动态规划的基本方法

合集下载

运筹学教案动态规划

运筹学教案动态规划

运筹学教案动态规划一、教学目标1. 了解动态规划的基本概念及其在运筹学中的应用。

2. 掌握动态规划的基本原理和方法,能够解决实际问题。

3. 学会使用动态规划解决最优化问题,提高解决问题的效率。

二、教学内容1. 动态规划的基本概念动态规划的定义动态规划与分治法的区别2. 动态规划的基本原理最优解的性质状态转移方程边界条件3. 动态规划的方法递推法迭代法表格法4. 动态规划的应用背包问题最长公共子序列最短路径问题三、教学方法1. 讲授法:讲解动态规划的基本概念、原理和方法。

2. 案例分析法:分析实际问题,引导学生运用动态规划解决问题。

3. 编程实践法:让学生动手编写代码,加深对动态规划方法的理解。

四、教学准备1. 教材:《运筹学导论》或相关教材。

2. 课件:动态规划的基本概念、原理、方法及应用案例。

3. 编程环境:为学生提供编程实践的平台,如Python、C++等。

五、教学过程1. 引入:通过一个实际问题,引出动态规划的概念。

2. 讲解:讲解动态规划的基本原理和方法。

3. 案例分析:分析实际问题,展示动态规划的应用。

4. 编程实践:让学生动手解决实际问题,巩固动态规划方法。

5. 总结:对本节课的内容进行总结,强调动态规划的关键要点。

6. 作业布置:布置相关练习题,巩固所学知识。

六、教学评估1. 课堂讲解:评估学生对动态规划基本概念、原理和方法的理解程度。

2. 案例分析:评估学生运用动态规划解决实际问题的能力。

3. 编程实践:评估学生动手实现动态规划算法的能力。

4. 课后作业:评估学生对课堂所学知识的掌握情况。

七、教学拓展1. 研究动态规划与其他优化方法的联系与区别。

2. 探讨动态规划在运筹学其他领域的应用,如库存管理、生产计划等。

3. 了解动态规划在、数据挖掘等领域的应用。

八、教学反思1. 反思本节课的教学内容、方法和过程,确保符合教学目标。

2. 考虑学生的反馈,调整教学方法和节奏,提高教学效果。

3. 探讨如何将动态规划与其他运筹学方法相结合,提高解决问题的综合能力。

动态规划算法在路径规划中的应用

动态规划算法在路径规划中的应用

动态规划算法在路径规划中的应用路径规划在日常生活中随处可见,比如搜索最短路线、规划旅游路线、寻找交通路线等等。

其中,动态规划算法被广泛应用于路径规划领域,可解决诸如最短路径、最小花费路径等问题。

这篇文章将介绍动态规划算法在路径规划中的应用。

一、动态规划算法的基本原理动态规划算法是一种求解多阶段决策问题的优化方法。

它将问题分成多个子问题,并分别求解这些子问题的最优解。

最后通过不断合并子问题的最优解得到原问题的最优解。

其基本思想可以用以下三个步骤来概括:1.确定状态:将原问题分解成若干个子问题,每个子问题对应一个状态。

2.确定状态转移方程:确定每个状态之间的转移关系。

3.确定边界条件:确定初始状态和结束状态。

动态规划算法通常包括两种方法:自顶向下的记忆化搜索和自底向上的迭代法。

其中,自顶向下的记忆化搜索依赖于递归调用子问题的解,而自底向上的迭代法则通过维护状态表来解决问题。

二、动态规划算法在路径规划中的应用路径规划是动态规划算法的一个重要应用场景。

动态规划算法可以用来求解最短路径、最小花费路径、最大价值路径等问题。

这里以求解最短路径为例,介绍动态规划算法在路径规划中的应用。

1.问题定义假设我们需要从城市A走到城市B,中途经过若干个城市。

每个城市之间的距离已知,现在需要求出从城市A到城市B的最短路径。

这个问题可以用动态规划算法来求解。

2.状态定义在这个问题中,我们可以用一个二元组(u, v)表示从城市u到城市v的一条路径。

因此,在求解最短路径问题时,我们需要进行状态定义。

通常情况下,状态定义成一个包含一个或多个变量的元组,这些变量描述了在路径中的某个位置、某种状态和其他有关的信息。

在这个问题中,状态定义为S(i,j),它表示从城市A到城市j的一条路径,该路径经过了城市集合{1, 2, …, i}。

3.状态转移方程状态转移方程描述了相邻状态之间的关系,即从一个状态到另一个状态的计算方法。

在求解最短路径问题时,状态转移方程可以定义为:d(i, j) = min{d(i-1, j), d(i, k) + w(k, j)}其中,d(i,j)表示从城市A到城市j经过城市集合{1, 2, …, i}的最短路径长度。

动态规划方法求解线性规划问题

动态规划方法求解线性规划问题

动态规划方法求解线性规划问题引言概述:动态规划是一种常用的优化方法,可以用于求解各种复杂的问题。

在线性规划问题中,动态规划方法也可以发挥重要作用。

本文将介绍动态规划方法在求解线性规划问题中的应用,并分为四个部份进行详细阐述。

一、线性规划问题的定义和特点1.1 线性规划问题的定义线性规划是一种数学建模方法,用于求解一类特殊的优化问题。

它的目标函数和约束条件都是线性的。

1.2 线性规划问题的特点线性规划问题具有可行解的存在性、有界性和最优性。

同时,线性规划问题的解空间是一个凸多面体。

二、动态规划方法的基本思想2.1 动态规划的基本原理动态规划是一种将问题分解为子问题并保存子问题解的方法。

通过递归地求解子问题,最终得到原问题的解。

2.2 动态规划方法的三个基本步骤动态规划方法包括问题的划分、状态的定义和状态转移方程的建立。

通过这三个步骤,可以得到问题的最优解。

2.3 动态规划方法的优点动态规划方法具有时间和空间复杂度低的优点,可以有效地求解大规模的优化问题。

三、动态规划方法在线性规划问题中的应用3.1 线性规划问题的动态规划模型将线性规划问题转化为动态规划模型,可以通过动态规划方法求解。

其中,状态的定义和状态转移方程的建立是关键。

3.2 动态规划方法求解线性规划问题的步骤通过将线性规划问题转化为动态规划模型,可以按照动态规划方法的三个基本步骤求解线性规划问题。

3.3 动态规划方法求解线性规划问题的实例通过一个具体的实例,详细介绍动态规划方法在求解线性规划问题中的具体应用步骤和求解过程。

四、动态规划方法在线性规划问题中的局限性和改进方法4.1 动态规划方法的局限性动态规划方法在求解线性规划问题时,可能会面临状态空间过大、计算复杂度高等问题。

4.2 动态规划方法的改进方法为了解决动态规划方法的局限性,可以采用剪枝策略、状态压缩等方法来提高求解效率。

结论:动态规划方法在求解线性规划问题中具有重要的应用价值。

动态规划-动态规划-美国数学家贝尔曼-动态规划领域

动态规划-动态规划-美国数学家贝尔曼-动态规划领域

物品
1 2 … j …n
重量(公斤/件) a1 a2 … aj … an
每件使用价值 c1 c2 … cj … cn
类似问题:工厂里的下料问题、运输中的 货物装载问题、人造卫星内的物品装载问题等。
生产决策问题:企业在生产过程中,由于需求 是随时间变化的,因此企业为了获得全年的最佳 生产效益,就要在整个生产过程中逐月或逐季度 地根据库存和需求决定生产计划。
描述状态的变量称为状态变量,它可用一个数、 一组数或一向量(多维情形)来描述,第k阶段 的状态变量常用sk表示,通常一个阶段有若干个 状态。
第k阶段的状态就是该阶段所有始点的集合, 用Sk表示。在第1阶段状态变量s1是确定的,称初 始状态。如引例中:
S1 A,S2 B1, B2, B3,S3 C1,C2,C3,S4 D1, D2
min
4
9
12
决策点为B3
AB3
f2
B3
3 9*
f1(A)=12说明从A到E的最短距离为12,最短路 线的确定可按计算顺序反推而得。即
A→B3→C2→D2→E 上述最短路线问题的计算过程,也可借助于图
形直观的表示出来:
12 2 A4
3
11
B1
7 4
6
93
B2 2
4
96
B3
2 5
6
C1 3
多阶段决策过程特点:
(1)根据过程的特性可以将过程按空 间、时间等标志分为若干个互相联系又互相 区别的阶段。
(2)在每一个阶段都需要做出决策,从 而使整个过程达到最好的效果。
(3)在处理各阶段决策的选取上,不仅只 依赖于当前面临的状态,而且还要注意对以后 的发展。即是从全局考虑解决局部(阶段)的 问题。

动态规划的基本概念与方法

动态规划的基本概念与方法

动态规划的基本概念与方法动态规划(Dynamic Programming,简称DP)是解决一类最优化问题的一种方法,也是算法设计中的重要思想。

动态规划常用于具有重叠子问题和最优子结构性质的问题。

它将问题分解为子问题,并通过求解子问题的最优解来得到原问题的最优解。

动态规划的基本概念是“最优子结构”。

也就是说,一个问题的最优解可以由其子问题的最优解推导出来。

通过分解问题为若干个子问题,可以形成一个递归的求解过程。

为了避免重复计算,动态规划使用一个表格来保存已经计算过的子问题的解,以便后续直接利用。

这个表格也被称为“记忆化表”或“DP表”。

动态规划的基本方法是“状态转移”。

状态转移指的是,通过已求解的子问题的解推导出更大规模子问题的解。

常用的状态转移方程可以通过问题的递推关系定义。

通过定义好状态转移方程,可以通过迭代的方式一步步求解问题的最优解。

在动态规划中,通常需要三个步骤来解决问题。

第一步,定义子问题。

将原问题划分为若干个子问题。

这些子问题通常与原问题具有相同的结构,只是规模更小。

例如,对于计算斐波那契数列的问题,可以定义子问题为计算第n个斐波那契数。

第二步,确定状态。

状态是求解问题所需要的所有变量的集合。

子问题的解需要用到的变量就是状态。

也就是说,状态是问题(解决方案)所需要的信息。

第三步,确定状态转移方程。

状态转移方程通过已求解的子问题的解推导出更大规模子问题的解。

通常情况下,状态转移方程可以通过问题的递推关系确定。

在实际应用中,动态规划常用于求解最优化问题。

最优化问题可以归纳为两类:一类是最大化问题,另一类是最小化问题。

例如,最长递增子序列问题是一个典型的最大化问题,而背包问题是一个典型的最小化问题。

动态规划的优势在于可以解决许多复杂问题,并且具有可行的计算复杂度。

但是,动态规划也有一些限制。

首先,动态规划要求问题具有重叠子问题和最优子结构性质,不是所有问题都能够满足这两个条件。

其次,动态规划需要存储计算过的子问题的解,对于一些问题来说,存储空间可能会非常大。

运筹学教材编写组《运筹学》课后习题-动态规划的基本方法(圣才出品)

运筹学教材编写组《运筹学》课后习题-动态规划的基本方法(圣才出品)
由此,可得出三条最优的运输路线:
(1) A → B2 →C1 → D1 → E ;(2) A → B3 →C1 → D1 → E ; (3) A → B3 →C2 → D2 → E 。
8.3 计算从 A 到 B、C 和 D 的最短路线。已知各段路线的长度如图 8-2 所示。
图 8-2
解:设阶段变量 k = 1, 2,3, 4 ,依次表示 4 个阶段选择路线的过程;状态变量 sk 表示第 k 阶段初所处的位置;决策变量 xk 表示第 k 阶段初可能选择的路线;最优值函数 fk (sk ) 表示 从起点 A 到第 k 阶段状态 sk 的最短距离,则有
xn =sn
n
xn
,或 fn+1(sn+1) = 0
n
(2)设状态变量为 sk = ai xi (k = 1, 2, n) ,状态转移方程为 sk+1 = sk − ak xk ,最 i=k
n
优值函数 fk (sk ) 表示在 sk 状态下从第 k 阶段到第 n 阶段使 z = ci xi2 最小的值,则动态规 i=k
划的基本方程为:
3 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台

fk (sk )
=
min
0xk sk ak
{ck
xk2
+
f k +1 (sk
− ak xk )}
fn+1(sn − anxn ) = 0(k = n, n −1, 2,1)
8.5 用递推方法求解下列问题。
=
max {2
0x3 10
x32
+
f2 (s2 )} =
max {2
0x3 10

动态规划习题详解

动态规划习题详解

动态规划动态规划是运筹学的一个分支,它是解决多阶段决策过程最优化问题的一种方法。

该方法是由美国数学家贝尔曼(R.Bellman)等人在本世纪50年代初提出的。

他们针对多阶段决策问题的特点,提出了解决这类问题的“最优化原理”,并成功地解决了生产管理、工程技术等方面的许多实际问题,从而建立了运筹学的一个新分支——动态规划。

他的名著《动态规划》于1957年出版,该书是动态规划的第一本著作。

动态规划是现代企业管理中的一种重要决策方法,在工程技术、经济管理、工农业生产及军事及其它部们都有广泛的应用,并且获得了显著的效果。

动态规划可用于解决最优路径问题、资源分配问题、生产计划与库存问题、投资分配问题、装载问题、设备更新与维修问题、排序问题及生产过程的最优控制等。

由于它所具有独特的解题思路,在处理某些优化问题时,常常比线性规划或非线性规划方法更有效。

第一节动态规划的基本方法多阶段决策的实际问题很多,下面通过具体例子,说明什么是动态规划模型及其求解方法。

例1:最短路线问题某工厂需要把一批货物从城市A运到城市E,中间可经过B1 、B2、B3、C1、C2、C3、D1、D2等城市,各城市之间的交通线和距离如下图所示,问应该选择一条什么路线,使得从A到E的距离最短?下面引进几个动态规划的基本概念和相关符号。

(1)阶段(Stage)把所给问题的过程,按时间和空间特征划分成若干个相互联系的阶段,以便按次序去求每个阶段的解,阶段总数一般用字母n表示,用字母k表示阶段变量。

如例l中 (最短路线问题)可看作是n=4阶段的动态规划问题,k=2表示处于第二阶段。

(2)状态(State)状态表示每个阶段开始时系统所处的自然状况或客观条件,它描述了研究问题过程状况。

描述各阶段状态的变量称为状态变量,常用字母sk表示第k阶段的状态变量,状态变量的取值范围称为状态集,用Sk表示。

如例l中,第一阶段的状态为A(即出发位置)。

第二阶段有三个状态:B1 、B2、B3,状态变量s2=B2表示第2阶段系统所处的位置是B2。

动态规划法的一般方法

动态规划法的一般方法

动态规划法的⼀般⽅法在学习动态规划法之前,我们先来了解动态规划的⼏个概念1、阶段:把问题分成⼏个相互联系的有顺序的⼏个环节,这些环节即称为阶段。

2、状态:某⼀阶段的出发位置称为状态。

3、决策:从某阶段的⼀个状态演变到下⼀个阶段某状态的选择。

4、状态转移⽅程:前⼀阶段的终点就是后⼀阶段的起点,前⼀阶段的决策选择导出了后⼀阶段的状态,这种关系描述了由k阶段到k+1阶段状态的演变规律,称为状态转 移⽅程。

动态规划法的定义:在求解问题中,对于每⼀步决策,列出各种可能的局部解,再依据某种判定条件,舍弃那些肯定不能得到最优解的局部解,在每⼀步都经过筛选,以每⼀步都是最优解来保证全局是最优解,这种求解⽅法称为动态规划法。

⼀般来说,适合于⽤动态规划法求解的问题具有以下特点:1、可以划分成若⼲个阶段,问题的求解过程就是对若⼲个阶段的⼀系列决策过程。

2、每个阶段有若⼲个可能状态3、⼀个决策将你从⼀个阶段的⼀种状态带到下⼀个阶段的某种状态。

4、在任⼀个阶段,最佳的决策序列和该阶段以前的决策⽆关。

5、各阶段状态之间的转换有明确定义的费⽤,⽽且在选择最佳决策时有递推关系(即动态转移⽅程)。

动态规划设计都有着⼀定的模式,⼀般要经历以下⼏个步骤:1、划分阶段:按照问题的时间或空间特征,把问题分为若⼲个阶段。

2、确定状态:将问题发展到各个阶段时所处的各种客观情况⽤不同的状态表⽰出来。

3、确定决策并写出状态转移⽅程:因为决策和状态转移有着天然的联系,状态转移就是根据上⼀阶段的状态和决策来导出本阶段的状态,所以如果确定了决策,状态转移⽅程也就可以写出。

4、寻找边界条件:给出的状态转移⽅程是⼀个递推式,需要⼀个递推的终⽌条件或边界条件。

5、程序设计实现:动态规划的主要难点在于理论上的设计,⼀旦设计完成,实现部分就会⾮常简单。

根据以上的步骤设计,可以得到动态规划设计的⼀般模式:for k:=阶段最⼩值to 阶段最⼤值do {顺推每⼀个阶段}for I:=状态最⼩值to 状态最⼤值do {枚举阶段k的每⼀个状态}for j:=决策最⼩值to 决策最⼤值do {枚举阶段k中状态i可选择的每⼀种决策}f[ik]:=min(max){f[ik-1]+a[ik-1,jk-1]|ik-1通过决策jk-1可达ik}例如:多段图G=(V,E)是⼀个有向图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13 13
1
C1
10
6 81Βιβλιοθήκη 185 3B116 8
3
6
2 3 D1 2 1 D2 2
7
7
E1
5 5 5 5 E2 2 6
3 4
A
B2
7
C2 5 9 9 3 C3 C4
3 4
6
F1 F2
6
4
3 3 3
G
8
6 12
8 3
9
D3
3
E3






• 例2、某企业有5000万元的一笔投资款,拟投资三个 项目,对每个项目的投资方案、投资金额、投资效益 (新增加收益)如表。问这笔资金应如何分配使用, 使总收益最大?
0 2 3 4
0 7 11 13
一、确定基本要素及递推关系
• 1、 企业Ⅰ K=3 过程进行方向 企业Ⅱ K=2 企业Ⅲ K=1
• 2、状态转移方程 • 3、递推关系式
sk Sk 1 xk 1
f 0* ( S 0 ) 0, * * f k 1 ( S k 1 ) max{Rk 1 ( S k 1 , xk 1 ) f k ( S k )} xk 1 Sk 1 {Rk 1 ( S k 1 , xk 1 ) f k* ( S k 1 xk 1 )} max xk 1 Sk 1
第二节 动态规划的基本方法
• 动态规划的基本解法: • 1、网络图解法; • 2、表格法; • 3、迭代法。 • 三种方法的共同点: • 都是用逆推计算方法,即由最后一个阶 段往回推到最前的一个阶段实现最优。
一、网络图解法
• 例1、如图给定一个线路网络,两点之间连线上的 数字表示两点之间的距离(或费用),试求一条由 • A G 的铺管线路,使总距离最短(或费用 最少)。
投资金额 (万元) 0 1000 2000 3000 4000 投资效益(万元)
项目Ⅰ
0 1500 2600 3500 ----
项目Ⅱ
0 ---2800 3900 4000
项目Ⅲ
0 1300 2500 -------
4100
B
2000(2600) 5300
3000(3900) 2000(2800)
表一
S1(万元) 0 1
f (S1(万元) ) 0 0
* 1
* x1
0 0
2 3 4 4 4 4
2 3 4 5 6 7
7 11 13 13 13 13
表二
表三
三、连续型动态规划的函数迭代法
三、函数迭代法求解动态规划的步骤
0
F
0(0) 1000(1300)
6800
C
1000(1500) 2800 3000(3500)
4000(4200) 2000(2800) 1300 3000(3900)
A
2000(2800)
4000(4000)
G
2000(2500) 200(2500) 2500
I
D
0(0) 6400
0(0)
E
3000(3900)
H



二、表格法
• 例3 某公司欲将7万元的资金分配给下属三个企业, 资金分配方案及在此方案下各企业的预期收益如表, 公司在现有方案中,采用哪种组合才使公司的预期 收益最高?
企业
分配方案 及收益 分配

收益 分配

收益 分配

收益
1 2 3 4
0 1 2 3
0 5 8 10
0 1 3 5
0 3 9 11
相关文档
最新文档