动态规划算法和贪心算法的比较与分析
数学建模中的动态规划与贪心算法

在现代数学建模中,动态规划和贪心算法是两种常用的方法。
它们具有重要的理论和实际意义,可以在很多实际问题中得到应用。
动态规划是一种通过将问题分解为子问题,并反复求解子问题来求解整个问题的方法。
它的核心思想是将原问题分解为若干个规模较小的子问题,并将子问题的最优解合并得到原问题的最优解。
动态规划的求解过程通常包括问题的建模、状态的定义、状态转移方程的确定、初始条件的设置和最优解的确定等步骤。
通过动态规划方法,可以大大减少问题的求解时间,提高求解效率。
举个例子,假设我们有一组物品,每个物品有重量和价值两个属性。
我们希望从中选出一些物品放入背包中,使得在背包容量限定的条件下,背包中的物品的总价值最大化。
这个问题可以使用动态规划来解决。
首先,我们定义一个状态变量,表示当前的背包容量和可选择的物品。
然后,我们根据背包容量和可选择的物品进行状态转移,将问题分解为子问题,求解子问题的最优解。
最后,根据最优解的状态,确定原问题的最优解。
与动态规划相比,贪心算法更加简单直接。
贪心算法是一种通过每一步的局部最优选择来达到全局最优解的方法。
贪心算法的核心思想是每一步都做出当前看来最好的选择,并在此基础上构造整个问题的最优解。
贪心算法一般包括问题的建模、贪心策略的确定和解的构造等步骤。
尽管贪心算法不能保证在所有情况下得到最优解,但在一些特定情况下,它可以得到最优解。
举个例子,假设我们要找零钱,现有的零钱包括若干2元、5元和10元的硬币。
我们希望找出一种最少的方案来凑出某个金额。
这个问题可以使用贪心算法来解决。
首先,我们确定贪心策略,即每次选择最大面额的硬币。
然后,我们根据贪心策略进行解的构造,直到凑够目标金额。
动态规划和贪心算法在数学建模中的应用广泛,在实际问题中也有很多的成功应用。
例如,动态规划可以用于求解最短路径、最小生成树等问题;贪心算法可以用于求解调度、路径规划等问题。
同时,动态规划和贪心算法也相互补充和影响。
有一些问题既可以使用动态规划求解,也可以使用贪心算法求解。
组合优化问题中的算法设计与分析研究

组合优化问题中的算法设计与分析研究组合优化问题是指那些寻找在给定约束条件下最优组合方案的问题,这类问题在工程、管理、金融等许多领域都有广泛应用。
算法的设计与分析是解决这类问题中至关重要的一环。
本文将重点讨论组合优化问题中的算法设计与分析的研究现状和未来发展。
一、算法设计1.贪心算法贪心算法是一种基于贪心策略的求解优化问题的算法,即从局部最优解出发寻找全局最优解。
该算法思想简单、易于实现,但仅适用于某些特殊情况下,例如最小生成树问题、背包问题等。
然而,针对一些复杂的组合优化问题,贪心算法并不能保证得到全局最优解。
因此,在实际应用中需要结合其他算法使用。
2.动态规划算法动态规划算法是一种基于维护状态转移序列的算法,能够解决包括背包问题、最短路问题等在内的许多组合优化问题。
该算法在实现上较为复杂,需要先确定状态转移方程、状态转移矩阵等,并且需要耗费大量的时间和空间资源。
但是,动态规划算法得到的结果是全局最优解,因此能够比较好地满足实际应用需求。
3.遗传算法遗传算法是一种基于自然进化的算法,模拟自然选择和基因遗传过程来寻找全局最优解。
该算法不要求对问题的数学模型进行精确分析,在实现上相对简便。
但是,遗传算法需要依赖于个体的初始状态,因此对于问题的求解具有随机性和不确定性,并不能保证获得全局最优解。
因此,在设计应用时,需要对算法进行改进和优化。
二、算法分析1.时间复杂度算法的时间复杂度是指算法运行所需的时间与问题规模之间的关系。
对于组合优化问题中的算法,其时间复杂度需要考虑问题规模、算法的设计思路、操作方法等因素。
一般来说,时间复杂度越小的算法会更优秀,对实际应用更具有意义。
因此,在算法设计时需要特别注意时间复杂度的问题。
2.空间复杂度算法的空间复杂度是指算法运行所需的空间资源占用与问题规模之间的关系。
对于组合优化问题中的算法,其空间复杂度也需要考虑问题规模、算法的设计思路、操作方法等因素。
一般来说,空间复杂度越小的算法更为优秀,对实际应用更具有意义。
贪心算法、分治算法、动态规划算法间的比较.doc

题目:贪心算法、分治算法、动态规划算法间的比较贪心算法:贪心算法采用的是逐步构造最优解的方法。
在每个阶段,都在一定的标准下做出一个看上去最优的决策。
决策一旦做出,就不可能再更改。
做出这个局部最优决策所依照的标准称为贪心准则。
分治算法:分治法的思想是将一个难以直接解决大的问题分解成容易求解的子问题,以便各个击破、分而治之。
动态规划:将待求解的问题分解为若干个子问题,按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。
在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。
依次解决各子问题,最后一个子问题就是初始问题的解。
二、算法间的关联与不同1、分治算法与动态规划分治法所能解决的问题一般具有以下几个特征:①该问题的规模缩小到一定程度就可以容易地解决。
②该问题可以分为若干个较小规模的相似的问题,即该问题具有最优子结构性质。
③利用该问题分解出的子问题的解可以合并为该问题的解。
④该问题所分解出的各个子问题是相互独立的且子问题即之间不包含公共的子问题。
上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是分治法应用的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心算法或动态规划算法;第四条特征涉及到分治法的效率,如果各个子问题不是独立的,则分治法要做许多不必要的工作,重复地解公共的子问题。
这类问题虽然可以用分治法解决,但用动态规划算法解决效率更高。
当问题满足第一、二、三条,而不满足第四条时,一般可以用动态规划法解决,可以说,动态规划法的实质是:分治算法思想+解决子问题冗余情况2、贪心算法与动态规划算法多阶段逐步解决问题的策略就是按一定顺序或一定的策略逐步解决问题的方法。
动态规划和贪心算法的时间复杂度分析比较两种算法的效率

动态规划和贪心算法的时间复杂度分析比较两种算法的效率动态规划和贪心算法是常见的算法设计思想,它们在解决问题时具有高效性和灵活性。
但是,两者在时间复杂度上有所不同。
本文将对动态规划和贪心算法的时间复杂度进行详细分析,并比较这两种算法的效率。
一、动态规划算法的时间复杂度分析动态规划是一种通过将问题分解成子问题并保存子问题的解来求解的算法。
其时间复杂度主要取决于子问题的数量和每个子问题的求解时间。
1. 子问题数量动态规划算法通常使用一个二维数组来保存子问题的解,数组的大小与原问题规模相关。
假设原问题规模为N,每个子问题的规模为k,则子问题数量为N/k。
因此,子问题数量与原问题规模N的关系为O(N/k)。
2. 每个子问题的求解时间每个子问题的求解时间通常也与子问题的规模相关,假设每个子问题的求解时间为T(k),则整个动态规划算法的时间复杂度可以表示为O(T(k) * N/k)。
综上所述,动态规划算法的时间复杂度可以表示为O(T(k) * N/k),其中T(k)表示每个子问题的求解时间。
二、贪心算法的时间复杂度分析贪心算法是一种通过选择当前最优的解来求解问题的算法。
其时间复杂度主要取决于问题的规模和每个选择的求解时间。
1. 问题规模对于贪心算法来说,问题的规模通常是不断缩小的,因此可以假设问题规模为N。
2. 每个选择的求解时间每个选择的求解时间可以假设为O(1)。
贪心算法通常是基于问题的局部最优解进行选择,而不需要计算所有可能的选择。
因此,每个选择的求解时间可以认为是常数级别的。
综上所述,贪心算法的时间复杂度可以表示为O(N)。
三、动态规划和贪心算法的效率比较从时间复杂度的分析结果来看,动态规划算法的时间复杂度为O(T(k) * N/k),而贪心算法的时间复杂度为O(N)。
可以发现,在问题规模较大时,动态规划算法的时间复杂度更高。
原因在于动态规划算法需要保存所有子问题的解,在解决子问题时需要遍历所有可能的选择,因此时间复杂度较高。
贪心算法和动态规划的区别与联系

贪⼼算法和动态规划的区别与联系
联系
1.都是⼀种推导算法
2.都是分解成⼦问题来求解,都需要具有最优⼦结构
区别
1.贪⼼:每⼀步的最优解⼀定包含上⼀步的最优解,上⼀步之前的最优解则不作保留;
动态规划:全局最优解中⼀定包含某个局部最优解,但不⼀定包含前⼀个局部最优解,因此需要记录之前的所有的局部最优解
2.贪⼼:如果把所有的⼦问题看成⼀棵树的话,贪⼼从根出发,每次向下遍历最优⼦树即可(通常这个“最优”都是基于当前情况下显⽽易见的“最优”);这样的话,就不需要知道⼀个节点的所有⼦树情况,于是构不成⼀棵完整的树;
动态规划:动态规划则⾃底向上,从叶⼦向根,构造⼦问题的解,对每⼀个⼦树的根,求出下⾯每⼀个叶⼦的值,最后得到⼀棵完整的树,并且最终选择其中的最优值作为⾃⾝的值,得到答案
3.根据以上两条可以知道,贪⼼不能保证求得的最后解是最佳的,⼀般复杂度低;⽽动态规划本质是穷举法,可以保证结果是最佳的,复杂度⾼。
4.针对0-1背包问题:这个问题应⽐较选择该物品和不选择该物品所导致的最终⽅案,然后再作出最好选择,由此就导出许多互相重叠的⼦问题,所以⽤动态规划。
计算机网络优化算法

计算机网络优化算法计算机网络优化算法(Computer Network Optimization Algorithms)是指通过使用数学、统计学和计算机科学的方法来优化计算机网络系统的性能和效率。
这些算法的设计主要是为了最大化网络资源的利用率、最小化网络延迟和最优化网络吞吐量。
本文将介绍几种常见的计算机网络优化算法,包括贪心算法、动态规划算法、遗传算法和禁忌搜索算法等。
1. 贪心算法贪心算法是一种基于局部最优选择的算法,它每次在作出选择时都只考虑当前状态下的最优解。
在计算机网络中,贪心算法可以用于一些简单的网络优化问题,如最佳路径选择、带宽分配等。
贪心算法的优点是简单易实现,但缺点是可能会导致局部最优解而非全局最优解。
2. 动态规划算法动态规划算法是一种将复杂问题分解为简单子问题并存储中间结果的算法。
在计算机网络中,动态规划算法可以用于一些具有重叠子问题的优化问题,如最短路径问题、最小生成树问题等。
动态规划算法的优点是能够得到全局最优解,但缺点是其计算复杂度较高。
3. 遗传算法遗传算法是一种模拟生物进化过程的优化算法。
在计算机网络中,遗传算法可以用于解决一些复杂的优化问题,如网络布线问题、拓扑优化问题等。
遗传算法的优点是能够找到较好的全局最优解,但缺点是其计算复杂度高且需要大量的计算资源。
4. 禁忌搜索算法禁忌搜索算法是一种通过记录和管理搜索路径来避免陷入局部最优解的优化算法。
在计算机网络中,禁忌搜索算法可以用于解决一些带有约束条件的优化问题,如链路带宽分配问题、网络拓扑优化问题等。
禁忌搜索算法的优点是能够在可行解空间中进行有效搜索,但缺点是其计算复杂度较高且需要适当的启发式规则。
综上所述,计算机网络优化算法是一类用于改善计算机网络系统性能的关键算法。
选择合适的网络优化算法取决于具体的问题和限制条件。
贪心算法适用于简单的问题,动态规划算法适用于具有重叠子问题的问题,遗传算法适用于复杂的问题,禁忌搜索算法适用于带有约束条件的问题。
贪心算法和动态规划以及分治法的区别?

贪⼼算法和动态规划以及分治法的区别?
贪⼼算法顾名思义就是做出在当前看来是最好的结果,它不从整体上加以考虑,也就是局部最优解。
贪⼼算法从上往下,从顶部⼀步⼀步最优,得到最后的结果,它不能保证全局最优解,与贪⼼策略的选择有关。
动态规划是把问题分解成⼦问题,这些⼦问题可能有重复,可以记录下前⾯⼦问题的结果防⽌重复计算。
动态规划解决⼦问题,前⼀个⼦问题的解对后⼀个⼦问题产⽣⼀定的影响。
在求解⼦问题的过程中保留哪些有可能得到最优的局部解,丢弃其他局部解,直到解决最后⼀个问题时也就是初始问题的解。
动态规划是从下到上,⼀步⼀步找到全局最优解。
(各⼦问题重叠)
分治法(divide-and-conquer):将原问题划分成n个规模较⼩⽽结构与原问题相似的⼦问题;递归地解决这些⼦问题,然后再合并其结果,就得到原问题的解。
(各⼦问题独⽴)
分治模式在每⼀层递归上都有三个步骤:
分解(Divide):将原问题分解成⼀系列⼦问题;
解决(conquer):递归地解各个⼦问题。
若⼦问题⾜够⼩,则直接求解;
合并(Combine):将⼦问题的结果合并成原问题的解。
例如归并排序。
数据结构-贪心算法和动态规划

重复n-1次。
18/65
贪心法的 思考 可以看到,在从Ai到Ai+1的扩展过程中,上
贪心法和动态规划
1/65
主要内 容 动态规划和贪心的认识
工具:马尔科夫过程
贪心法
Prim算法 Kruskal算法 Dijkstra算法
动态规划
最长递增子序列LIS 矩阵连乘的最少乘法 字符串的交替连接 走棋盘/格子取数问题及其应用 带陷阱的走棋盘问题 两次走棋盘问题 Catalan数简介
15/65
贪心 法 根据实际问题,选取一种度量标准。然后按照这种
标准对n个输入排序,并按序一次输入一个量。 如果输入和当前已构成在这种量度意义下的部分最
优解加在一起不能产生一个可行解,则不把此输入 加到这部分解中。否则,将当前输入合并到部分解 中从而得到包含当前输入的新的部分解。 这一处理过程一直持续到n个输入都被考虑完毕, 则记入最优解集合中的输入子集构成这种量度意义 下的问题的最优解。 这种能够得到某种量度意义下的最优解的分级处理 方法称为贪心方法。
是否合法。
如: 2.5.5.25511135,才能判断出是非法的。
当然,它可以通过“25511135”大于“255.255”等其他限界 条件“事先”判断。
10/65
DFS与DP深刻 认识 DFS的过程,是计算完成了str[0…i]的切分,然后
递归调用,继续计算str[i+1,i+2…n-1]的过程; 而DP中,假定得到了str[0…i-1]的所有可能切分方
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态规划算法和贪心算法的比较与分析1、最优化原理根据一类多阶段问题的特点,把多阶段决策问题变换为一系列互相联系的单阶段问题,然后逐个加以解决。
解决这类问题的最优化原理:一个过程的最优决策具有这样的性质,即无论其初始状态和初始决策如何,其今后诸策略对以第一个决策所形成的状态作为初始状态的过程而言,必须构成最优策略。
简而言之,一个最优策略的子策略,对于它的初态和终态而言也必是最优的。
2、动态规划2.1 动态规划算法动态规划是运筹学的一个分支,与其说它是一种算法,不如说它是一种思维方法更贴切。
因为动态规划没有固定的框架,即便是应用到同一道题上,也可以建立多种形式的求解算法。
许多隐式图上的算法,例如求单源最短路径的Dijkstra算法、广度优先搜索算法,都渗透着动态规划的思想。
还有许多数学问题,表面上看起来与动态规划风马牛不相及,但是其求解思想与动态规划是完全一致的。
因此,动态规划不像深度或广度优先那样可以提供一套模式,需要的时候,取来就可以使用。
它必须对具体问题进行具体分析、处理,需要丰富的想象力去建立模型,需要创造性的思想去求解。
动态规划算法的基本思想是将待求解问题分解成若干子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
值得注意的是,用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的。
最优化原理是动态规划的基础。
任何一个问题,如果失去了这个最优化原理的支持,就不可能用动态规划方法计算。
能采用动态规划求解的问题都要满足两个条件:①问题中的状态必须满足最优化原理;②问题中的状态必须满足无后效性。
所谓无后效性是指下一时刻的状态只与当前状态有关,而和当前状态之前的状态无关,当前的状态是对以往决策的总结。
2.2 动态规划算法的基本要素(1)最优子结构。
设计动态规划算法的第一步通常是刻画最优解的结构。
当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。
问题的最优子结构性质提供了该问题可用动态规划算法求解的重要线索。
在动态规划算法中,利用问题的最优子结构性质,以自底向上的方式递归地从子问题的最优解逐步构造出整个问题的最优解。
(2)重叠子问题。
在用递归方法自顶向下求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。
动态规划算法正是利用了这种子问题的重叠性质,对每个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时只是简单地用常数时间查看一下结果。
2.3 动态规划适于解决的问题适用动态规划的问题必须满足最优化原理和无后效性。
(1)状态必须满足最优化原理。
作为整个过程的最优策略具有如下性质:无论过去的状态和决策如何,对前面的决策所形成的当前状态而言,余下的诸决策必须构成最优策略。
可以通俗地理解为子问题的局部最优将导致整个问题的全局最优,即问题具有最优子结构的性质,也就是说一个问题的最优解只取决于其子问题的最优解,非最优解对问题的求解没有影响。
(2)状态必须满足无后效性。
所谓无后效性是指:“过去的决策只能通过当前状态影响未来的发展,当前的状态是对以往决策的总结”。
它说明动态规划适于解决当前决策和过去状态无关的问题。
状态出现在策略的任何一个位置,它的地位都是相同的,都可以实施同样的决策,这就是无后效性的内涵。
2.4 问题求解模式动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。
这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。
如下所示: 初始状态→决策1 →决策2 →决策n →结束状态动态规划的设计有一定的模式,一般要经历以下4个步骤:(1)划分阶段。
按照问题的时间或空间特征,把问题分为若干个阶段。
在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。
(2)确定状态和状态变量。
将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。
当然,状态的选择要满足无后效性。
(3)确定决策并写出状态转移方程。
因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。
所以如果确定了决策,状态转移方程也就可写出。
但事实上常常是反过来做,根据相邻两段各状态之间的关系来确定决策。
(4)寻找边界条件。
给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。
用动态规划算法解决一个问题关键就是确定以上4个步骤。
3、贪心算法3.1贪心算法的定义贪心算法是一种改进的分级处理方法。
用贪心法设计算法的特点是一步一步地进行,根据某个优化测度,每一步都要保证能获得局部最优解。
每步只考虑一个数据,它的选取应满足局部优化条件。
若下一个数据与部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中,直到把所有数据枚举完,或不能再添加为止。
这种能够得到某种度量意义下的最优解的分级处理方法称为贪心法。
选择能产生问题最优解的最优度量标准是使用贪心法的核心问题。
贪心策略是指从问题的初始状态出发,通过若干次的贪心选择而得出最优值(或较优解)的一种解题方法。
贪心策略总是做出在当前看来是最优的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的局部最优解,而许多问题自身的特性决定了该问题运用贪心策略可以得到最优解或较优解。
(注:贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题它能产生整体最优解。
但其解必然是最优解的很好近似解。
)采用自顶向下的、以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题。
对于一个具体问题,要确定它是否具有贪心选择的性质,我们必须证明每一步所作的贪心选择最终导致问题的最优解。
通常可以首先证明问题的一个整体最优解,是从贪心选择开始的,而且作了贪心选择后,原问题简化为一个规模更小的类似子问题。
然后,用数学归纳法证明,通过每一步贪心选择,最终可得到问题的一个整体最优解。
3.2 贪心算法的基本要素贪心算法通过一系列的选择得到问题的解。
它所做出的每一选择都是当前状态下局部最好选择,即贪心选择。
可以用贪心算法求解的问题一般具有两个重要性质:(1)贪心选择性质。
所谓贪心选择性质是指所求问题的整体最优解能通过一系列局部最优的选择(即贪心选择)来达到。
(2)最优子结构性质。
与动态规划算法相同,最优子结构性质是一个问题可用贪心算法求解的关键特征。
3.3 贪心算法的实际应用(1)贪心法的基本思路。
从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快地求得更好的解。
当达到某算法中的某一步不能再继续前进时,算法停止。
(2)该算法存在的问题。
1)不能保证求得的最后解是最佳的;2)不能用来求最大或最小解问题;3)只能求满足某些约束条件的可行解的范围。
(3)实现该算法的过程。
1)从问题的某一初始解出发;2)当能朝给定总目标前进一步时,求出可行解的一个解元素;3)由所有解元素组合成问题的一个可行解。
4、动态规划算法与贪心算法4.1联系都是通过局部最优解得到整体最优解。
4.2 区别贪心算法是指从问题的初始状态出发,通过若干次的贪心选择而得出最优值(或较优解)的一种解题方法,贪心策略总是做出在当前看来最优的选择,并不是从总体上加以考虑,它所做的选择只是在某种意义上的局部最优解。
它采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,最终可得到问题的一个最优解。
动态规划是在每一步判断的时候只须考虑与它有关的前一步的情况而与以前的各步的判断没有关系,解决这类问题的方法是:把问题化成多步判断的问题,在每步作出判断时,只考虑由初始决策所确定的当前状态。
它采用自底向上的顺序,找到边界条件,将整个问题的最优解与问题的局部最优解用递推的等式联系起来,把边界条件代入递推等式逐步求得最优解。
动态规划算法与贪心算法都要求问题具有最优子结构性质,这是二者的一个共同点。
但是对于具有最优子结构的问题应该选择前者还后者来解决?下面通过两个经典的组合优化问题谈谈动态规划算法与贪心算法的主要差异。
4.3 0-1背包问题与背包问题0-1背包问题:给定n种物品和一个背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有两种选择:即装入背包或不装入背包。
不能将物品i放入背包多次,也不能只装入部分的物品i。
背包问题:与0- 1背包问题类似,不同的是在选择物品i装入背包时,可选择物品i的一部分,而不一定要全部装入背包,1≤i≤n。
4.4 动态规划算法与贪心算法的主要差异0-1背包问题和背包问题这两类问题都具有最优子结构性质。
虽然它们极为相似,但背包问题可以用贪心算法求解,而0-1背包问题却不能用贪心算法求解。
用贪心算法解背包问题的基本步骤是,首先计算每种物品单位重量的价值vi/wi,然后依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。
若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包。
依此策略一直进行下去直到背包装满为止。
这种贪心选择策略对0-1背包问题就不适用了。
如图1(a)所示,其中有3种物品,背包的容量为50公斤。
物品1重10公斤,价值60元;物品2重20公斤,价值100元;物品3重30公斤,价值120元。
因此,物品1每公斤价值6元,物品2每公斤价值5元,物品3每公斤价值4元。
若依贪心选择策略,应首选物品1装入背包,然而从图1(b)的各种情况可看出,最优的选择方案是选择物品2和物品3装入背包。
首选物品1的2种方案都不是最优的。
对于背包问题,贪心选择最终可得到最优解,其选择方案如图1(c)所示。
对于0- 1背包问题,贪心选择之所以不能得到最优解是因为在这种情况下,它无法保证最终能将背包装满,部分闲置的空间使每公斤背包空间的价值降低。
在考虑0- 1背包问题时,应比较选择该物品和不选择该物品所导致的最终方案,然后再做出最好的选择。
由此就导出许多互相重叠的子问题。
这正是该问题可用动态规划算法求解的另一重要特征。
(a) (b) (c)图1两种算法解决背包问题5、结束语在动态规划算法中,每步所做出的选择往往依赖于相关子问题的解。
因而只有在解出相关子问题后,才能做出选择。
而在贪心算法中,仅在当前状态下做出最好选择,即局部最优选择,然后再去解做出这个选择后产生的相应的子问题。
贪心算法所做出的贪心选择可以依赖于以往所做过的选择,但决不依赖于将来所做的选择,也不依赖于子问题的解。
正是由于这种差别,动态规划算法常以自底向上的方式解各子问题,而贪心算法则常以自顶向下的方式进行,以迭代的方式做出相继的贪心选择,每做出一次贪心选择就将所求问题简化为规模更小的子问题。