第九章动态规划法
《信息学奥赛一本通》:第9章 第2节 动态规划背包问题(C++版)

【参考程序】
#include<cstdio> using namespace std;
const int maxm = 201, maxn = 31;
int m, n;
int w[maxn], c[maxn];
int f[maxn][maxm];
int main()
{
scanf("%d%d",&m, &n);
for (int i=1; i <= n; i++)
//设f(v)表示重量不超过v公斤的最大价值
for (int v = m; v >= w[i]; v--)
if (f[v-w[i]]+c[i]>f[v])
f[v] = f[v-w[i]]+c[i];
printf("%d",f[m]);
// f(m)为最优解
【例9-12】、完全背包问题 【问题描述】
设有n种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限 的,同时有一个背包,最大载重量为M,今从n种物品中选取若干件(同一种物品 可以多次选取),使其重量的和小于等于M,而价值的和为最大。
【输入格式】
第一行:两个整数,M(背包容量,M<=200)和N(物品数量,N<=30); 第2..N+1行:每行二个整数Wi,Ci,表示每个物品的重量和价值。 【输出格式】
第九章 动态规划
第二节 背包问题
第二节 背包问题
一、01背包问题 问题:
有N件物品和一个容量为V的背包。第i件物品的费用(即体积,下同)是w[i], 价值是c[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量, 且价值总和最大。 基本思路:
《动态规划法》课件

动态规划法的发展趋势
混合整数动态规划
将整数变量引入动态规划中,解决更复杂的问题 ,如组合优化问题。
动态规划与机器学习结合
利用机器学习算法辅助动态规划求解,提高算法 的效率和准确性。
ABCD
多目标动态规划
考虑多个相互冲突的目标,寻求最优解的权衡。
分布式动态规划
将问题分解为多个子问题,在分布式系统中并行 求解,提高大规模问题的处理能力。
排班问题
总结词
动态规划法可以用于解决排班问题,使得员工的工作计 划安排最优。
详细描述
排班问题是一个多约束优化问题,涉及到员工的工作时 间、班次、休息时间等多个因素。通过构建状态转移方 程和优先级规则,动态规划法能够求解出满足所有约束 条件的最佳排班方案。
生产调度问题
总结词
动态规划法可以应用于生产调度问题,优化生产流程 和资源分配。
策略
一系列决策的集合,表示从初始状态到终止状态的整个求解过程。
转移方程与最优解
转移方程
描述状态转移的数学方程,表示从一个状态转移到另一个状 态的关系。
最优解
在所有可能的策略中,能够使目标函数达到最优值的策略。
03
动态规划法的求解步骤
问题的分解
总结词
将复杂问题分解为若干个子问题
详细描述
动态规划法首先将原问题分解为若干个子问题,每个子问题都是原问题的简化版本。通过解决这些子 问题,可以逐步推导出原问题的解决方案。
02
动态规划法的基本概念
阶段与状态
01
阶段
将问题的求解过程划分为若干个 相互联系的阶段,以便按一定的 次序进行求解。
02
03
状态
状态转移
在某一时刻,问题所处的情况或 状态。
动态规划的具体操作,分四步

动态规划的具体操作,分四步动态规划是我学的最蛋疼的⼀个问题。
⼤家觉得呢•动态规划算法的⼀般步骤1.找出最优解的性质,并刻画其结构特征;2.递归地定义最优值;3.以⾃底向上的⽅式计算出最优值;根据计算最优值时得到的信息,构造最优解下⾯⽤⼀个例⼦来说明。
矩阵连乘问题(⾃⾏百度查⼀下是什么哈)•将矩阵连乘积AiAi+1…Aj记作A[i:j]–把问题转化成考察A[1:n]的最优计算次序问题–设计算次序在A[k]处将矩阵断开最优,则总计算量为: A[1:k] 的计算量加上A[k+1:n]的计算量,再加上A[1:k] 和A[k+1:n]相乘的计算量。
关键特征lA[1:n]的最优计算次序所包含的计算矩阵⼦链A[1:k]和A[k+1:n]的次序也是最优的。
(可⽤反证法证明)——问题的最优解包含了其⼦问题的最优解,这种性质称为最优⼦结构性质。
对矩阵:A1A2A3A4A5A6,可能的最优解A1(A2A3)|A4(A5A6)最优解:A[1:6]=A[1:3]+A[4:6]+A[1:3]*A[4:6]–A[1:3]与A[4:6]也必分别为最优解(计算总量最少),因为其⽆关;–若有A’[1:3]⼩于A[1:3],由后两项不改变,则A[1:6]不是最⼩,故与前提⽭盾;递归地定义最优值。
•设计算A[i:j],1≤i≤j ≤n,所需的最少数乘次数为m[i][j]——则原问题的最优解为m[1][n]–考察两种情况•i=j;•i<j;m[i][j] = 0+m[i+1][j]+ p[i-1]*p[i]*p[j];for (k = i+1; k < j; k++) {t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];if (t < m[i][j]) m[i][j] = t;}void MatrixChain(int *p,int n,int **m,int **s) {for (j = 2; j <= n; j++)for (i = j-1; i >= 1; i--) {m[i][j] = m[i+1][j]+ p[i-1]*p[i]*p[j];s[i][j] = i;for (k = i+1; k < j; k++) {t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];if (t < m[i][j]) { m[i][j] = t; s[i][j] = k; }}}} //算法的计算时间上界为O(n3)。
动态规划法

动态规划法动态规划法(Dynamic Programming)是一种常用的算法思想,主要用于解决具有重叠子问题性质和最优子结构性质的问题。
动态规划法通过把问题分解为更小的子问题,并将子问题的解存储起来,以避免重复计算,从而提高了算法的效率。
动态规划法有两个核心概念:状态和状态转移方程。
在动态规划过程中,我们需要定义状态,即问题的子问题解,以及状态之间的关系,即状态转移方程。
动态规划法的一般步骤如下:1. 定义问题的子问题:将问题划分为更小的子问题,并明确子问题的解是什么。
2. 定义状态:将问题的子问题解抽象为状态,即用一个变量或者数组表示子问题的解。
3. 定义状态转移方程:根据子问题的关系,定义状态之间的转移方程,即如何根据已知的子问题解计算出更大的问题的解。
4. 缓存子问题解:为了避免重复计算,我们需要将已经计算过的子问题解存储起来,以便后续使用。
5. 递推计算:通过状态转移方程和缓存的子问题解,逐步计算出更大的问题的解,直到计算出最终的问题解。
动态规划法的关键在于找到正确的状态转移方程和合理的存储子问题解的方式。
有些问题的状态转移方程比较容易找到,比如斐波那契数列,每个数都是前两个数的和;而有些问题的状态转移方程可能比较复杂,需要通过观察问题的特点和具体分析来确定。
动态规划法的时间复杂度通常为O(n),其中n 表示问题规模。
由于利用了子问题的解,避免了重复计算,因此动态规划法相对于暴力求解法能够大大提高算法的效率。
但是,动态规划法的空间复杂度通常较高,需要存储大量的子问题解,因此在实际应用中需要权衡时间和空间的消耗。
总的来说,动态规划法是一种非常灵活且强大的算法思想,能够解决许多复杂的问题,特别适用于具有重叠子问题性质和最优子结构性质的问题。
通过正确定义状态和状态转移方程,并结合缓存子问题解和递推计算,我们可以高效地求解这类问题,提高算法的效率。
最优控制问题的动态规划法

最优控制问题的动态规划法动态规划法是一种常用的最优控制问题求解方法。
它通过将问题分解为子问题,并保存子问题的最优解,最终得到整体问题的最优解。
本文将介绍最优控制问题的动态规划法及其应用。
一、概述最优控制问题是指在给定控制目标和约束条件下,通过选择一组最优控制策略来实现最优控制目标。
动态规划法通过将问题分解为若干个阶段,并定义状态和决策变量,来描述问题的动态过程。
并且,动态规划法在求解过程中通过存储子问题的最优解,避免了重复计算,提高了计算效率。
二、最优控制问题的数学模型最优控制问题通常可以表示为一个关于状态和控制的动态系统。
假设系统的状态为$x(t)$,控制输入为$u(t)$,动态系统可以表示为:$$\dot{x}(t) = f(x(t), u(t))$$其中,$\dot{x}(t)$表示状态$x(t)$的变化率,$f$为状态方程。
此外,系统还有一个终止时间$T$,以及初始状态$x(0)$。
最优控制问题的目标是找到一个控制策略$u(t)$,使得系统在给定时间$T$内,从初始状态$x(0)$演化到最终状态$x(T)$,同时使得性能指标$J(x,u)$最小化。
性能指标通常表示为一个积分的形式:$$J(x,u) = \int_0^T L(x(t), u(t)) dt + \Phi(x(T))$$其中,$L$表示运动代价函数,$\Phi$表示终端代价函数。
三、最优控制问题的动态规划求解最优控制问题的动态规划求解包括两个主要步骤:状态方程的离散化和动态规划递推。
1. 状态方程的离散化将状态方程离散化可以得到状态转移方程。
一般来说,可以使用数值方法(如欧拉方法、龙格-库塔方法)对状态方程进行离散化。
通过选择适当的时间步长,可以平衡计算精度和计算效率。
2. 动态规划递推动态规划递推是最优控制问题的关键步骤。
假设状态函数$V(t,x)$表示从时刻$t$起,状态为$x$时的最优性能指标。
动态规划递推过程通常可以描述为以下几个步骤:(1)递推起点:确定最终时刻$T$时的值函数$V(T,x)$,通常可以根据终端代价函数$\Phi$直接得到。
最优控制问题的数值方法

最优控制问题的数值方法最优控制问题是应用数学中的一类重要问题,涉及到优化某些目标函数的控制策略。
这类问题在很多领域都有广泛的应用,如经济学、工程学、环境科学等。
为了求解最优控制问题,研究者们开发了多种数值方法,以提供高效准确的策略。
一、动态规划法动态规划法是求解最优控制问题中最常用的方法之一。
其基本思想是将问题划分为若干个阶段,在每个阶段选择最优的控制策略,以达到整体的最优目标。
动态规划法的核心是计算值函数或状态函数,通过递归的方式实现最优解的求解。
在动态规划法中,首先需要建立状态转移方程,描述状态之间的变化关系。
然后通过迭代求解,逐步更新值函数,直到收敛为止。
具体的计算方法可以根据不同的最优控制问题进行调整,以提高计算效率。
二、最优控制问题的间接方法除了动态规划法,最优控制问题还可以通过间接方法求解。
间接方法主要基于变分原理,通过构建哈密顿-雅可比-贝尔曼(HJB)方程来求解问题。
该方法将最优控制问题转化为一个偏微分方程,通过求解该方程得到最优解。
在应用最优控制问题的间接方法时,需要确定合适的控制参数,并在求解偏微分方程时进行迭代计算。
这种方法的优势在于能够处理一些非线性和约束等较为复杂的情况,但同时也带来了计算复杂度较高的问题。
三、最优控制问题的直接方法最优控制问题的直接方法是另一种常用的数值求解方法。
它直接构造控制策略的参数化形式,并通过参数调整来实现目标函数的最小化。
该方法需要事先构造一个合适的优化模型,并选择合适的优化算法进行求解。
在直接方法中,常用的优化算法有梯度下降法、共轭梯度法、牛顿法等。
通过迭代计算,优化参数逐步调整,直到达到最优解。
直接方法不需要建立状态函数或值函数,因此可以简化运算,但需要根据具体问题进行参数化建模和算法选择。
总结:在求解最优控制问题时,可以根据问题的特点选择适合的数值方法。
动态规划法适用于离散的最优控制问题,通过递归计算值函数实现最优策略的求解。
间接方法利用变分原理将问题转化为偏微分方程,并通过迭代计算获得最优解。
动态规划法解决复杂决策问题

动态规划法解决复杂决策问题动态规划(Dynamic Programming)是一种通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法。
它通常用于解决具有重叠子问题和最优子结构性质的问题,能够显著减少问题的重复计算,提高算法的效率。
在解决复杂决策问题时,动态规划被广泛应用,能够找到最优解或者接近最优解的解决方案。
本文将介绍动态规划法在解决复杂决策问题中的应用原理和具体步骤。
一、动态规划的基本概念动态规划是一种自底向上的求解方法,通过将原问题分解为若干个子问题,先求解子问题,再逐步推导出原问题的解。
动态规划的基本思想是利用之前计算过的结果来减少重复计算,从而提高算法效率。
在解决复杂决策问题时,动态规划可以帮助我们找到最优的决策方案。
二、动态规划的适用条件动态规划通常适用于具有以下两个特点的问题:1. 重叠子问题:原问题可以被分解为若干个重叠的子问题,这些子问题之间存在重复计算的情况。
2. 最优子结构:原问题的最优解可以通过子问题的最优解推导得到。
三、动态规划的解决步骤动态规划的解决步骤通常包括以下几个关键步骤:1. 确定状态:将原问题划分为若干个子问题,找到问题的状态变量,描述问题的特征。
2. 确定状态转移方程:根据子问题之间的关系,建立状态转移方程,描述问题的状态转移规律。
3. 初始化边界条件:确定边界条件,即最简单的子问题的解,作为递推的起点。
4. 递推求解:根据状态转移方程和边界条件,逐步求解子问题,直至求解出原问题的解。
5. 求解原问题:根据子问题的解,推导出原问题的解。
四、动态规划的应用实例下面通过一个具体的应用实例来说明动态规划法解决复杂决策问题的过程。
假设有一个旅行商人需要从城市A出发,经过若干个城市最终回到城市A,每个城市之间的距离已知。
旅行商人希望找到一条路径,使得总路程最短。
这是一个典型的旅行商问题,可以通过动态规划来解决。
1. 确定状态:定义状态dp[i][j]表示旅行商从城市A出发,经过集合j中的城市,最终到达城市i的最短路径长度。
动态规划法的一般方法

动态规划法的⼀般⽅法在学习动态规划法之前,我们先来了解动态规划的⼏个概念1、阶段:把问题分成⼏个相互联系的有顺序的⼏个环节,这些环节即称为阶段。
2、状态:某⼀阶段的出发位置称为状态。
3、决策:从某阶段的⼀个状态演变到下⼀个阶段某状态的选择。
4、状态转移⽅程:前⼀阶段的终点就是后⼀阶段的起点,前⼀阶段的决策选择导出了后⼀阶段的状态,这种关系描述了由k阶段到k+1阶段状态的演变规律,称为状态转 移⽅程。
动态规划法的定义:在求解问题中,对于每⼀步决策,列出各种可能的局部解,再依据某种判定条件,舍弃那些肯定不能得到最优解的局部解,在每⼀步都经过筛选,以每⼀步都是最优解来保证全局是最优解,这种求解⽅法称为动态规划法。
⼀般来说,适合于⽤动态规划法求解的问题具有以下特点:1、可以划分成若⼲个阶段,问题的求解过程就是对若⼲个阶段的⼀系列决策过程。
2、每个阶段有若⼲个可能状态3、⼀个决策将你从⼀个阶段的⼀种状态带到下⼀个阶段的某种状态。
4、在任⼀个阶段,最佳的决策序列和该阶段以前的决策⽆关。
5、各阶段状态之间的转换有明确定义的费⽤,⽽且在选择最佳决策时有递推关系(即动态转移⽅程)。
动态规划设计都有着⼀定的模式,⼀般要经历以下⼏个步骤:1、划分阶段:按照问题的时间或空间特征,把问题分为若⼲个阶段。
2、确定状态:将问题发展到各个阶段时所处的各种客观情况⽤不同的状态表⽰出来。
3、确定决策并写出状态转移⽅程:因为决策和状态转移有着天然的联系,状态转移就是根据上⼀阶段的状态和决策来导出本阶段的状态,所以如果确定了决策,状态转移⽅程也就可以写出。
4、寻找边界条件:给出的状态转移⽅程是⼀个递推式,需要⼀个递推的终⽌条件或边界条件。
5、程序设计实现:动态规划的主要难点在于理论上的设计,⼀旦设计完成,实现部分就会⾮常简单。
根据以上的步骤设计,可以得到动态规划设计的⼀般模式:for k:=阶段最⼩值to 阶段最⼤值do {顺推每⼀个阶段}for I:=状态最⼩值to 状态最⼤值do {枚举阶段k的每⼀个状态}for j:=决策最⼩值to 决策最⼤值do {枚举阶段k中状态i可选择的每⼀种决策}f[ik]:=min(max){f[ik-1]+a[ik-1,jk-1]|ik-1通过决策jk-1可达ik}例如:多段图G=(V,E)是⼀个有向图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将整个过程分成若干级,逐级进行决策。具体过程如下:
将 A 至 F 全程分为五级:第一级由 A 至 BB1, B2, B3 ;第二级由 B
B1, B2, B3 至 C C1,C2,C3 ;第三级由 C C1,C2,C3 至 DD1, D2, D3 ;第四
级由 DD1, D2, D3 至 E E1, E2 ;第五级由 E E1, E2 至 F 。让我们由后 向前逐级分析,先从第五级开始,其起点为 E E1, E2 ,终点为 F 。
N 1
J x k ,uk k 0
(9-7)
现在要求选择 u0,u1,L ,uk 1使性能指标 J N 达最小,这就
是 N 级决策问题。我们可以应用动态规划法来求解。根据最优性原
理,对 N 级最优决策过程来说,不论第一级控制向量 u0 怎样选 定,余下的 N 1级过程,从 u0 产生的状态 x 1 f x 0,u0 作为
⑵ 采取逐级分析的方法,一般由最后一级开始倒向进行。
⑶ 在每一级决策时,不只考虑本级的性能指标的最优,而是同 时考虑本级及以后的总性能指标最优,因此它是根据“全局”最优 来作出本级决策的。
⑷ 从数学观点,分级决策法与穷举法进行比较:
穷举法:全程五级线路,每一级都可任选,因此全部路程相当于 一个“五变量函数”,求全程最短实质上是求这个“五变量函数” 的极小值。
⑸ 在最后一级开始倒向逐级分析中,我们发现,由于各站的起 始点并未确定,因此需要把各中间站的所有通过点作为出发点进 行计算,并将所有对应的最佳决策存进计算机,建立起一个完整 的“档案库”,因此要求计算机有相当大的容量。
(6)第一级起始条件(地)是确定的,因此只有逐级倒向分析到第 一级时,才能作出确定的第一级决策,然后再根据第一级决策顺向 确定各级的起始条件(各站的通过点),这时由于“档案库”中存 有全部“资料”,因此用“查档”的方法就可逐级确定决策。由此 可见,一般情况下,多级决策过程包括两个过程:倒向“建档”及 顺向“查档”,而大量的计算工作是花费在建立“档案库”上。
起点,必须构成 N 1 级最优过程。
如果我们用wN x 0 表示 N 级过程的性能指标的极小值,wN1 x 1
表示 N 1级过程性能指标的极小值,则我们就可以列写出级决策过 程的函数方程为:
w
x
0
min
u0
J x 0,u 0 wN1 f x 0,u 0
(9-8)
由此可见,第一级决策实质上是函数
个可供选择的通过点,各地之间的距离已用数字标注在图中。由此 可见,通过这些中间站时,有多个方案可供选择。
解决这类问题有两种方法:
1.探索法(穷举法) 将至的所有可能的路线方案都列举出来,算出每条路线的路程,
进行比较,找出最短路线。直观可知,这种方法是很费时的,如 本例共有38条路线可供选择。如果中间站及各站可供选择的通过 点都增为10个,则可供选择的路线将急剧增至1010条,显然计算 工作量将急剧增加。
最优性原理是动态规划法的基础和核心。动态规划法就是对一个 多级过程,应用最优性原理,进行分级决策,求出最优控制的一种 数学方法。
3、 多级决策过程的函数方程
应用动态规划法求解过程的最优决策时,首先要根据最优性原 理将多级决策过程表示成如下数学表达式:
wk
xk
min uki
d
xk , xk1,i
(9-4)
这时,第一步的性能指标为:
J1 J x 0,u0
(9-5)
要求选择控制 u0 ,使 J x 0,u0 达最小。这是一个一级决
策过程。
第二步,系统在 u1 作用下由 x1 转移到x2 f x 1,u1,转 移中的性能指标为 J x1,u1 ,则两步转移的总性能指标为:
J2 J x 0,u0 J x 1,u1
wk1 xk1,i
(9-1)
式中 wk xk ――k 级决策过程的始点 xk 至终点 xi 的最小消耗;
d xk , xk1,i ――由k 级决策过程始点 xk 至下一步到达点xk1,i 的一步
消耗;
uki ―― k 级决策过程始点 xk 处所采取的控制决策,从而使 状态转移到下一步 xk1,i 。
cx2 0 J2min 21 2c
x1 1 c x0
1 2c
最后得最优控制为: u* 0 cx0,u* 1 cx0
1 2c
1 2c
最优轨线为:x* 0 x0,x* 1 1 c x 0,x* 2 x0
1 2c
1 2c
最优性能指标为:
J* cx2 0 21 2c
w4
B2
min u4 i
d
B2
, Ci
w3
Ci
(9-2)
式中: B2
Ci
u4i
――四级过程的起点;
――由B2出发到达下一步 C 站的某个可能通过点,它 可能为 C1、C2 或 C3 ;
――由 B2至 C 站的路线选择(本级决策);
d B2,Ci ――由B2至 Ci 之间的路程; w3 Ci ――从Ci 至F 终点的最短路程。
41 5 224 61 7 9 2 11 71 8 52 7
可以发现,如果从D1出发,则走 D1 E2 F 为最短,因此 D1至 E 应选 D1 E2这段路线,称为决策。同理,如果从D2出发,应决策 D2 E1;从D3出发,应决策 D3 E2。可见作此决策时不能只从本 级路程长短出发,应考虑两级路程之和为最短。在整个路线问题 中,究竟 D1,D2,D3 哪一点作为起点,则取决于第三级的决策,不 过提出的三条可能的最短路线为第三级的决策积累了数据资料。
E1, E2至 F 各只有一条路线,并无选择余地。E1 至F 路程为1,E2 至 F
路程为2。第四级起点为DD1, D2, D3 ,终点为 E E1, E2 ,其间有六条
路线,由D 至 F 的各种可能路线为:
D1 E1 F D1 E2 F D2 E1 F D2 E2 F D3 E1 F D3 E2 F
第九章 动态规划法
动态规划法是求解控制变量限制在一定闭集内的最优控制问题 的又一种重要方法,它是由美国学者贝尔曼于1957年提出来的。 动态规划法把复杂的最优控制问题变成多级决策过程的递推函数关 系,它的基础及核心是最优性原理。本章首先介绍动态规划法的基 本概念,然后讨论如何用动态规划法求解离散及连续系统的最优控 制问题。
由表7-1可知
d B2,C1 w3 C1 4 5 9 d B2,C2 w3 C2 3 11 14 d B2,C3 w3 C3 5 8 13
三者进行比较,由此作出第一级决策为u4,1 即应选B2 C1路线。这
时B2 F 最小路程为w4 B2 9 。
函数方程是一个递推方程,一般说来,难于获得解析解,需要用 数 字计算机求解。
(9-6)
这里,因为 x0 已知,而 x 1 f x 0,u0 ,因此在上述两步转 移的总性能指标中,只有u0及 u1未知。现在要求选择 u0 及u1
,使两步性能指标达极小。这就是二级决策问题。
依次类推,系统状态由 x0 作起点进行 N 步转移,则 N 步转移
的总性能指标为:
JN J x 0,u0 J x 1,u1 L J x N 1,u N 1
如采用控制u0,则有
x1 x0 u0
J2min
min
u0
1 2
u
2
0
J1min
min
u0
Байду номын сангаас
1 2
u
2
0
c 2
x2 1
1 c
min
u0
1 2
u2
0
2
c
1
c
x
0
u
02
令
u
0
1 2
u2
0
2
c
1
c
x
0
u
0
2
0
有
u 0 cx 0
1 2c
相应的最优性能指标及 x1 为:
可见同样方法来分析第三级,其起点为C C1,C2,C3 ,终点为 D D1, D2, D3 ,按题意共有八条路线。但是,D1,D2,D3至 F 的最短路
线已在第四级讨论中确定,因此C D F 的路线选择问题,实际 上只是选定级 C D 的路线问题(即本级决策问题)。因此,C 至 F 只有八条路线,分别为
J x 0,u0 wN1 f x 0,u0
对第一级的控制决策 u0 求极值的问题。求解递推方程(9-8),就 可解得最优控制决策 u0,u1,L ,uk 1 。
例9-1 设离散系统状态方程为:
xk 1 xk uk
k 0,1,L , N 1
初始条件为 x0,控制变量 u不受限制,性能指标为
第二节 动态规划法解离散系统的 最优控制问题
设系统状态方程为
x k 1 f x k ,uk
k 0,1,L , N 1 (9-3)
式中,xk 为n 维状态向量,uk 为m 维控制向量,设J xk ,uk
为每一步转移中的性能指标。
第一步,系统初始状态x0在u0 作用下转移至 x1 ,即
x 1 f x 0,u0
JN
1 cx2 N
2
1 2
N1u2 k
k 0
求最优控制 u* k ,使 J 达最小。
解: 为简单起见,设 N 2,则这是一个二步控制问题,性能指标 可表示成:
J2
1 2
cx2
2
1 2
u2
0
1 2
u2
1
首先考虑最后一步,即由某状态 x1出发到达x2的一步,如采 用控制 u1,则有
x2 x1 u1
第一节 动态规划法的基本概念
一、多级决策过程
所谓多级决策过程是指把一个过程分成若干级,而每一级都需作 出决策,以便使整个过程达到最佳效果。为了说明这个概念,首先 讨论一个最短路线问题的例子。