贪心法计算背包问题

合集下载

贪心算法之背包问题

贪心算法之背包问题

贪⼼算法之背包问题问题描述:给定n种物品,1个背包,背包容量为c,每个物品i的价值为vi,重量为wi,如何选择装⼊物品能使背包的总价值最⼤?注意:与0-1背包问题不同,在选择物品i装⼊背包时,可以选择物品i的⼀部分,⽽不⼀定要全部装⼊背包,1<=i<=n形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量A=(x1,x2,…,xn), 0<=xi<=1【0~1表⽰取物品的某⼀部分】,1<=i<=n,使得 ∑wixi≤c【物品的重量和⼩于背包总容量】⽽且∑ vixi达到最⼤。

算法思路:将物品按照单位重量价值进⾏排序(从⼤到⼩),将尽可能多的单位重量价值最⾼的物品装⼊背包,若将这种物品全部装⼊背包后,背包还有多余容量,则选择单位重量价值次⾼的并尽可能多地装⼊背包。

如果最后⼀件物品⽆法全部装⼊,则计算可以装⼊的⽐例,然后按⽐例装⼊。

代码实现:数据结构:结构体1 #include <iostream>2 #include <algorithm>3using namespace std;4struct item{5int weight;//物品的重量6int value;//物品的价值7float bi;//物品单位重量的价值8float rate;//使⽤率:1代表物品完整放⼊,⼩于1代表被分割后放⼊9 }items[100];10bool cmp(const item &a,const item &b){11return a.bi>b.bi;12 }13int main(){14int n;//n件物品15float c;//背包容量为c16 cout<<"输⼊物品件数和背包容量:"<<endl;17 cin>>n>>c;18 cout<<"依次输⼊每件物品的价值和重量:"<<endl;19float v[n],w[n];//v[n]:n件物品的价值,w[n]:n件商品的重量20for(int i=0;i<n;i++){21 cin>>items[i].value>>items[i].weight;22 items[i].bi=items[i].value/items[i].weight;//计算单位重量价值23 items[i].rate=0;//初始化每件物品的使⽤率24 }25 sort(items,items+n,cmp);//按照单位重量的价值排序26int sum=0,j=0;27for(j=0;j<n;j++){28if(items[j].weight<=c){//选择单位价值重量最⼤的并且不超过背包容量的29 items[j].rate=1;30 sum+=items[j].weight;31 c-=items[j].weight;32 cout<<"重:"<<items[j].weight<<"、价值:"<<items[j].value<<"的物品被放⼊了背包"<<endl<<"放⼊⽐例:"<<items[j].rate<<endl;33 }34else break;35 }36if(j<n){//物品未装完37 items[j].rate=c/items[j].weight;//背包容量还剩c,计算出未装⼊的物品能装多少的⽐例38 sum+=items[j].rate*items[j].weight;//加上装⼊部分⽐例物品的重量39 cout<<"重:"<<items[j].weight<<"、价值:"<<items[j].value<<"被放⼊了背包"<<endl<<"放⼊⽐例:"<<items[j].rate<<endl;40 }41return0;424344 }。

贪心算法-01背包问题

贪心算法-01背包问题

贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。

2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。

若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。

显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。

3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。

由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。

此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。

背包问题解析(一)-贪心算法

背包问题解析(一)-贪心算法

背包问题解析(⼀)-贪⼼算法⼀、题⽬:有N件物品和⼀个容量为V的背包。

第i件物品的重量是w[i],价值是v[i]。

求解将哪些物品装⼊背包可使这些物品的重量总和不超过背包容量,且价值总和最⼤。

⼆、解决思路:本题刚开始的解题的时候,想采取贪⼼算法来解决,也就是将放⼊的物品的性价⽐按照从⾼到低进⾏排序,然后优先放优先级⾼的,其次优先级低的。

三、代码实现(python)1# 重量w=[5,4,3,2]2# 价值v=[6,5,4,3]3 b=[]4 m=int(input("请输⼊背包的最⼤重量:"))5 n=int(input("请输⼊商品的数量:"))6for i in range(n):7 a=input("请分别输⼊重量和价值,以空格隔开:")8 a=a.split("")9for i in range(len(a)):10 a[i]=int(a[i])11 b.append(a)12print("加载初始化:",b)13for i in range(len(b)):14for j in range(i+1,len(b)):15if b[i][1]/b[i][0]<b[j][1]/b[j][0]:16 b[i],b[j]=b[j],b[i]17print("性价⽐排序:",b)18 v=019 c=[]20for i in range(len(b)):21if m-b[i][0]>0:22 m=m-b[i][0]23 c.append(b[i])24 v+=b[i][1]25print("放⼊背包:",c)26print("最⼤价值为:",v)打印结果:四、算法分析:贪⼼选择是指所求问题的整体最优解可以通过⼀系列局部最优的选择,即贪⼼选择来达到。

贪心算法求连续背包问题

贪心算法求连续背包问题

实验项目名称:贪心算法求连续背包问题一、实验目的:明确连续背包问题的概念;利用贪心算法解决连连续续背包问题;并通过本例熟悉贪心算法在程序设计中的应用方法。

二、实验原理: 贪心算法原理:在贪婪算法(greedy method )中采用逐步构造最优解的方法。

在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。

决策一旦作出,就不可再更改。

作出贪婪决策的依据称为贪婪准则(greedy criterion )。

三、实验内容与步骤:贪心算法求连续背包问题问题描述:已知n 个物体和1个背包,其中物体i 有重量w i 和价值v i ,背包承重量为W 。

求一装载方案,要求在不超过背包负重的前提下,背包中装入的物品价值最大。

很明显,如果1ni i w W =≤∑,则最优解就是装入全部物体,因此下面假设1n i i w W =>∑。

注:连续背包问题中的物体可以任意分割,即部分装入背包。

分析:连续背包问题可形式化为如下模型:{}11max ..[0,1],1,,ni ii ni ii i x v x w W s t x i n ==⎧≤⎪⎨∈∈⎪⎩∑∑对于连续背包问题,可用贪心技术求得最优解。

贪心策略是单位重量价值高者优先。

例如:所给物体的重量和价值如下,则,程序可以得到如下结果:最大价值为163.0;所选各物体的数量为:1.0 1.0 1.0 0.8参考程序段如下//连续背包问题的贪心算法,最大单位重量价值优先//输入:各物体重量w 、价值v 和背包重量W ,已按v/w 降序排列#include<stdio.h>int knapsack(int n1,float w1[],float v1[],float W1){ int i; float weight; float x[10],s=0; for(i=1;i<=n1;i++) x[i]=0; weight=0; i=1;while(weight<W1) {if(weight+w1[i]<W1){x[i]=1;weight=weight+w1[i];}else{x[i]=(W1-weight)/w1[i];weight=W1;}i++;}for(i=1;i<=n1;i++) s=s+x[i]*v1[i];printf("背包所能容纳商品的最大价值为:%f\n",s);printf("所选择的商品的一个序列为:\n");for(i=1;i<=n1;i++)printf("%8.3f",x[i]);}void main(){int n,i,j;float w[10],v[10],W;clrscr();printf("输入商品数量n 和背包容量W:\n");scanf("%d,%f",&n,&W);printf("输入每件商品的重量,价值:\n");for(i=1;i<=n;i++)scanf("%f,%f",&w[i],&v[i]);knapsack(n,w,v,W);printf("\n");system("pause");}。

贪心算法实验(求解背包问题)

贪心算法实验(求解背包问题)

算法分析与设计实验报告第四次实验
}
}
输入较小的结果:
测试结

输入较大的结果:
附录:
完整代码(贪心法)
;
cout<<endl;
cout<<"待装物品的价值为:"<<endl;
for (i=0;i<n;i++)
cin>>item[i].v;
cout<<endl;
erval=item[i].v/item[i].w;
clock_t start,end,over; ;
实验心

首先这个实验,需要注意的点是背包问题与0-1背包不同,物品可以部分的放入背包中,所以思路也不一样,首先就是将物品按照单位质量价值排序,只这一点就有一点难度。

难度在于要是排序后物品的编号就会发生改变,输出的就不是之前的编号的物品,导致错误,后来发现如果为每一个物品保存一个副本,然后将它们的编号进行对比,就可以进行正确的输出了。

其中这个实验
让我学到了两点:一是结构体的使用,之前一直没有怎么用过,现在才发现自己其实不会用;二十对于库函数sort 函数的使用。

感觉每一次实验都有学到东西,很开心。

实验得
分 助教签名
sort(item,item+n,comparison); >c)
break;
tem[i]=1;
c-=item[i].w;
}
if(i<n) ;
for(i=0;i<n;i++) ==tmp[j])
x[j]=tem[i];
}
}
}。

贪心法求解01背包问题

贪心法求解01背包问题

贪心法的关键是度量标准,这个程序的度量标准有三个占用空间最小物品效益最大物品效益/占用空间最大程序实现如下:至于文件的操作不加论述。

#include <stdio.h>#include <stdlib.h>typedef struct{char name[10];int weight;int price;}Project;Project *Input(Project *wp,int TotalNum,int TotalWeight) {int i,j,Way,GoBack,RealWeight,RealPrice,TotalPrice;Project temp;do{printf("请选择:\n");printf(" 1.空间最优\n");printf(" 2.价格最优\n");printf(" 3.价格空间比最优\n");scanf("%d",&Way);switch(Way){case 1:for(i=0;i<TotalNum;i++)for(j=0;j<TotalNum-i-1;j++){if(wp[j].weight>wp[j+1].weight){temp=wp[j];wp[j]=wp[j+1];wp[j+1]=temp;}}break;case 2:for(i=0;i<TotalNum;i++)for(j=0;j<TotalNum-i-1;j++){if(wp[j].price<wp[j+1].price){temp=wp[j];wp[j]=wp[j+1];wp[j+1]=temp;}}break;case 3:for(i=0;i<TotalNum;i++)for(j=0;j<TotalNum-i-1;j++){if((float)wp[j].price/(float)wp[j].weight<(float)wp[j+1].price/(float)wp[j+1].weight){temp=wp[j];wp[j]=wp[j+1];wp[j+1]=temp;}}break;default:{printf("输入错误!\n");exit(1);}}i=0;RealWeight=wp[0].weight;TotalPrice=wp[0].price;printf("被装入背包的物品是:\n(物品名价格重量)\n");while(RealWeight<TotalWeight&&i<TotalNum){printf("%s %d %d\n",wp[i].name,wp[i].price,wp[i].weight);i++;RealWeight+=wp[i].weight;TotalPrice+=wp[i].price;}RealWeight-=wp[i].weight;TotalPrice-=wp[i].price;printf("求解结束!背包所装物品总重量:%d,总价值:%d\n",RealWeight,TotalPrice);printf("退出本次测试请按0!\n");scanf("%d",&GoBack);}while(GoBack!=0);return wp;}void main(){int InputWay,TotalNum,i,TotalWeight,RealWeight,Goon,TotalPrice;Project *Array;FILE *fp;do{printf("请选择数据录入方式!\n");printf(" 1.文件读入\n");printf(" 2.键盘输入\n");scanf("%d",&InputWay);switch(InputWay){case 1:printf("请输入背包最大容量:");scanf("%d",&TotalWeight);fp=fopen("data.txt","r");fscanf(fp,"%d\n",&TotalNum);if((Array=(Project*)malloc(TotalNum*sizeof(Project)))==NULL){printf("内存已满,申请空间失败!\n");exit(1);}else{for(i=0;i<TotalNum;i++){fscanf(fp,"%s %d %d\n",&Array[i].name,&Array[i].price,&Array[i].weight);}}fclose(fp);Array=Input(Array,TotalNum,TotalWeight);break;case 2:printf("请输入物品数量及背包容量\n");scanf("%d%d",&TotalNum,&TotalWeight);if((Array=(Project*)malloc(TotalNum*sizeof(Project)))==NULL){printf("内存已满,申请空间失败!\n");exit(1);}else{printf("请输入:物品名价格重量\n");for(i=0;i<TotalNum;i++)scanf("%s%d%d",&Array[i].name,&Array[i].price,&Array[i].weight);}Array=Input(Array,TotalNum,TotalWeight);break;default:{printf("输入错误!\n");exit(1);}}printf("继续其他数据测试请按1\n");scanf("%d",&Goon);}while(Goon==1);delete Array;}。

贪心法解决背包问题

贪心法解决背包问题

算法分析实验报告贪心法解决背包问题学生姓名:专业:班级:学号:指导教师:2017年6月12日目录一、实验题目 (2)二、实验目的 (2)三、实验要求 (2)四、实现过程 (3)1、实验设计: (3)2、调试分析 (5)3、运行结果: (6)4、实验总结: (6)五、参考文献 (6)一、实验题目贪心法解决背包问题二、实验目的1)以背包问题为例,掌握贪心法的基本设计策略。

2)熟练掌握各种贪心策略情况下的背包问题的算法并实现;其中:量度标准分别取:效益增量v、物品重量w、v/ w比值;3) 分析实验结果来验证理解贪心法中目标函数设计的重要性。

三、实验要求1.[问题描述]:给定n种物品和一个背包。

物品i的重量是Wi,其价值为Vi,背包的容量为C。

应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 与0-1背包问题类似,所不同的是在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部装入背包,但不可以重复装入。

2.[算法]:贪心法的基本思路:从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。

当达到某算法中的某一步不能再继续前进时,算法停止。

该算法存在问题:1)不能保证求得的最后解是最佳的;2)不能用来求最大或最小解问题;3)只能求满足某些约束条件的可行解的范围。

四、实现过程1、实验设计:1.用贪心法求解背包问题的关键是如何选定贪心策略,使得按照一定的顺序选择每个物品,并尽可能的装入背包,直至背包装满。

至少有三种看似合理的贪心策略:1)按物品价值v降序装包,因为这可以尽可能快的增加背包的总价值。

但是,虽然每一步选择获得了背包价值的极大增长,但背包容量却可能消耗太快,使得装入背包得物品个数减少,从而不能保证目标函数达到最大。

2)按物品重量w升序装包,因为这可以装入尽可能多的物品,从而增加背包总价值。

但是,虽然每一步选择使背包得容量消耗得慢了,但背包价值却没能保证迅速增长,从而不能保证目标函数达到最大。

背包问题的贪心算法

背包问题的贪心算法

Wi Xi
16.5 20 20 20
Vi X i
24.25 28.2 31 31.5
先检验这四个为可行解*,即满足约束条件(4.2.2),(4.2.3).再比 较目标函数值,∑vixi .知④组解效益值最大.该组解是背包问题的最 优解。(见定理4.2)
6
例4.4 n=3,c=20, (V1,V2,V3) (25, 24,15) (W1,W2,W3) (18,15,10)
7
,且物品2的24/15 = v2/w2 较物品3的15/10= v3/w3效益值高。按 此选择策略,得②即(1, 2/15, 0),∑vixi=28.2 .此解是一个次优解。 显然,按物品效益值的非增次序装包不能得最优解。
原因:背包可用容量消耗过快。
(2)以容量作为量度。即按物品重量的非降次序将物
—选取最优的量度标准实为用贪心方法求解问题的核心.
16
4.3 贪心算法的基本要素
1.贪心选择性质
所谓贪心选择性质是指所求问题的整体最优解可以 通过一系列局部最优的选择,即贪心选择来达到。这 是贪心算法可行的第一个基本要素,也是贪心算法与 动态规划算法的主要区别。
动态规划算法通常以自底向上的方式解各子问 题,而贪心算法则通常以自顶向下的方式进行,以迭 代的方式作出相继的贪心选择,每作一次贪心选择就 将所求问题简化为规模更小的子问题。
品装包。如例4.4中的解③(让背包尽可能慢被消耗)
排序 : (w3,w2,w1)= (10,15,18)
(V3,V2,V1) (15, 24, 25)
V3=15,x3=1,w3=10,背包剩余C-10=10;物品2有次大重量(w2=15), 但包装不下。使用x2=2/3,刚好装满背包且物品2装入2/3与物品1 装入5/9的容量均为10个单位。但前者的效益值24×2/3=16 >后者
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验总结:
通过本次实验我们了解了背包问题贪心法的基本思想和策略,我们 发现用该方法解决此问题的核心在于对量度标准的选择,通过具体数据 的解答,我们最终确定了以单位效益,即物品的权值和重量的比值为量 度最终能得到背包问题贪心法的最优解,同时也使我们对贪心法这一策 略有了更为直观的认识。
实验成绩 教师签名
计算机科学与工程学院学生实验报告
学号 课程名称 实验名称 实验目的: 贪心法设计实验 专业 班级 课程类型 实验 姓名
1、以背包问题为例,掌握贪心法的基本设计策略。 2、熟练掌握其中各种贪心策略情况下的背包问题的算法并实现。 3、分析实验结果来验证理解贪心法中目标函数设计的重要性。
实验内容:
一、实验概述
给定 n 种物品和一个背包。物品 i 的重量是 Wi,其价值为 Vi,背包 的容量为 C。应如何选择装入背包的物品,使得装入背包中物品的 总价值最大? 与 0-1 背包问题类似,所不同的是在选择物品 i 装入 背包时,可以选择物品 i 的一部分,而不一定要全部装入背包,但 不可以重复装入。 2、 【想法】
3、 【图解过程】
物品 i
w[i]>C
x[i]=1 C=C-w[i]
i++
i<n
退出循环
i≤n
x[i]=C/w[i]
程序结束ቤተ መጻሕፍቲ ባይዱ
4、 【代码分析】 int KnapSack(int n,int w[],int v[],int C) {
double x[10]={0}; int maxValue=0; for (int i = 0; w[i] < C; i++) { x[i]=1; maxValue+=v[i]; C=C-w[i]; } x[i]=(double)C/w[i]; maxValue+=x[i]*v[i]; return maxValue;
用贪心法求解背包问题的关键是如何选定贪心策略, 使得按照一
定的顺序选择每个物品,并尽可能的装入背包,直至背包装满。至少有 三种看似合理的贪心策略: 1)按物品价值 v 降序装包,因为这可以尽可能快的增加背包的总价 值。但是,虽然每一步选择获得了背包价值的极大增长,但背包容量却 可能消耗太快,使得装入背包得物品个数减少,从而不能保证目标函数 达到最大。 2)按物品重量 w 升序装包,因为这可以装入尽可能多的物品,从而 增加背包总价值。但是,虽然每一步选择使背包得容量消耗得慢了,但 背包价值却没能保证迅速增长,从而不能保证目标函数达到最大。 3)按物品价值与重量比值 v/w 的降序装包。
贪心法把一个复杂问题分解为一系列较为简单的局部最优选择,每 一步选择都是对当前解的一个扩展,直到问题的完整解。贪心法的典型 应用是求最优解问题。
二、设计思想
贪心法在解决问题的策略上目光短浅,只根据当前已有的信息做 出选择,而且一旦做出了选择,不管将来有什么结果,这个选择都 不会改变。
三、实现过程
1、 【问题描述】
相关文档
最新文档