散步图

合集下载

品质七大手法(C5)-散布图

品质七大手法(C5)-散布图

Xmax=90 Ymax=75 Xmin=10 Ymin=23
3)画出x-y轴坐标,取适当刻度

100 80 60 40




20

0
20
40
60
80
100
4)将数据点绘于x-y轴中

100 80 o 60 o 40 o o o o o o o


20

0
20
1、散布图的概念

1.2散布图的基本概念 将因果关系所对应变化的数据分别 描绘再x-y轴坐标系上,以掌握两个变量 之间是否相关及相关的程度如何,这种 图形叫“散布图”,也称作“相关 图”。,
1、散布图的概念

1.3散布图的分类 1)正相关:当变量x增大时,另一变量y也增大。 相关性强:如马力与载重的关系; 相关性中:如收入与消费的关系; 相关性弱:如体重与身高的关系。 2)负相关:当变量x增大时,另一变量y却减少。 相关性强:如投资率与失业率的关系; 相关性中:如举重力与年龄的关系; 相关性弱:如举重力与身高的关系。

2.1散布图的制作步骤 1)确定要调查的两个变量,收集成对的数据 (x1,y1),(x2,y2)….,整理成数据表; 至少30足以上。
No 1 x x1 y y1
2
3 4
x2
x3 x4
y2
y3 y4
….
….
….
2、散布图的制作




2.1散布图的制作步骤 2)找出两个变量x,y的最大值及最小值; 3)以x,y的最大值及最小值建立x-y坐标,并决定适 当的刻度便于描点; 4)将相对应的两个变量x,y以点的形式描在x-y坐标 中; 5)记入图名、制作者、制作时间等项目; 6)判读散布图的相关性与相关程度。

散布图

散布图

nⅢ
n

Q X
六、注意事项:
数据的性质要相同,否则会导致不真实的判断结果;
散布图的相关规律的运用范围一般局限于观测值数据的范围 内,不能任意扩大相关推断范围; 散布图中出现的个别偏离分布趋势的异常点,应当查明原因 予以剔除;
七、实例解析:
某酒厂要判定中间产品酒中的酸度喝酒度2个变量之间有无关系, 存在什么关系?(搜集到的数据如下表)
Y

Y

Y


Y

Y












X
(a)正相关(强)
X (b)正相关(中)
X
(c)正相关(弱)
Y

序号 酸度 x 酒度 y 序号 酸度 x 酒度 y
1
2 3 4 5 6 7 8 9 10 11 12 13
0.5
0.9 1.2 1.0 0.9 0.7 1.4 0.9 1.3 10. 1.5 0.7 1.3
6.3
5.8 4.8 4.6 5.4 5.8 3.8 5.7 4.3 5.3 4.4 6.6 4.6

X (g)负相关(强) (h)负相关(中)
X
X (i)负相关(弱)
三、散布图的用途:
散布图可以用来发现两组相关数据之间的关系,并确认两组 相关数据之间预期的关系; 分析两组相关数据之间的关系主要是确认其相关性质,即正 相关和负相关;相关程度,即强相关和弱相关。电子云的形 态可以反映出相关的性质和程度;

散布图

散布图
变化 将因果图关系所对应变化 的数据分别描绘在X-Y 的数据分别描绘在X-Y 轴标系上, 轴标系上,以掌握两个变 量之间是否相关及相关的 程度如何, 程度如何,也有人称之为 散布图” 相关图” “散布图”、“相关图”。
二.散布图的实施步骤 1.确定要调查的两个变量,收集相关的最新数 确定要调查的两个变量, 确定要调查的两个变量 至少30个以上。 30个以上 据,至少30个以上。 2.找出两个变量的最大值与最小值,将两个变 找出两个变量的最大值与最小值, 找出两个变量的最大值与最小值 量描入X轴与Y 量描入X轴与Y轴。 3.将相对应两个变量,以点的形式标上坐标系。 将相对应两个变量, 将相对应两个变量 以点的形式标上坐标系。 4.记入图名、制作者、制作时间等项目。 记入图名、 记入图名 制作者、制作时间等项目。 5.判读散布图的相关性与相关程度。 判读散布图的相关性与相关程度。 判读散布图的相关性与相关程度
为确认马达连续运转之后,速度是否发生改变,经试验获得以下数据。 为确认马达连续运转之后,速度是否发生改变,经试验获得以下数据。
3.无相关(点子分布无向上或下倾向者): 无相关(点子分布无向上或下倾向者): 无相关 a.X与Y之间看不出有何相关关系。 与 之间看不出有何相关关系 之间看不出有何相关关系。 b.X增大时(或Y), 并不改变(或X)。 增大时( ),Y并不改变 增大时 ), 并不改变( )。 以上两种情形均称之为无相关,如下图 以上两种情形均称之为无相关,如下图h—j
4.曲线相关(点子分布不是呈直线倾向,而是 曲线相关(点子分布不是呈直线倾向, 曲线相关 弯曲变化者) 弯曲变化者) X开始增大时,Y也随之增大,但达到某一值 开始增大时, 也随之增大 也随之增大, 开始增大时 则当X值增大时 值增大时, 反而减少 反而减少, 后,则当 值增大时,Y反而减少,反之亦 称为同曲线相关。如下图K—L 然,称为同曲线相关。如下图

质量技术-散布图与回归分析

质量技术-散布图与回归分析
状态,便可以推断成对数据之间的相关程度。
3/8/2023
西安科技大学·管·理学院
3
2、两组变量之间的关系
(1)函数关系 (2)相关关系
(3)没有关系
3/8/2023
西安科技大学·管·理学院
4
3、对相关系的研究
相关程度。
3/8/2023
西安科技大学·管·理学院
5
一 细化课标的必要性
随着新课程实施的不断深入,产生了不少的问 题。课堂教学随意性大,造成课堂效率效率低下。 究其主要原因:主要教师对课程标准理解不透,对 教材中的主要问题把握不准;部分教师没有强烈的 目标意识,教学目标含糊不清,有的教师把教学目 标当成了一种摆设,说在口头上,写在教案上,教 学不按目标实施,重点不突出,层次不清,教学随 意性大……
现在六页,总共一百零六页。
二、散布图的应用案例
习惯上取30组
3/8/2023
西安科技大学 ·管理学院
7
. 注意:横坐标----原因。 纵坐标----结果。
3/8/2023
西安科技大学 ·管理学院
8
4.作散布图
···别忘了:
填上数据的收集
地点、 时间、
测定方法、制 作者等项目。
3/8/2023
西安科技大学 ·管理学院
. 有了散布图, 我们就能自觉地利用它来控制影响产品质量的相关因素。
3/8/2023
西安科技大学 ·管理学院
14
散布图的弊端及补救
. 通过观察散布图,虽然可以对变量间的相关趋势做出大 致的估计,但这样做缺乏客观的统一判定标准, 可靠性 较低,只能说是,一种定性判断。
. 为了提高判断精度,实际工作中, 常采用相关系数检验 法,不过这种,方法不仅涉及较复杂的数理统计理论,较 为麻烦。为了在工作现场尽快做出散布图相关性的判断, 并使判断有较可靠的科学依据,目前广泛把数理统计中 的简易符号检验法应用到散布图的相关检验中来。

散布图的原理及应用

散布图的原理及应用

散布图的原理及应用1. 简介散布图(Scatter plot)是一种用于展示两个变量之间关系的图表。

它通过将每个数据点绘制为二维平面上的一个点,用点的位置表示两个变量的值,从而可以观察到变量之间的相关性、分布情况以及异常值等信息。

2. 原理散布图的原理非常简单,将两个变量的值分别映射到平面的X轴和Y轴上,并将每个数据点绘制为对应的点。

通过观察这些点的分布情况,我们可以得到以下信息:•相关性:散布图可以反映两个变量之间的相关性。

当散布图呈现出一条明显的趋势线时,表示两个变量之间存在一定程度的线性相关性。

如果趋势线是上升的,则表示正相关;如果趋势线是下降的,则表示负相关;如果趋势线接近水平,则表示无相关性。

•分布情况:散布图可以显示数据点的分布情况。

如果数据点紧密地聚集在某一区域,表示两个变量之间存在着较强的相关关系。

如果数据点局部散布较广,则表示两个变量之间相关性较弱。

•异常值:散布图可以帮助我们检测和识别异常值。

如果散布图中存在与主要分布趋势不一致的数据点,那么这些数据点很可能是异常值。

通过观察这些异常值,我们可以进一步分析其原因以及对数据分析结果的影响。

3. 应用散布图在数据分析和数据可视化领域有着广泛的应用。

以下是散布图常见的几种应用场景:3.1. 相关性分析散布图可以帮助我们分析两个变量之间的相关性。

通过观察散布图的趋势线,我们可以判断出两个变量之间的关系是正相关、负相关还是无相关。

这对于统计分析、市场调研等领域非常有价值。

3.2. 群组发现散布图可以帮助我们发现数据中的群组。

如果在散布图上存在多个独立的聚集点,那么可以认为这些聚集点代表了不同的群组。

这对于人群分析、社交网络分析等领域非常有用。

3.3. 异常检测散布图可以帮助我们检测和识别数据中的异常值。

通过观察散布图中与主要分布趋势不一致的数据点,我们可以识别出潜在的异常值。

这对于数据清洗、异常检测等领域非常重要。

3.4. 聚类分析散布图可以被用来进行聚类分析。

散布图

散布图

散布图散布图又称相关图,是用来表示一组成对的数据之间是否有相关性,进而控制影响产品质量的相关因素的一种有效方法。

产品质量是以一系列的特性表现出来的,而这些特性又与各种因素相关联,通过散布图将两种有关的数据列出,用点子打在坐标图上,然后观察两种因素之间的关系。

绘制散布图的方法如下:(1)收集数据。

收集不少于30组(量小不易发现趋势)的数据,并按一一对应关系列成数据表。

(2)画出坐标图X轴、Y轴,并标出刻度。

X轴、Y轴的极限长度最好取基本相等的长度,以便分析相关性。

若两组数据是特性和原因关系(如价格与成本),X轴表示原因数据(成本),Y轴表示特性数据(价格);若两组数据是特性关系(如身体健康状况与遗传基因),则常用X轴表示易测定的特性(身体健康状况),Y轴表示难测定的特性(遗传基因)。

(3)描点。

将一一对应的数据描绘到图上,若有两组或多组数据完全相同,则可用圈(○)表示。

(4)判断。

研究点子的分布状况,确定其相互关系的类型及密切程度。

根据测量的两组数据绘成散布图后,即可从图上点子分布状况来分析两组数据间的关系及密切程度。

数据关系通常有六种基本形状:(1)强正相关。

即X增大,Y也显著增大。

对此,一般控制了X,Y也能得到相应的控制。

(2)弱正相关。

即X增大,Y也增大,但增大不明显。

对此,除考虑X因素外,还要分析是否有其他因素的影响。

可进行分层处理,寻找工序以外的其他影响因素。

(3)强负相关。

即X增大,Y显著减小。

对此,一般控制了X,Y也能得到相应的控制。

(4)弱负相关。

即X增大,Y减小,但不明显。

对此的处理与弱正相关相同。

(5)不相关。

即X与Y两个因素不存在相关关系。

(6)非线性相关。

即X增大,Y也增大(或减小),但当X增大到一定程度时,X再增大,Y反而减小(或增大)。

对此,在某一数值前,按正(负)相关处理;超过该数值后,按负(正)相关处理。

散布图

散布图

Hale Waihona Puke 除x因素的影响y外,还要考虑其它的因素(一 般可进行分层处理,寻找x以外的因素)
弱负相关。x变大时,y大致变小
不相关。x与y无任何关系
x和y不是线性关系
3、相关分析
• 散布图绘制后再进行相关分析,相关分 析的方法很多,一般常用统计解析方法。 • 式中:Lxx——表示X的偏差平方和; • Lyy——表示y的偏差平方和; • Lxy——表示x与y之间的影响。 • 当r>0时,x与 y为正相关, • 如 r→1时,x与 y为强正相关; • r<0时,x与 y为负相关, • 如 r→-1时,x与 y为强负相关; • r≈0时,X与y不相关。
散布图
1、定义
• 散布图也叫相关图,是表示两个变量之间 变化关系的图,是回归分析中必用的基本 工具。
2、散布图的六种形态
强正相关。x变大,y也变大
• x、y之间,可以用直线表示。对此,一般 控制住x,y也得到相应的控制
强负相关。x变大时,y变小; x变小时,y变大
弱正相关。x变大时,y大致变小

质量管理旧七种方法之散布图

质量管理旧七种方法之散布图

编号 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
CO2含量 6.5 6 6.7 6.5 6.5 6.9 6.6 6.2 6.8 6.8 6.1 6.3 6.1 6.2 6.4
CO含量 28.2 28.4 28.1 28.2
28 28 28.3 28.2 28 28.2 28.2 28.2 28.4 28.4 28.4
X’
1
1
2
9
3
5
4
4
5
5
6
9
7
7
8
6
9
1
10
2
11
4
12
7
13
3
14
3
15
2
Y’
X’2
Y’2
X’Y’
X’ + Y’ ( X’ + Y’ )2
7
1
49
7
8
64
16
81
256
144
25
625
8
25
64
40
13
169
5
16
25
20
9
81
14
25
196
70
19
361
19
81
361
171
28
784
10
49
100
后附相关系数检查表
以上三种判断方法对同一实例进行分析判断的结论是一致的。
相关系数检查表
α
N-2
1 2 3 4 5 6 7 8 9 10
0.05
0.997 0.950 0.878 0.811 0.754 0.707 0.666 0.632 0.602 0.675
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

散布图
一、散布图的基本概念与应用要点
将因果关系所对应变化的数据分别描绘在X—Y轴坐标系上,以掌握两个变量之间是否及相关的程度如何,这种图形叫做“散布图”,也有人称之为“相关图”。

在日常管理中,我们总感觉到一些现象和结果似乎存在某种内在联系,似乎又不存在,似乎关系较紧密,又似乎关系不紧密,但这个感觉有时会产生错误的判定,如果我们收集两个变量的数据(至少30组以上),并描绘在坐标系上,情况则一目了然,且很容易判断原因真假。

如果我们要了解它们的关联与关联程度,必须借助品管七大手法之一的散布图来描绘它。

散布图一般有下列四种,分别是:
1、正相关:当变量X增大时,另一个变量Y也增大。

相关性强,马力与载重的关系;
相关性中,如收入与消费的关系;
相关性弱,如体重与身高的关系。

2、负相关:当变量X增大时,另一个变量Y却减少。

相关性强,如投资率与失业率的关系;
相关性中,如举重力与年龄的关系;
相关性弱,如血压与年龄的关系。

3、不相关:变量X(或Y)增大时,另一变量Y(或X)并不改变。

如气压与温度的关系。

4、曲线相关:变量X开始增大时,Y也随着增大,但达到某一值后,则当X值增大时,Y反面
减少,反之亦然。

如记忆与年龄的关系。

应用散布图时注意事项:
1、是否有异常点,当有异常点出现时,请立即寻找原因,而不能把异常点删除,除非已找到异常
的原因。

2、由于数据的获得常常因为作业人员、方法、材料、设备、和环境等变化,导致数据的相关性受
到影响。

在这种情况下需要对数据获得的条件进行层别,否则散布图不能真实地反映两个变量之间的关系。

3、依据技术经验,可能认为没有相关,但经散布图分析却有相关的趋势,此时宜进一步检讨是否
有什么原因造成相关。

4、数据太少时,容易造成误判。

二、散布图的制作步骤
1、确定要调查的两个变量,收集相关的最新数据,至少30组以上。

2、找出两个变量的最大值与最小值,将两个变量描入X轴与Y轴。

3、将相对应的两个变量,以点的形式标上坐标系。

4、记入图名、制作者、制作时间等项目。

5、判读散布图的相关性与相关程度。

在制作散布图时,应注意以下事项:
-----两组变量的对应数至少在30个以上,最好50个,100个最佳。

-----找出X、Y轴的最大值与最小值,并以X、Y的最大值及最小值建立X、Y坐标。

-----通常横坐标用来表示原因或自变量,纵坐标表示效果或因变量。

-----散布图绘制后,分析散布图应谨慎,因为散布图是用来理解一个变量与另一个变量之间可能存在的关系,这种关系需要进一步的分析,最好作进一步的调查。

三、 散布图的判读
1、正相关(点子自左下至右上分布者),如下图:
(1)正相关(强) 例:马力与载重量的关系(相关性强)
(2
例:收入和消费的关系(相关性中)
(3)正相关(弱) 例:体重与身高的关系(相关性弱) 2、负相关(点子自左上至右下分布者),如下图:
(4)负相关(强) 例:投资率与失业率的关系(相关强)
收入 消费
载重量 马力 Y X
Y X 体

身高
Y X 投

率 失业率
Y X
(5)负相关(中度) 例:举重力与年龄的关系(相关性中)
(6)负相关(弱) 例:血压与年龄的关系(相关性弱) 3、 无相关(点子分布无向上或向下倾向者):
A ) X 与Y 之间看不出有何相关关系。

B ) X (或Y )增大时,Y (或X )并不改变。

以上两种情形均称之为无相关,如下图:
(8)无相关
(9)无相关 例:温度与气压的关系(毫不相关)
Y
X

重力
年龄
举重力
身高
Y
X 温 度
气压
Y
Y
X
X
Y
4、曲线相关(点子分布不是呈直线倾向,而是弯曲变化着)
X 开始增大时,Y 也随之增大,但达到某一值后,则当X 值增大时,Y 反而减少,反之亦然,称为曲线相关。

如下图:
5
在前四种分布形态仍然没有办法判断的时候,可以利用中间值来研判。

这种方法不需要用复杂的公式计算,也不需要画特别的图形,只要算出图上的点有多少,然后比较就可以判断了。

它的步骤有三点:
1)求出中间值:
所谓求出中间值,就是将对应数据按大小顺序排列,取出中间值。

2)在散布图上画出中间值线
求出中间值画出横轴和纵轴的平行线各一条,如此把散布图分为四个象限,然后计算各象限的点数。

如下图:
59 58 59 58 56 54 52
50 48 46 44 42 40
(10) X
3)作比较判断
计算好了各象限点数之后,如果其左下及右上的象限(第Ⅲ及第Ⅰ象限)表示直线的正方向,左上及右下的象限(第Ⅱ及第Ⅳ象限)表示直线的负方向。

正方向的点数和(n1+n3)与负方向的点数和(n2+n4),如各占1\2,表示无直线关系;若正方向点数和远大于负方向点数和时,表示正直线关系;若正方向点数和远小于负点数时,表示负直线关系。

·
···········
····
··
·
·
··
·······
·
·


特性值数据数单位
相关系数没有必要从0开始记入刻度值
回归式
回归直线溶 接 径
溶接径与强度的散步图
为使图形成正方形,要计算出横向、纵向的刻度单位
记入特性值。

相关文档
最新文档