用蛮力法、动态规划法和贪心法求解01背包问题

用蛮力法、动态规划法和贪心法求解01背包问题
用蛮力法、动态规划法和贪心法求解01背包问题

算法设计与分析

项目名称:用蛮力法、动态规划法和贪心法求解0/1背包问题

作者姓名:余武丹

李红波

刘红梅

完成日期:2013年9月20日

目录

第一章:简介(Introduction)

第二章:算法定义(Algorithm Specification)

第三章:测试结果(Testing Results)

第四章:分析和讨论

第一章:简介(Introduction )

0/1背包问题是给定n 个重量为{w 1, w 2, … ,wn }、价值为{v 1, v 2, … ,vn }的物品和一个容量为C 的背包,求这些物品中的一个最有价值的子集,并且要能够装到背包中。

在0/1背包问题中,物品i 或者被装入背包,或者不被装入背包,设xi 表示物品i 装入背包的情况,则当xi =0时,表示物品i 没有被装入背包,xi =1时,表示物品i 被装入背包。根据问题的要求,有如下约束条件和目标函数:

于是,问题归结为寻找一个满足约束条件式1,并使目标函数式2达到最大的解向量X =(x 1, x 2, …, xn )。

背包的数据结构的设计: typedef struct object { int n;//物品的编号 int w;//物品的重量 int v;//物品的价值 }wup;

wup wp[N];//物品的数组,N 为物品的个数 int c;//背包的总重量

第二章:算法定义(Algorithm Specification )

1、蛮力法

蛮力法是一种简单直接的解决问题的方法,常常直接基于问题的描述和所涉及的概念定义。蛮力法的关键是依次处理所有的元素。

用蛮力法解决0/1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。

所以蛮力法解0/1背包问题的关键是如何求n 个物品集合的所有子集,n 个物品的子集有2的n 次方个,用一个2的n 次方行n 列的数组保存生成的子集,以下是生成子集的算法:

void force(int a[][4])//蛮力法产生4个物品的子集 {

int i,j; int n=16; int m,t;

for(i=0;i<16;i++)

?????

≤≤∈≤∑=)

1(}1,0{1

n i x C x w i n

i i i (式1)

∑=n

i i

i x v 1

max (式2)

{ t=i;

for(j=3;j>=0;j--)

{

m=t%2;

a[i][j]=m;

t=t/2;

}

}

for(i=0;i<16;i++)//输出保存子集的二维数组

{

for(j=0;j<4;j++)

{

printf("%d ",a[i][j]);

}

printf("\n");

}

以下要依次判断每个子集的可行性,找出可行解:

void panduan(int a[][4],int cw[])////判断每个子集的可行性,如果可行则计算其价值存入数组cw,不可行则存入0

{

int i,j;

int n=16;

int sw,sv;

for(i=0;i<16;i++)

{

sw=0;

sv=0;

for(j=0;j<4;j++)

{

sw=sw+wp[j].w*a[i][j];

sv=sv+wp[j].v*a[i][j];

}

if(sw<=c)

cw[i]=sv;

else

cw[i]=0;

}

在可行解中找出最优解,即找出可行解中满足目标函数的最优解。以下是找出最优解的算法:

int findmax(int x[16][4],int cv[])//可行解保存在数组cv中,最优解就是x数组中某行的元素值相加得到的最大值

{ int max; int i,j; max=0; for(i=0;i<16;i++) {

if(cv[i]>max) {max=cv[i]; j=i; } } printf("\n 最好的组合方案是:"); for(i=0;i<4;i++) { printf("%d ",x[j][i]); } return max; } 。

2、动态规划法

动态规划法将待求解问题分解成若干个相互重叠的子问题,每个子问题对应决策过程的一个阶段,一般来说,子问题的重叠关系表现在对给定问题求解的递推关系(也就是动态规划函数)中,将子问题的解求解一次并填入表中,当需要再次求解此子问题时,可以通过查表获得该子问题的解而不用再次求解,从而避免了大量重复计算。

动态规划法设计算法一般分成三个阶段:

(1)分段:将原问题分解为若干个相互重叠的子问题;

(2)分析:分析问题是否满足最优性原理,找出动态规划函数的递推式; (3)求解:利用递推式自底向上计算,实现动态规划过程。

0/1背包问题可以看作是决策一个序列(x 1, x 2, …, xn ),对任一变量xi 的决策是决定xi =1还是xi =0。在对xi -1决策后,已确定了(x 1, …, xi -1),在决策xi 时,问题处于下列两种状态之一:

(1)背包容量不足以装入物品i ,则xi =0,背包不增加价值; (2)背包容量可以装入物品i ,则xi =1,背包的价值增加了vi 。 这两种情况下背包价值的最大者应该是对xi 决策后的背包价值。令V (i, j )表示在前i (1≤i ≤n )个物品中能够装入容量为j (1≤j ≤C )的背包中的物品的最大值,则可以得到如下动态规划函数:

V (i , 0)= V (0, j )=0 (式3)

(式4)

式3表明:把前面i 个物品装入容量为0的背包和把0个物品装入容量为j 的背包,得到的价值均为0。式4的第一个式子表明:如果第i 个物品的重量大于背包的容量,则装入

???>+---<-=i i i i w j v w j i V j i V w j j i V j i V }),1(),,1(max{),1(),(

前i个物品得到的最大价值和装入前i-1个物品得到的最大价值是相同的,即物品i不能装入背包;第二个式子表明:如果第i个物品的重量小于背包的容量,则会有以下两种情况:(1)如果把第i个物品装入背包,则背包中物品的价值等于把前i-1个物品装入容量为j-wi 的背包中的价值加上第i个物品的价值vi;(2)如果第i个物品没有装入背包,则背包中物品的价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。显然,取二者中价值较大者作为把前i个物品装入容量为j的背包中的最优解。

以下是动态规划法求解背包问题的算法:

int findmaxvalue(wup *p,int x[])//x数组用来存放可行解,p是指向存放物品数组的指针{

int i,j;

int maxvalue;

int value[N+1][C+1];

for(j=0;j<=C;j++)

value[0][j]=0; //初始化第0行

for(i=0;i<=N;i++)

value[i][0]=0;//初始化第0列

//计算数组value中各元素的值

for(i=1;i<=N;i++,p++)

for(j=1;j<=C;j++)

{

if(p->w >j)

{

value[i][j]=value[i-1][j];

}

else

{

value[i][j]=max(value[i-1][j],(value[i-1][j-p->w]+p->v));//max函数求两个数当中的大者

}

}

//逆推求解

j=C;

for(i=N;i>0;i--)

{

if(value[i][j]>value[i-1][j])

{

x[i-1]=1;//是否被选中的向量的下标也是从0开始

j=j-wp[i-1].w;//存放物品的下标从0开始

}

else

x[i-1]=0;

}

maxvalue=value[N][C];//最大值

return maxvalue;

}

3、贪心法

贪心法在解决问题的策略上目光短浅,只根据当前已有的信息就做出选择,而且一旦做出了选择,不管将来有什么结果,这个选择都不会改变。换言之,贪心法并不是从整体最优考虑,它所做出的选择只是在某种意义上的局部最优。

这种局部最优选择并不总能获得整体最优解(Optimal Solution),但通常能获得近似最优解(Near-Optimal Solution)。

贪心法求解的问题的特征:

(1)最优子结构性质

当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质,也称此问题满足最优性原理。

(2)贪心选择性质

所谓贪心选择性质是指问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来得到。

用贪心法求解问题应该考虑如下几个方面:

(1)候选集合C:为了构造问题的解决方案,有一个候选集合C作为问题的可能解,即问题的最终解均取自于候选集合C。例如,在付款问题中,各种面值的货币构成候选集合。

(2)解集合S:随着贪心选择的进行,解集合S不断扩展,直到构成一个满足问题的完整解。例如,在付款问题中,已付出的货币构成解集合。

(3)解决函数solution:检查解集合S是否构成问题的完整解。例如,在付款问题中,解决函数是已付出的货币金额恰好等于应付款。

(4)选择函数select:即贪心策略,这是贪心法的关键,它指出哪个候选对象最有希望构成问题的解,选择函数通常和目标函数有关。例如,在付款问题中,贪心策略就是在候选集合中选择面值最大的货币。

(5)可行函数feasible:检查解集合中加入一个候选对象是否可行,即解集合扩展后是否满足约束条件。例如,在付款问题中,可行函数是每一步选择的货币和已付出的货币相加不超过应付款。

背包问题至少有三种看似合理的贪心策略:

(1)选择价值最大的物品,因为这可以尽可能快地增加背包的总价值。但是,虽然每一步选择获得了背包价值的极大增长,但背包容量却可能消耗得太快,使得装入背包的物品个数减少,从而不能保证目标函数达到最大。

(2)选择重量最轻的物品,因为这可以装入尽可能多的物品,从而增加背包的总价值。但是,虽然每一步选择使背包的容量消耗得慢了,但背包的价值却没能保证迅速增长,从而不能保证目标函数达到最大。

(3)选择单位重量价值最大的物品,在背包价值增长和背包容量消耗两者之间寻找平衡。

应用第三种贪心策略,每次从物品集合中选择单位重量价值最大的物品,如果其重量小于背包容量,就可以把它装入,并将背包容量减去该物品的重量,然后我们就面临了一个最优子问题——它同样是背包问题,只不过背包容量减少了,物品集合减少了。因此背包问

题具有最优子结构性质。

先按单位重量价值最大对物品进行排序,用冒泡排序算法进行排序的算法如下:

void bublesort(wup wp[])

{

int i,k;

wup p;

int flag;

for(i=1;i

{

flag = 0;

for (k = N-1; k >=i; k--)

{

if (wp[k-1].v/wp[k-1].w

{

p.n =wp[k-1].n;

p.v=wp[k-1].v;

p.w=wp[k-1].w;

wp[k-1].n=wp[k].n;

wp[k-1].v=wp[k].v;

wp[k-1].w=wp[k].w;

wp[k].n=p.n;

wp[k].v=p.v;

wp[k].w=p.w;

flag=1;

}

}

if(flag==0)break;

}

}

然后再用贪心策略选择的算法如下:

int tx_findmaxvalue(wup wp[],int x[])// 用贪心算法找出放入背包中物品的最佳组合

//wp为指向物品数组,x是存放解向量的数组

{

int i;

int cw,maxvalue;

cw=C;//cw为中间变量,用来临时存储背包的总重量

bublesort(wp);

Outputwp(wp);

maxvalue=0;

for(i=0;i

{

if(wp[i].w

{

x[wp[i].n-1]=1; //该物品被选中,对应的向量为1

maxvalue=maxvalue+wp[i].v;//累加价值

cw=cw-wp[i].w; //每放入一件物品背包的总重量减少}

else

x[wp[i].n-1]=0;

}

return maxvalue;

}

第三章:测试结果(Testing Results)

1.蛮力法测试结果:

输入完毕后按Enter键有如下结果:

2.动态规划法调试结果

3.贪心法调试结果:

(1).空间最优的贪心策略结果

(2).价格最优的贪心策略结果

(3).价格空间比最优的贪心策略结果

第四章:分析和讨论

算法的时间复杂度和空间复杂度的分析,对算法进一步改进的讨论。

附录:源代码(基于C语言的)

1.蛮力法求解01背包问题源程序:

#include "stdafx.h"

#include "stdlib.h"

#include "stdio.h"

#define N 4

#define max 10

struct product

{

int id; //物品编号

int price;//物品价格

int weight;//物品重量

int flag;//物品标号

char name[20];//物品名称

}P[N];

void math()//寻找最优组合的方法

{

int i,j,k;//定义三个循环变量,依次求出最大价值的物品组合及物品最大价值

int imax,jmaxa,jmaxb,kmaxa,kmaxb,kmaxc;

int maxvalue1, maxvalue2, maxvalue3, maxvalue4;

int maxnum;

maxvalue1=0;

imax=0;

//第一次比较找出价值最大的商品,并把该商品价值赋给maxvalue1,商品编号赋给maxi for(i=0;i

{

if(P[i].weightmaxvalue1)

{

maxvalue1=P[i].price;

imax=i;

}

}

//从剩下的商品中找出较大价值,并存放在maxvalue2

maxvalue2=0;

for(i=0;i

{

for(j=i+1;j

{

if((P[i].weight+P[j].weightmaxvalue2))

{

maxvalue2=P[i].price+P[j].price;

jmaxa=i;

jmaxb=j;

}

}

}

//从剩下的商品中找出较大价值,并存放在maxvalue3

maxvalue3=0;

for(i=0;i

{

for(j=i+1;j

{

for(k=i+2;k

{

if((P[i].weight+P[j].weight+P[k].weightmax)) {

maxvalue3=P[i].price+P[j].price+P[k].price;

kmaxa=i;

kmaxb=j;

kmaxc=k;

}

}

}

}

//如果所有的物品总重量都小于背包能够承受的最大重量,则把所有物品放入背包if(P[0].weight+P[1].weight+P[2].weight+P[3].weight

{

maxvalue4=P[0].price+P[1].price+P[2].price+P[3].price;

printf("%s,%d,%d",P[0].name,P[0].weight,P[0].price);

printf("%d",maxvalue4);//把最大价值放在maxvalue4变量中

}

//输出组合商品的信息

maxnum=maxvalue1;

if(maxvalue2>maxvalue1)

{

maxnum=maxvalue2;

}

if(maxvalue3>maxnum)

{

maxnum=maxvalue3;

printf("%d",maxnum);

}

if(maxnum==maxvalue1)

{

printf("%d",maxnum);

}

if(maxnum==maxvalue2)

{

printf("%s,%d,%d\n",P[jmaxa].name,P[jmaxa].weight,P[jmaxa].price);

printf("%s,%d,%d\n",P[jmaxb].name,P[jmaxb].weight,P[jmaxb].price);

printf("%d",maxnum);

}

system("pause");

}

void scannum()//输入物品信息

{

int i=0;

printf("\t请输入物品信息(N=4):\t\n");

for(i=0;i

{

P[i].id=i+1;

printf("\t物品名称:");

scanf("%s",&P[i].name);

printf("\t物品重量:");

scanf("%d",&P[i].weight);

printf("\t物品价格:");

scanf("%d",&P[i].price);

P[i].flag=0;

printf("\n");

}

}

int main()//主函数,while循环变量选择你要进行的操作

{

int k;

while(1)

{

printf("请选择操作:\n");

printf("1.输入物品的信息\n");

printf("2.求取最佳方案\n");

scanf("%d",&k);

switch (k)

{

case 1:scannum();break;//调用scannum()方法完成物品信息的输入

case 2:math(); break;//调用math()方法完成最佳组合及最大价值计算

default: return -1;//否则返回-1

}

system("cls");//CLS命令是清除屏幕上所有的文字

}

return 0;

}

2.动态规划法求解01问题源程序:

//动态规划法

#include "StdAfx.h"

#include

int c[10][100];/*对应每种情况的最大价值*/

int knapsack(int m,int n)

{

int i,j,w[10],p[10];

printf("请输入每个物品的重量,价值:\n");

for(i=1;i<=n;i++)

scanf("%d,%d",&w[i],&p[i]);

for(i=0;i<10;i++)

for(j=0;j<100;j++)

c[i][j]=0;/*初始化数组*/

for(i=1;i<=n;i++)

for(j=1;j<=m;j++)

{

if(w[i]<=j) /*如果当前物品的容量小于背包容量*/

{

if(p[i]+c[i-1][j-w[i]]>c[i-1][j])

/*如果本物品的价值加上背包剩下的空间能放的物品的价值*/

/*大于上一次选择的最佳方案则更新c[i][j]*/

c[i][j]=p[i]+c[i-1][j-w[i]];

else

c[i][j]=c[i-1][j];

}

else c[i][j]=c[i-1][j];

}

return(c[n][m]);

}

int main()

{

int m,n;int i,j;

printf("请输入背包的承重量,物品的总个数:\n");

scanf("%d,%d",&m,&n);

printf("旅行者背包能装的最大总价值为%d",knapsack(m,n));

printf("\n");

return 0;

}

3.贪心法求解01背包问题源程序

#include "stdafx.h"

#include

#include

typedef struct

{

char name[10];

int weight;

int price;

}Project;

Project *Input(Project *wp,int TotalNum,int TotalWeight)

{

int i,j,Way,GoBack,RealWeight,RealPrice,TotalPrice;

Project temp;

do{

printf("请选择:\n");

printf("1.空间最优\n");

printf("2.价格最优\n");

printf("3.价格空间比最优\n");

scanf("%d",&Way);

switch(Way)

{

case 1://选择空间最优

for(i=0;i

for(j=0;j

{

if(wp[j].weight>wp[j+1].weight)

{

temp=wp[j];

wp[j]=wp[j+1];

wp[j+1]=temp;

}

}

break;

case 2://选择价格最优

for(i=0;i

for(j=0;j

{

if(wp[j].price>wp[j+1].price)

{

temp=wp[j];

wp[j]=wp[j+1];

wp[j+1]=temp;

}

}

break;

case 3://价格空间比最优

for(i=0;i

for(j=0;j

{

if((float)wp[j].price/(float)wp[j].weight<(float)wp[j+1].price/(float)wp[j+1].weight) {

temp=wp[j];

wp[j]=wp[j+1];

wp[j+1]=temp;

}

}

break;

default:

{

printf("输入错误!\n");

exit(1);

}

}

i=0;

RealWeight=wp[0].weight;

TotalPrice=wp[0].price;

printf("被装入背包的物品是:\n(物品名价格重量)\n");

while(RealWeight

{

printf("%s %d %d\n",wp[i].name,wp[i].price,wp[i].weight);

i++;

RealWeight+=wp[i].weight;

TotalPrice+=wp[i].price;

}

RealWeight-=wp[i].weight;

TotalPrice-=wp[i].price;

printf("求解结束!背包所装物品总重量:%d,总值:%d\n",RealWeight,TotalPrice);

printf("退出本次测试请按0!\n");

scanf("%d",&GoBack);

}while(GoBack!=0);

return wp;

}

void main()

{

int InputWay,TotalNum,i,TotalWeight,RealWeight,Goon,TotalPrice;

Project *Array;

FILE *fp;

printf("请输入物品数量及背包容量\n");

scanf("%d%d",&TotalNum,&TotalWeight);

if((Array=(Project*)malloc(TotalNum*sizeof(Project)))==NULL)

{

printf("内存已满,申请空间失败!\n");

exit(1);

}

else

{

printf("请输入:物品名价格重量\n");

for(i=0;i

scanf("%s%d%d",&Array[i].name,&Array[i].price,&Array[i].weight);

}

Array=Input(Array,TotalNum,TotalWeight);

}

声明

我们在此声明,这个题为“蛮力法、动态查找法、贪心法求解01背包问题”的项目的所有工作是由作为一组的我们的成员的共同的努力而完成的。尽管程序中存在很多的缺陷,需要完善。但是这是我们辛苦努力的结果。

人员安排:

程序员:刘红梅

测试员:余武丹

报告书写员:李红波

贪心算法0-1背包问题(算法实验代码)

实验三、0-1背包问题(贪心算法) 实验代码: #include int max(int a,int b) { if(a>b) return a; else return b; } void Knapsack(int *v,int *w,int *x,int c,int n, int m[8][100]) { int i,j; for(j=0;j=1;i--) { for(j=w[i];j<=c;j++) m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]); } for(i=1;i

printf("物品总数为:7\n"); printf("物品重量和价值分别为:\n"); printf("\n重量价值\n"); for (i=1;i<=n;i++) printf("%d %d \n",w[i],v[i]); int m=15; int array[8][100]={0}; Knapsack(v,w,x,m,7,array); printf("背包能装的最大价值为: %d\n",array[1][m]); printf("贪心算法的解为: "); for(i=1;i<=n;i++) { if(i==1) printf("%d",x[i]); else printf(" %d",x[i]); } printf("\n"); return 0; } 测试截图为:

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题 一、问题描述: 有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和? 二、总体思路: 根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。 原理: 动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。 过程: a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i个物品选或不选),V i表示第i个物品的价值,W i表示第i个物品的体积(重量); b) 建立模型,即求max(V1X1+V2X2+…+VnXn); c) 约束条件,W1X1+W2X2+…+WnXn (V2X2+V3X3+…+VnXn)+V1X1;

算法设计实验_贪心算法背包问题

《算法分析与设计》 课程实验 专业年级:信息与计算科学 学生学号: 学生姓名: 实验题目:用贪婪法求解背包问题 指导老师: 实验时间:20xx年xx月x日 一、实验内容 用贪婪法求解背包问题 要求:用非递归实现 二、实验步骤 2.1、理解算法思想和问题要求; 2.2、写出每个操作的算法 非递归算法: greedbag() { int N; int c;

int[] w; int[] v; Scanner scan=new Scanner(System.in); System.out.print("输入背包的容量:"); c=scan.nextInt(); System.out.print("输入物品的数量:"); N=scan.nextInt(); System.out.print("分别输入物品的价值:"); v=new int[N]; for(int i=0;i

【精选】贪心算法的应用

贪心算法的应用 课程名称:算法设计与分析 院系:计算机科学与信息工程学院 学生姓名:**** 学号:********** 专业班级:********************************** 指导教师:****** 201312-27

贪心算法的应用 摘要:顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。贪心算法求问题一般具有两个重要性质:贪心选择性质和最优子结构性质。所谓贪心选择性是指所求问题的整体最优解可以通过一系列局部最优解的选择,即贪心选择达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法主要区别。当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 背包问题是一个经典的问题,我们可以采用多种算法去求解0/1背包问题,比如动态规划法、分支限界法、贪心算法、回溯法。在这里我们采用贪心法解决这个问题。 关键词:贪心法背包问题最优化

目录 第1章绪论 (3) 1.1 贪心算法的背景知识 (3) 1.2 贪心算法的前景意义 (3) 第2章贪心算法的理论知识 (4) 2.1 问题的模式 (4) 2.2 贪心算法的一般性描述 (4) 第3章背包问题 (5) 3.1 问题描述 (5) 3.2 问题分析 (5) 3.3算法设计 (5) 3.4 测试结果与分析 (10) 第4章结论 (12) 参考文献 (13) 附件 (13)

背包问题(贪心算法)

算法分析与设计实验报告 第 4 次实验

}

附录:完整代码 #include #include #include struct node{ float value; float weight; }; float Value,curvalue=0; float Weight,curweight=0; //按价重比冒泡排序 void sort(node Node[],int M){ int i,j; node temp; for(i=0;i

背包问题贪心法

背包问题贪心法 实验报告 学院:计算机科学与技术学院班级:**** 学号:**** 姓名:****

一、实验目的 1)以背包问题为例,掌握贪心法的基本设计策略。 2)熟练掌握各种贪心策略情况下的背包问题的算法并实现;其中:量度标准分别取:效益增量P 、物品重量w 、P/w 比值; 3) 分析实验结果来验证理解贪心法中目标函数设计的重要性。 二、问题基本思想描述 (1)贪心法的基本思路 从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到某算法中的某一步不能再继续前进时,算法停止。 该算法存在问题: 1. 不能保证求得的最后解是最佳的; 2. 不能用来求最大或最小解问题; 3. 只能求满足某些约束条件的可行解的范围。 (2)背包问题的描述 已知有n 种物品和一个可容纳M 重量的背包,每种物品i 的重量为i w 。假定将物品i 的一部分 i x 放入背包就会得到 i i x p 的效益,这里, 1 0≤≤i x , >i p 。 显然,由于背包容量是M ,因此,要求所有选中要装入背包的物品总重量不得超过M.。如果这n 件物品的总重量不超过M ,则把所有物品装入背包自然获得最大效益。现需解决的问题是,在这些物品重量的和大于M 的情况下,该如何装包,使得得到更大的效益值。由以上叙述,可将这个问题形式表述如下: 极 大 化目标函数 ∑≤≤n i i x p 1i 约束条件 M x w n i i ≤∑ ≤≤1i n i w p x i i i ≤≤>>≤≤1,0,0,10 (3)用贪心策略求解背包问题 首先需确定最优的量度标准。这里考虑三种策略:

解0-1背包问题的动态规划算法

关于求解0/1背包问题的动态规划算法 摘要:本文通过研究动态规划原理,提出了根据该原理解决0/1背包问题的方法与算法实现, 并对算法的正确性作了验证.观察程序运行结果,发现基于动态规划的算法能够得到正确的决策方案且比穷举法有效. 关键字:动态规划;0/1背包;约束条件;序偶;决策序列;支配规则 1、引 言 科学研究与工程实践中,常常会遇到许多优化问题,而有这么一类问题,它们的活动过程可以分为若干个阶段,但整个过程受到某一条件的限制。这若干个阶段的不同决策的组合就构成一个完整的决策。0/1背包问题就是一个典型的在资源有限的条件下,追求总的收益最大的资源有效分配的优化问题。 对于0/1背包问题,我们可以这样描述:设有一确定容量为C 的包及两个向量C ’=(S 1,S 2,……,S n )和P=(P 1,P 2,……,P N ),再设X 为一整数集合,即X=1,2,3,……,N ,X 为SI 、PI 的下标集,T 为X 的子集,那么问题就是找出满足约束条件∑S i 〈=C ,使∑PI 获得最大的子集T 。在实际运用中,S 的元素可以是N 个经营项目各自所消耗的资源,C 可以是所能提供的资源总量,P 的元素可是人们从各项项目中得到的利润。 0/1背包问题是工程问题的典型概括,怎么样高效求出最优决策,是人们关心的问题。 2、求解问题的动态规划原理与算法 2.1动态规划原理的描述 求解问题的动态规划有向前处理法向后处理法两种,这里使用向前处理法求解0/1背包问题。对于0/1背包问题,可以通过作出变量X 1,X 2,……,X N 的一个决策序列来得到它的解。而对于变量X 的决策就是决定它是取0值还是取1值。假定决策这些X 的次序为X n ,X N-1,……,X 0。在对X 0做出决策之后,问题处于下列两种状态之一:包的剩余容量是M ,没任何效益;剩余容量是M-w ,效益值增长了P 。显然,之后对X n-1,Xn-2,……,X 1的决策相对于决策X 所产生的问题状态应该是最优的,否则X n ,……,X 1就不可能是最优决策序列。如果设F j (X )是KNAP (1,j ,X )最优解的值,那么F n (M )就可表示为 F N (M )=max(f n (M),f n-1(M-w n )+p n )} (1) 对于任意的f i (X),这里i>0,则有 f i (X)=max{f i-1(X),f i-1(X-w i )+p i } (2) 为了能由前向后推而最后求解出F N (M ),需从F 0(X )开始。对于所有的X>=0,有F 0(X )=0,当X<0时,有F 0(X )等于负无穷。根据(2),可求出0〈X 〈W 1和X 〉=W 1情况下F 1(X )的值。接着由(2)不断求出F 2,F 3,……,F N 在X 相应取值范围内的值。 2.2 0/1背包问题算法的抽象描述 (1)初始化各个元素的重量W[i]、效益值P[i]、包的最大容量M ; (2)初始化S0; (3)生成S i ;

C语言版贪心算法背包问题

#include<> #define N 100 typedef struct bao{ int num; float w; float v; }; typedef struct avg{ int num; ( float val; float w; float v; }; struct bao b[N]; struct avg d[N]; int n; float c; ^ void Sort() { int i,j,k; struct avg temp[N]; for(i=0;i

float x[N],sum = 0; for(i=0;ic) break; x[d[i].num] = 1; sum += d[i].v; c -= d[i].w; } if(i

贪心算法背包问题

算法设计与分析实验报告 题目:贪心算法背包问题 专业:JA V A技术xx——xxx班 学号: 姓名: 指导老师:

实验三:贪心算法背包问题 一、实验目的与要求 1、掌握背包问题的算法 2、初步掌握贪心算法 二、实验题: 问题描述:与0-1背包问题相似,给定n种物品和一个背包。物品i的重量是wi,其价值为vi,背包的容量为c。与0-1背包问题不同的是,在选择物品i装入背包时,背包问题的解决可以选择物品i的一部分,而不一定要全部装入背包,1< i < n。 三、实验代码 import java.awt.*; import java.awt.event.*; import javax.swing.*; public class er extends JFrame { private static final long serialVersionUID = -1508220487443708466L; private static final int width = 360;// 面板的宽度 private static final int height = 300;// 面板的高度 public int M; public int[] w; public int[] p; public int length; er() { // 初始Frame参数设置 this.setTitle("贪心算法"); setDefaultCloseOperation(EXIT_ON_CLOSE); setSize(width, height); Container c = getContentPane(); c.setLayout(new BoxLayout(c, BoxLayout.Y_AXIS)); setLocation(350, 150); // 声明一些字体样式 Font topF1 = new Font("宋体", Font.BOLD, 28); Font black15 = new Font("宋体", Font.PLAIN, 20); Font bold10 = new Font("宋体", Font.BOLD, 15); // 声明工具栏及属性设置 JPanel barPanel = new JPanel(); JMenuBar topBar = new JMenuBar(); topBar.setLocation(1, 1); barPanel.add(topBar); // 面板1和顶部标签属性设置 JPanel p1 = new JPanel(); JLabel topLabel = new JLabel("背包问题");

用贪心法求解0-1背包问题

算法设计与分析期末论文 题目用贪心法求解“0-1背包问题”专业计算机科学与技术 班级09计算机一班 学号0936021 姓名黄帅 日期2011年12月28日

一、0-1背包问题的算法设计策略分析 1.引言 对于计算机科学来说,算法的概念是至关重要的,例如,在一个大型软件系统的开发中,设计出有效的算法将起决定性的作用。算法是解决问题的一种方法或一个过程。程序是算法用某种设计语言具体实现描。计算机的普及极大的改变了人们的生活。目前,各行业、各领域都广泛采用了计算机信息技术,并由此产生出开发各种应用软件的需求。为了以最小的成本、最快的速度、最好的质量开发出适合各种应用需求的软件,必须遵循软件工程的原则。设计一个高效的程序不仅需要编程小技巧,更需要合理的数据组织和清晰高效的素算法,这正是计算机科学领域数据结构与算法设计所研究的主要内容。 2. 算法复杂性分析的方法介绍 算法复杂性是算法运行所需要的计算机资源的量,需要时间资源的量称为时间复杂性,需要的空间资源的量称为空间复杂性。这个量应该只依赖于算法要解的问题的规模、算法的输入和算法本身的函数。如果分别用N 、I 和A 表示算法要解问题的规模、算法的输入和算法本身,而且用C 表示复杂性,那么,应该有C=F(N,I,A)。一般把时间复杂性和空间复杂性分开,并分别用T 和S 来表示,则有: T=T(N,I)和S=S(N,I) 。(通常,让A 隐含在复杂性函数名当中 最坏情况下的时间复杂性: 最好情况下的时间复杂性: 平均情况下的时间复杂性: 其中DN 是规模为N 的合法输入的集合;I*是DN 中使T(N, I*)达到Tmax(N)的合法输入; 是中使T(N, )达到Tmin(N)的合法输入;而P(I)是在算法的应用中出现输入I 的概率。 算法复杂性在渐近意义下的阶: 渐近意义下的记号:O 、Ω、θ、o 设f(N)和g(N)是定义在正数集上的正函数。 O 的定义:如果存在正的常数C 和自然数N0,使得当N ≥N0时有f(N)≤Cg(N),则称函数f(N)当N 充分大时上有界,且g(N)是它的一个上界,记为f(N)=O(g(N))。即f(N)的阶不高于g(N)的阶。 根据O 的定义,容易证明它有如下运算规则: (1)O(f)+O(g)=O(max(f,g)); (2)O(f)+O(g)=O(f+g); (3)O(f)O(g)=O(fg); (4)如果g(N)=O(f(N)),则O(f)+O(g)=O(f); (5)O(Cf(N))=O(f(N)),其中C 是一个正的常数; ∑∈= N D I I N T I P (N)T ),()(avg ∑∑∈==N D I k i i i I N e t I P ),()(1),(min min I N T (N)T N D I ∈=),(min 1I N e t k i i i D I N ∑=∈=)~,(1I N e t k i i i ∑==)~,(I N T =),(max max I N T (N)T N D I ∈=),(max 1I N e t k i i i D I N ∑=∈=),(*1I N e t k i i i ∑==) ,(*I N T =

01背包问题动态规划详解及C++代码

0/1背包问题动态规划详解及C++代码 1. 问题描述 给定一个载重量为C的背包 有n个物品 其重量为wi 价值为vi 1<=i<=n 要求:把物品装入背包 并使包内物品价值最大2. 问题分析 在0/1背包问题中 物体或者被装入背包 或者不被装入背包 只有两种选择。循环变量i j意义 前i个物品能够装入载重量为j的背包中 数组c意义 c[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值 若w[i]>j 第i个物品不装入背包 否则 若w[i]<=j且第i个物品装入背包后的价值>c[i-1][j] 则记录当前最大价值 替换为第i个物品装入背包后的价值 其c++代码如下 #include using namespace std; void KANPSACK_DP(int c[50][50], int w[50], int v[50], int n, int C) { for(int i = 0; i <= C; i ++) { c[0][i] = 0; } for(int i = 1; i <= n; i ++) { c[i][0] = 0; for(int j = 1; j <= C; j ++) { if(w[i] <= j) { if(v[i] + c[i - 1][j - w[i]] > c[i - 1][j]) c[i][j] = v[i] + c[i - 1][j - w[i]]; else c[i][j] = c[i - 1][j]; } else c[i][j] = c[i - 1][j]; } } } void OUTPUT_SACK(int c[50][50], int x[50], int w[50], int n, int C) { for(int k = n; k >= 2; k --) { if(c[k][C] == c[k-1][C]) x[k] = 0; else { x[k] = 1; C = C - w[k];

0-1背包问题的算法设计策略对比与讲解

算法设计与分析大作业 班级:电子154 姓名:吴志勇 学号: 1049731503279 任课老师:李瑞芳 日期: 2015.12.25

算法设计与分析课程论文 0-1背包问题的算法设计策略对比与分析 0 引言 对于计算机科学来说,算法的概念是至关重要的。在一个大型软件系统的开发中,设计出有效的算法将起到决定性的作用。通俗的讲,算法是解决问题的一种方法。也因此,《算法分析与设计》成为计算科学的核心问题之一,也是计算机科学与技术专业本科及研究生的一门重要的专业基础课。算法分析与设计是计算机软件开发人员必修课,软件的效率和稳定性取决于软件中所采用的算法;对于一般程序员和计算机专业学生,学习算法设计与分析课程,可以开阔编程思路,编写出优质程序。通过老师的解析,培养我们怎样分析算法的“好”于“坏”,怎样设计算法,并以广泛用于计算机科学中的算法为例,对种类不同难度的算法设计进行系统的介绍与比较。本课程将培养学生严格的设计与分析算法的思维方式,改变随意拼凑算法的习惯。本课程要求具备离散数学、程序设计语言、数据结构等先行课课程的知识。 1 算法复杂性分析的方法介绍 算法复杂性的高低体现在运行该算法所需要的计算机资源的多少上,所需的资源越多,该算法的复杂性越高;反之,所需资源越少,该算法的复杂性越低。对计算机资源,最重要的是时间与空间(即存储器)资源。因此,算法的复杂性有时间复杂性T(n)与空间复杂性S(n)之分。 算法复杂性是算法运行所需要的计算机资源的量,这个量应集中反映算法的效率,并从运行该算法的实际计算机中抽象出来,换句话说,这个量应该只依赖要解决的问题规模‘算法的输入和算法本身的函数。用C表示复杂性,N,I和A表示问题的规模、算法的输入和算法本身规模,则有如下表达式: C=F(N,I,A) T=F(N,I,A) S=F(N,I,A) 其中F(N,I,A)是一个三元函数。通常A隐含在复杂性函数名当中,因此表达式中一般不写A。 即:C=F(N,I) T=F(N,I) S=F(N,I) 算法复杂性中时间与空间复杂性算法相似,所以以下算法复杂性主要以时间复杂性为例: 算法的时间复杂性一般分为三种情况:最坏情况、最好情况和平均情况。下面描述算法复杂性时都是用的简化的复杂性算法分析,引入了渐近意义的记号O,Ω,θ,和o。 O表示渐近上界Ω表示渐近下界: θ表示同阶即:f(n)= O(g(n))且 f(n)= Ω(g(n)) 2 常见的算法分析设计策略介绍 2.1 递归与分治策略 分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。 直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。 由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。 分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。 递归算法举例: 共11页第1页

背包问题-贪心法和动态规划法求解

实验四“0-1”背包问题 一、实验目的与要求 熟悉C/C++语言的集成开发环境; 通过本实验加深对贪心算法、动态规划算法的理解。 二、实验内容: 掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。 三、实验题 1.“0-1”背包问题的贪心算法 2.“0-1”背包问题的动态规划算法 说明:背包实例采用教材P132习题六的6-1中的描述。要求每种的算法都给出最大收益和最优解。 设有背包问题实例n=7,M=15,,(w0,w1,。。。w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。。。,p6)=(10,5,15,7,6,18,3)。求这一实例的最优解和最大收益。 四、实验步骤 理解算法思想和问题要求; 编程实现题目要求; 上机输入和调试自己所编的程序; 验证分析实验结果; 整理出实验报告。 五、实验程序

// 贪心法求解 #include #include"iomanip" using namespace std; //按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序 void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量 float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u); int main(){ float w[7]={2,3,5,7,1,4,1}; //物品重量数组 float p[7]={10,5,15,7,6,18,3}; //物品收益数组 float avgp[7]={0}; //单位毒品的收益数组 float x[7]={0}; //最后装载物品的最优解数组 const float M=15; //背包所能的载重 float ben=0; //最后的收益 AvgBenefitsSort(avgp,p,w); ben=GetBestBenifit(p,w,x,M); cout<

动态规划法解0-1背包问题举例

0-1背包问题举例: 设n=6,c=20, w={4,5,3,8,6,10}, v={20,10,8,18,15,12} 解: p[7]={(0,0)} q[7]=p[7]⊕(10,12)={ (10,12)} p[6]={(0,0), (10,12)} q[6]=p[6]⊕(6,15)={ (6,15),(16, 27)} p[5]= {(0,0), (6,15),(16, 27)} q[5]=p[5]⊕(8,18)={ (8,18),(14, 33)} p[4]= {(0,0), (6,15), (8,18),(14, 33) } q[4]=p[4]⊕(3,8)={(3,8),(9,23),(11,26),(17, 41)} p[3]= {(0,0),(3,8),(6,15),(8,18),(9,23),(11,26),(14, 33),(17, 41)} q[3]=p[3]⊕(5,10)={(5,10),(8,18),(11,25),(13, 28),(14,33),(16,36),(19, 43)} p[2]= {(0,0),(3,8),(5,10),(6,15),(8,18),(9,23),(11,26),(13, 28),(14, 33),(16,36),(17, 41),(19,43)} q[2]=p[2]⊕(4,20)={(4,20),(7,28),(9,30),(10,35),(12,38),(13,43),(15,46),(17, 48),(18, 53),(20,56)} p[1]={(0,0),(3,8),(4,20),(7,28),(9,30),(10,35),(12,38),(13,43),(15,46),(17, 48),(18, 53),(20,56)} 构造最优解: X={1,1,1,1

贪心算法详解分析

贪心算法详解 贪心算法思想: 顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。 贪心算法的基本要素: 1.贪心选择性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。 动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。 2. 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的 最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 贪心算法的基本思路: 从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到算法中的某一步不能再继续前进时,算法停止。 该算法存在问题: 1. 不能保证求得的最后解是最佳的; 2. 不能用来求最大或最小解问题; 3. 只能求满足某些约束条件的可行解的范围。 实现该算法的过程: 从问题的某一初始解出发; while 能朝给定总目标前进一步do 求出可行解的一个解元素; 由所有解元素组合成问题的一个可行解; 用背包问题来介绍贪心算法: 背包问题:有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。要 求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

贪心算法实现背包问题算法设计与分析实验报告

算法设计与分析实验报告 实验名称贪心算法实现背包问题评分 实验日期年月日指导教师 姓名专业班级学号 一.实验要求 1. 优化问题 有n个输入,而它的解就由这n个输入满足某些事先给定的约束条件的某个子集组成,而把满足约束条件的子集称为该问题的可行解。可行解一般来说是不唯一的。那些使目标函数取极值(极大或极小)的可行解,称为最优解。 2.贪心法求优化问题 算法思想:在贪心算法中采用逐步构造最优解的方法。在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。决策一旦作出,就不可再更改。作出贪心决策的依据称为贪心准则(greedy criterion)。 3.一般方法 1)根据题意,选取一种量度标准。 2)按这种量度标准对这n个输入排序 3)依次选择输入量加入部分解中。如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。 procedure GREEDY(A,n) /*贪心法一般控制流程*/ //A(1:n)包含n个输入// solutions←φ //将解向量solution初始化为空/ for i←1 to n do x←SELECT(A) if FEASIBLE(solution,x) then solutions←UNION(solution,x) endif repeat return(solution) end GREEDY 4. 实现典型的贪心算法的编程与上机实验,验证算法的时间复杂性函数。 二.实验内容 1. 编程实现背包问题贪心算法。通过具体算法理解如何通过局部最优实现全局最优,

并验证算法的时间复杂性。 2.输入5个的图的邻接矩阵,程序加入统计prim算法访问图的节点数和边数的语句。 3.将统计数与复杂性函数所计算比较次数比较,用表格列出比较结果,给出文字分析。 三.程序算法 1.背包问题的贪心算法 procedure KNAPSACK(P,W,M,X,n) //P(1:n)和W(1;n)分别含有按 P(i)/W(i)≥P(i+1)/W(i+1)排序的n件物品的效益值 和重量。M是背包的容量大小,而x(1:n)是解向量 real P(1:n),W(1:n),X(1:n),M,cu; integer i,n; X←0 //将解向量初始化为零 cu←M //cu是背包剩余容量 for i←1 to n do if W(i)>cu then exit endif X(i) ←1 cu←cu-W(i) repeat if i≤n then X(i) ←cu/ W(i) endif end GREEDY-KNAPSACK procedure prim(G,) status←“unseen” // T为空 status[1]←“tree node” // 将1放入T for each edge(1,w) do status[w]←“fringe” // 找到T的邻接点 dad[w] ←1; //w通过1与T建立联系 dist[w] ←weight(1,w) //w到T的距离 repeat while status[t]≠“tree node” do pick a fringe u with min dist[w] // 选取到T最近的节点 status[u]←“tree node” for each edge(u,w) do 修改w和T的关系 repeat repeat 2.Prim算法

c应用贪心算法求解背包问题

实验五应用贪心算法求解背包问题 学院:计算机科学与技术专业:计算机科学与技术 学号:班级:姓名: 、 实验内容: 背包问题指的是:有一个承重为W的背包和n个物品,它们各自的重量和价值分别是n ,假设W w i和v i(1 i n)w i 1i,求这些物品中最有价值的一个子集。如果每次选择某一个物品的时候,只能全部拿走,则这一问题称为离散(0-1)背包问题;如果每次可以拿走某一物品的任意一部分,则这一问题称为连续背包问题。 二、算法思想: 首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包。依此策略一直地进行下去,直到背包装满为止。 三、实验过程: #in elude using n amespace std; struct goodi nfo

{ float p; // 物品效益 float w; // 物品重量 float X; // 物品该放的数量 int flag; // 物品编号 };// 物品信息结构体 void Insertionsort(goodinfo goods[],int n)// 插入排序,按pi/wi 价值收益进行排序,一般教材上按冒泡排序 { int j,i; for(j=2;j<=n;j++) { goods[0]=goods[j]; i=j-1; while (goods[0].p>goods[i].p) { } goods[i+1]=goods[0]; } }// 按物品效益,重量比值做升序排列goods[i+1]=goods[i]; i--; void bag(goodinfo goods[],float M,int n) { float cu; int i,j;

用蛮力法、动态规划法和贪心法求解01背包问题

算法设计与分析 项目名称:用蛮力法、动态规划法和贪心法求解0/1背包问题 作者姓名:余武丹 李红波 刘红梅 完成日期:2013年9月20日

目录 第一章:简介(Introduction) 第二章:算法定义(Algorithm Specification) 第三章:测试结果(Testing Results) 第四章:分析和讨论

第一章:简介(Introduction ) 0/1背包问题是给定n 个重量为{w 1, w 2, … ,wn }、价值为{v 1, v 2, … ,vn }的物品和一个容量为C 的背包,求这些物品中的一个最有价值的子集,并且要能够装到背包中。 在0/1背包问题中,物品i 或者被装入背包,或者不被装入背包,设xi 表示物品i 装入背包的情况,则当xi =0时,表示物品i 没有被装入背包,xi =1时,表示物品i 被装入背包。根据问题的要求,有如下约束条件和目标函数: 于是,问题归结为寻找一个满足约束条件式1,并使目标函数式2达到最大的解向量X =(x 1, x 2, …, xn )。 背包的数据结构的设计: typedef struct object { int n;//物品的编号 int w;//物品的重量 int v;//物品的价值 }wup; wup wp[N];//物品的数组,N 为物品的个数 int c;//背包的总重量 第二章:算法定义(Algorithm Specification ) 1、蛮力法 蛮力法是一种简单直接的解决问题的方法,常常直接基于问题的描述和所涉及的概念定义。蛮力法的关键是依次处理所有的元素。 用蛮力法解决0/1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。 所以蛮力法解0/1背包问题的关键是如何求n 个物品集合的所有子集,n 个物品的子集有2的n 次方个,用一个2的n 次方行n 列的数组保存生成的子集,以下是生成子集的算法: void force(int a[][4])//蛮力法产生4个物品的子集 { int i,j; int n=16; int m,t; for(i=0;i<16;i++) ????? ≤≤∈≤∑=) 1(}1,0{1 n i x C x w i n i i i (式1) ∑=n i i i x v 1 max (式2)

相关文档
最新文档