如t值、F值等;而非参数检验使用秩次统计量,如秩和、秩和秩二样序差等。
参数检验与非参数检验的区别及优缺点.(课堂PPT)

别 对总体参数进行区间 和检验分布(如位置)是否
估计或假设检验
相同
优 符合条件时,检验效 应用范围广、简便、易掌握 点 能高
对资料要求严格
缺
若对符合参数检验条件的资 料用非参数检验,则检验效 能低于参数检验
点 要求资料分布型已知
资料总体方差相等
2
如H0成立,非参数检验与参数检
验效果一样好;如H0不成立,则
n(n 1)(2n 1) / 24
如果有相同秩次,应用下面的校正公式:
T n(n 1) / 4 0.5
u
n(n
1)(2n 24
1)
1 48
(t
3 j
tj)
连续性校 正数
式中 tj 为第 j 个相同秩次的个数。如有相同秩次:3.5,3.5,6,6,6, 则∑(t3j-tj)=(23-2)+(33-3)
11
22
3
n1=6ቤተ መጻሕፍቲ ባይዱ
T1=40.5
乙种香烟
尼古丁含量
秩次
28
9.5
31
13
30
12
32
14
21
2
27
8
24
5
20
1
n2=8
T2=64.5
2
感
14
1.建立假设,确立检验水准: H0:两总体分布相同 H1:两总体分布不同 =0.05
2.计算检验统计量T值
(1)编秩 先将两组数据由小到大分别排队,再将 两组数据从小到大统一编秩,如遇相同数据在同 一组内,按位置顺序编;如相同数据不在同一 组内,应取平均秩次 。
2
感
12
二 成组设计两样本比较的秩和检验 (Wilcoxon两样本比较法)
常用非参数检验方法

为0.05,n+=15, n-=3, n=n++n-=18, 查二项分 布临界值表,当n=18时,临界值为14。
(4)检验判断。由于正号个数15大于14,落入 拒绝域,所以拒绝原假设,接受备择假设,即 认为新兵总体身高中位数不等于165公分。
2. 配对样本的符号检验
给定显著水平0.1,用符号检验判定新兵总体 的身高中位数是否与165公分有显著差异。
解:(1)设立假设
H0:Me=165公分;H1: Me≠165公分
(2)将样本各个数据减去原假设成立时的假定 中位数165公分,并把正负号记录下来。其中相 减等于0就略去不计。这样我们就有:
+++++--+++-+++++++
假定n1 , n2是两个选自不同总体,样本 容量大小相同的随机样本,将两个样本的 数值一一配对,得到系列配对值。然后将 两个配对组相减并记录下其差数符号,计 算正号的个数总数n+和负号的个数总数n-。 如果两个样本所选自的总体在位置差异方 面不存在显著差别,则n+和n-出现的概率 应该一致各为0.5,反之则认为两个总体存 在本质差别。
解:假设H0:F(x)为均匀分布 H1:F(x)不是均匀分布
则统计量:
2 4 ( fi ei )2 (20 25)2
(35 25)2
10
i1
ei
25
25
查 2分布表得临界值
2 0.05
(3)
7.815
检验统计量10>7.815, 所以拒绝原假设。
说明顾客对四种品牌的空调偏好有差异。
统计学
二、符号检验
1. 单样本位置的符号检验
一个随机样本,有 n 个数据 x1,x2,…,xn,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计推断是从总体中抽取部分样本,通过对抽取部分所得到的带有随机性的数据进行合理的分析,进而对总体作出科学的判断,它是伴随着一定概率的推测,特点是:由样本推断总体,统计推断是数理统计的核心部分,统计推断的基本问题可以分为两大类:一类是参数估计问题;另一类是假设检验问题。
其中假设检验方法可以分为参数检验和非参数检验两大部分。
1.参数检验:
是在给定或假定总体分布形式的基础上,对总体的未知参数进行估计或检验。
它一方面以明确的总体分布为前提,另一方面需要满足某些总体参数的假定条件
2.非参数检验:
对总体分布不做严格假定,统计过程不涉及总体参数,完全依靠样本数据的顺序、秩等信息进行分析,通常在不符合参数检验的条件下使用。
参数检验的优点是针对性较强,每种方法都有其特定的使用环境,并且利用数据信息充分,一旦符合使用条件,得出的结论会非常准确。
缺点是,对总体的分布要求较高,实际工作中有时无法满足使用条件。
非参数检验的优点是对总体分布没有严格要求,对样本数据类型也没有过多要求,非正态、方差不齐等都能做,适应性较强,计算方法也比较简单。
缺点是对数据信息利用不充分,会降低功效。
由于检验的功效是我们选择分析方法的首要因素,因此在实际工作中,我们还是优先使用参数检验,只有在数据特征不符合参数检验要求时,才考虑使用非参数检验。