01背包问题不同算法设计、分析与对比
贪心算法-01背包问题

贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。
2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。
若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。
显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。
3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。
由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。
此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。
背包问题实验报告

背包问题实验报告背包问题实验报告背包问题是计算机科学中的经典问题之一,它涉及到在给定的一组物品中选择一些物品放入背包中,以使得背包的总重量不超过其容量,并且所选择的物品具有最大的总价值。
在本次实验中,我们将通过不同的算法来解决背包问题,并对比它们的效率和准确性。
1. 实验背景和目的背包问题是一个重要的优化问题,它在许多实际应用中都有广泛的应用,比如货物装载、资源分配等。
在本次实验中,我们的目的是通过实际的算法实现,比较不同算法在解决背包问题时的性能差异,并分析其优缺点。
2. 实验方法和步骤为了解决背包问题,我们选择了以下几种常见的算法:贪心算法、动态规划算法和遗传算法。
下面将对每种算法的具体步骤进行介绍。
2.1 贪心算法贪心算法是一种简单而直观的算法,它通过每次选择当前状态下最优的解决方案来逐步构建最终解决方案。
在背包问题中,贪心算法可以按照物品的单位价值进行排序,然后依次选择单位价值最高的物品放入背包中,直到背包的容量达到上限。
2.2 动态规划算法动态规划算法是一种基于递推关系的算法,它通过将原问题分解为多个子问题,并利用子问题的解来构建原问题的解。
在背包问题中,动态规划算法可以通过构建一个二维数组来记录每个子问题的最优解,然后逐步推导出整个问题的最优解。
2.3 遗传算法遗传算法是一种模拟生物进化的算法,它通过模拟自然选择、交叉和变异等过程来搜索问题的最优解。
在背包问题中,遗传算法可以通过表示每个解决方案的染色体,然后通过选择、交叉和变异等操作来不断优化解决方案,直到找到最优解。
3. 实验结果和分析我们使用不同算法对一组测试数据进行求解,并对比它们的结果和运行时间进行分析。
下面是我们的实验结果:对于一个容量为10的背包和以下物品:物品1:重量2,价值6物品2:重量2,价值10物品3:重量3,价值12物品4:重量4,价值14物品5:重量5,价值20贪心算法的结果是选择物品4和物品5,总重量为9,总价值为34。
浅谈0-1背包问题的常用算法

2 0 1 3年 1 0月下 C o n s u me r E l e c t r o n i c s Ma g a z i n e 技 术 交 流
浅谈 0 - 1 背包问题的常用算法
汤赫 男
( 吉林工商学院信息工程学院,长春 1 3 0 0 6 2) 摘 要 :0 -1 背 包问题是典型的 NP ~完全问题 ,无论从 理论 上还是 实践上都有一定的研究意义。本文综述 了几 种0 — 1背包问题的 常用算法 ,分析算法的优劣 ,预 测 0 - 1背包问题的发展方向。 关键 词 :0 — 1背包问题 ;动 态规划法 ;贪心法 ;分支界限法
一
、
∑w ,
l {
㈠ { “ } m a x ∑
{ j
二 、常用 的 0 - 1 背 包问题算法 ( 一) 蛮力法。 蛮 力法又称穷举法或枚举法,是一种简单、 直接、有效的方法,是初学者入 门的方法 。蛮力法要求遍历所 有可能情 况一次且仅一次 ,筛选 出符合要求 的解。应用蛮力法 求解 0 - 1 背包 问题, 需要考虑给定的 n 个物品集合的所有子集, 找出所有总重量不超过背包容量的子集 ,计算每个可能子集的 总价值,然后找 出价值最大的子集 。对于一个具有 n个元素的 集合 ,其子集数量是 2 “,所 以,不论生成子集 的算法效率有 多高 ,蛮力法求解 0 - 1 背包 问题都会导致一个 Q ( 2 n )的算法 。 ( 二 )动 态规划法。动态规划 法是一种通用 的算 法设计 技术用来求解 多阶段决策最优 化问题。这类 问题都满 足最优 性原理,即原 问题 的最优 性包含着子 问题 的最优性 。 应用 动态规划法 求解 0 - 1 背包 问题 ,可 以将 0 — 1背包 问 题看 作一个 多阶段决策最 优化 问题 。n个物 品集合 的所 有子 集可 以看 作该 问题 的所有 可行解;这些可行解 都是满足约束 条件 的,可行解可能不止一个,通过 目标 函数找到最优解 。 动态 规划 法求解 0 - 1 背包 问题 的算法描述 : 设V ( n , C )表 示将 n个 物 品装入 容量 为 C的背 包获 得 的 最大价值 。 初 始 状 态 :V ( i , 0 ) = V ( 0 , j ) = 0 , 0≤ i ≤n , 0≤ j≤ C 则V ( i , j )表示 将前 i 个 物 品装入 容量 为 j的背 包获 得
0_1背包问题的多种解法

页脚内容1一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。
首先说明一下0-1背包问题拥有最优解。
假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。
如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+n i i i W y w x w 211。
因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。
由于程序过于简单,在这里就不再给出,用实例说明求解过程。
下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。
c语言部分背包问题的算法设计

很高兴能为您提供文章撰写服务。
在开始撰写的过程中,我将按照您的要求,以深度和广度兼具的方式来探讨c语言部分背包问题的算法设计。
第一部分:背包问题的概念和分类1. 背包问题是指在给定的一组物品中选择合适的物品装入背包,使得背包的容量最大化或价值最大化的问题。
在算法设计中,背包问题有0-1背包、完全背包、多重背包等不同的分类。
2. 0-1背包问题是指每种物品只能选择一次放入背包,而完全背包问题则是每种物品可以选择多次放入背包。
第二部分:c语言中的背包问题算法设计1. 对于0-1背包问题,可以采用动态规划的方法进行解决。
具体的算法设计包括定义状态转移方程、初始化数组、填表和回溯等步骤。
2. 完全背包问题的算法设计也可以采用动态规划的方法,但在状态转移方程的定义和填表的过程中需要做出相应的调整。
第三部分:c语言中的背包问题算法实现1. 0-1背包问题的算法实现可以通过c语言的数组和循环结构来实现状态转移方程的计算和填表过程。
2. 完全背包问题的算法实现与0-1背包问题类似,但针对每种物品可以选择多次放入背包的特点需要做出相应的改进。
第四部分:个人观点和总结在我看来,c语言部分背包问题的算法设计是一项具有挑战性和实用性的工作。
通过深入理解不同类型的背包问题,并结合动态规划的算法设计和实现,可以有效解决实际生活和工作中的背包优化问题。
掌握c 语言中背包问题的算法设计和实现,不仅可以提升自身的编程能力,也可以为解决实际问题提供有力的支持。
以上是我根据您提供的主题对c语言部分背包问题的算法设计进行的基本介绍和探讨。
希望这些内容能够满足您对文章的要求,如果有其他方面需要补充或修改,还请您及时提出。
期待您的反馈和意见,谢谢!在c语言中,背包问题是一种常见的算法设计问题,涉及到动态规划和数组的运用。
背包问题可以分为0-1背包、完全背包、多重背包等不同类型,每种类型的背包问题都有其特定的算法设计和实现方法。
在本文中,我们将进一步探讨c语言中背包问题的算法设计和实现,并对算法的效率和实际应用进行分析和总结。
0-1背包问题的枚举算法

0-1背包问题的枚举算法一、问题概述0-1背包问题是一种经典的优化问题,给定一组物品,每种物品都有自己的重量和价值,而你有一个限制容量的背包。
目标是在不超过背包容量的情况下,选择物品使得总价值最大化。
然而,在某些情况下,所有的物品都不能被放入背包中,这时就需要用到0-1背包问题的枚举算法。
二、算法原理枚举算法的基本思想是从所有可能的物品组合中逐个尝试,找出满足条件的组合。
对于0-1背包问题,我们可以枚举所有可能的物品组合,对于每个组合,计算其总价值和当前背包的剩余容量,如果总价值大于当前背包容量所能获得的最大价值,那么就将这个物品放入背包中,并更新背包剩余容量和总价值。
如果当前物品的价值小于或等于当前背包容量所能获得的最大价值,那么就将这个物品标记为0(表示已经考虑过),并继续尝试下一个物品。
最终得到的组合就是最优解。
三、算法实现以下是一个简单的Python实现:```pythondefknapsack_enumeration(items,capacity):#初始化结果列表和当前价值result=[]current_value=0#枚举所有可能的物品组合foriinrange(len(items)):#标记当前物品为0(已考虑过)items[i][1]=0#计算当前物品的价值并更新总价值forjinrange(len(items)):ifj<i:#不考虑之前的物品对当前物品的价值影响current_value+=items[j][1]*items[i][0]/capacityelse:#考虑之前的物品对当前物品的价值影响(假设不考虑前一个物品的重量)current_value+=items[j][0]*(capacity-items[i][0])/capacity#将当前物品从物品列表中移除(放入背包中)delitems[i]#将当前价值添加到结果列表中result.append(current_value)returnresult```四、应用场景枚举算法在许多实际应用中都有应用,如计算机科学、运筹学、工程学等。
动态规划求解01背包问题

动态规划求解01背包问题问题给定n种物品和⼀个背包,物品(1<=i<=n)重量是w I ,其价值v i,背包容量为C,对每种物品只有两种选择:装⼊背包和不装⼊背包,即物品是不可能部分装⼊,部分不装⼊。
如何选择装⼊背包的物品,使其价值最⼤?想法该问题是最优化问题,求解此问题⼀般采⽤动态规划(dynamic plan),很容易证明该问题满⾜最优性原理。
动态规划的求解过程分三部分:⼀:划分⼦问题:将原问题划分为若⼲个⼦问题,每个⼦问题对应⼀个决策阶段,并且⼦问题之间具有重叠关系⼆:确定动态规划函数:根据⼦问题之间的重叠关系找到⼦问题满⾜递推关系式(即动态规划函数),这是动态规划的关键三:填写表格:设计表格,以⾃底向上的⽅式计算各个⼦问题的解并填表,实现动态规划过程。
思路:如何定义⼦问题?0/1背包可以看做是决策⼀个序列(x1,x2,x3,…,xn),对任何⼀个变量xi的决策时xi=1还是xi=0. 设V(n,C)是将n个物品装⼊容量为C的背包时背包所获得的的最⼤价值,显然初始⼦问题是将前i个物品装如容量为0的背包中和把0个物品装⼊容量为j的背包中,这些情况背包价值为0即V(i,0)=V(0,j)=0 0<=i<=n, 0<=j<=C接下来考虑原问题的⼀部分,设V(I,j)表⽰将前i个物品装⼊容量为j的背包获得的最⼤价值,在决策xi时,已经确定了(x1,x2,…,xi-1),则问题处于下列两种情况之⼀:1. 背包容量不⾜以装⼊物品i,则装⼊前i-1个物品的最⼤价值和装⼊前i个物品最⼤价值相同,即xi=0,背包价值没有增加2. 背包容量⾜以装⼊物品i,如果把物品i装⼊背包,则背包物品价值等于把前i-1个物品装⼊容量为j-wi的背包中的价值加上第i个物品的价值vi;如果第i个物品没有装⼊背包,则背包价值等于把前i-1个物品装⼊容量为j的背包中所取得的价值,显然,取⼆者最⼤价值作为把物品i装⼊容量为j的背包中的最优解,得到如下递推公式为了确定装⼊背包中的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),则表明第n个物品被装⼊背包中,前n-1个物品被装⼊容量为C-wn的背包中;否则,第n个物品没有被装⼊背包中,前n-1个物品被装⼊容量为C的背包中,依次类推,直到确认第⼀个物品是否被装⼊背包中代码C++实现1. // dp_01Knapsack.cpp : 定义控制台应⽤程序的⼊⼝点。
背包问题和TSP问题算法报告

算法报告班级: 140710班组员: 14071006 魏泽琳14071008 田恬14071019 黄婧婧14071021 宋蕊14071026 于婷雯指导老师:徐旭东广义背包问题一、问题描述广义背包问题的描述如下:给定载重量为M的背包和n种物品,每种物品有一定的重量和价值,现在需要设计算法,在不超过背包载重量的前提下,巧妙选择物品,使得装入背包的物品的总价值最大化。
规则是,每种物品均可装入背包多次或不装入(但不能仅装入物品的一部分)。
请用数学语言对上述背包问题加以抽象,在此基础上给出动态规划求解该问题的递归公式。
要求对所给公式中的符号意义加以详细说明,并简述算法的求解步骤。
用一种你熟悉的程序设计语言加以实现。
二、基本思路1、01背包问题在讨论广义背包问题前应该先讨论最基础的01背包问题。
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即F[i][m]表示前i件物品恰放入一个重量为m的背包可以获得的最大价值。
其状态转移方程是:F[i][m]=max{F[i−1][m],F[i−1][m−wi]+Ci}}这个方程是解决背包问题的关键点,基本上所有跟背包相关的问题的方程都是由它衍生出来的。
所以有必要解释一下:“将前i件物品放入容量为m的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只和前i−1件物品相关的问题。
如果不放第i件物品,那么问题就转化为“前i−1件物品放入容量为v的背包中”,价值为F[i−1][m];如果放第i件物品,那么问题就转化为“前i−1件物品放入剩下的容量为m−wi 的背包中”,此时能获得的最大价值就是F[i−1][m−wi]再加上通过放入第i件物品获得的价值Ci。
最优解的函数从方程中能得出:F[i][m]=F[i-1][m](当第i个物品不装入)F[i][m]>F[i-1][m](当第i个物品装入)以上是有关01背包的讨论,现在讨论广义背包的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三01背包问题不同算法设计、分析与对比一.问题描述给定n种物品和一背包。
物品i的重量是w i,其价值为v i,背包的容量为c。
问题:应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。
说明:在选择装入背包的物品时,对每种物品i只有两个选择,装入背包或不装入背包,也不能将物品装入背包多次。
二.实验内容与要求实验内容:1.分析该问题适合采用哪些算法求解(包括近似解)。
动态规划、贪心、回溯和分支限界算法。
2.分别给出不同算法求解该问题的思想与算法设计,并进行算法复杂性分析。
动态规划:递推方程:m(i,j) = max{m(i-1,j),m(i-1,j-wi)+vi} j >= wi;m(i-1,j) j < wi;时间复杂度为O(n).贪心法:算法思想:贪心原则为单位价值最大且重量最小,不超过背包最大承重量为约束条件。
也就是说,存在单位重量价值相等的两个包,则选取重量较小的那个背包。
但是,贪心法当在只有在解决物品可以分割的背包问题时是正确的。
贪心算法总是作出在当前看来最好的选择。
也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。
用贪心法设计算法的特点是一步一步地进行,根据某个优化测度(可能是目标函数,也可能不是目标函数),每一步上都要保证能获得局部最优解。
每一步只考虑一个数据,它的选取应满足局部优化条件。
若下一个数据与部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中,直到把所有数据枚举完,或者不能再添加为止。
回溯法:回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。
这种具有限界函数的深度优先生成法称为回溯法。
对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。
在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入左子树。
当右子树中有可能包含最优解时就进入右子树搜索。
时间复杂度为:O(2n)空间复杂度为:O(n)分支限界算法:首先,要对输入数据进行预处理,将各物品依其单位重量价值从大到小进行排列。
在优先队列分支限界法中,节点的优先级由已装袋的物品价值加上剩下的最大单位重量价值的物品装满剩余容量的价值和。
算法首先检查当前扩展结点的左儿子结点的可行性。
如果该左儿子结点是可行结点,则将它加入到子集树和活结点优先队列中。
当前扩展结点的右儿子结点一定是可行结点,仅当右儿子结点满足上界约束时才将它加入子集树和活结点优先队列。
当扩展到叶节点时为问题的最优值。
3.设计并实现所设计的算法。
4.对比不同算法求解该问题的优劣。
这动态规划算法和贪心算法是用来分别解决不同类型的背包问题的,当一件背包物品可以分割的时候,使用贪心算法,按物品的单位体积的价值排序,从大到小取即可。
当一件背包物品不可分割的时候,(因为不可分割,所以就算按物品的单位体积的价值大的先取也不一定是最优解)此时使用贪心是不对的,应使用动态规划。
5.需要提交不同算法的实现代码和总结报告。
动态规划方法:public class Knapsack {public static void main(String[] args) {int[] value = { 0, 60, 100, 120 };int[] weigh = { 0, 10, 20, 30 };int weight = 50;Knapsack1(weight, value, weigh);}public static void Knapsack1(int weight, int[] value, int[] weigh) { int[] v = new int[];int[] w = new int[];int[][] c = new int[][weight + 1];int d[] = new int [100];for (int i = 0; i < ; i++) {v[i] = value[i];w[i] = weigh[i];}for (int i = 1; i < ; i++) {for (int k = 1; k <= weight; k++) {if (w[i] <= k) {c[i][k] = max(c[i - 1][k], c[i - 1][k - w[i]] + v[i]);} else {c[i][k] = c[i - 1][k];}}}- 1][weight]);}private static int max(int i, int j) {int k = i > j i : j;return k;}}贪心法:public class GreedyKnapSack {public static void main(String[] args) {int[] value = { 0, 60, 100, 120 };int[] weigh = { 0, 10, 20, 30 };int weight = 50;Knapsack1(weight, value, weigh);}private static void Knapsack1(int weight, int[] v, int[] w) { int n = ;double[] r = new double[n];int[] index = new int[n];for(int i = 0;i < n; i++) {r[i] = (double)v[i] / (double)w[i];index[i] = i;}//按单位重量价值r[i]=v[i]/w[i]降序排列double temp = 0;for(int i = 0;i < n-1;i++){for(int j = i+1;j < n;j++){if(r[i] < r[j]){temp = r[i];r[i] = r[j];r[j] = temp;int x = index[i];index[i] = index[j];index[j] = x;}}}//排序后的重量和价值分别存到w1[]和v1[]中int[] w1 = new int[n];int[] v1 = new int[n];for(int i = 0;i < n;i++){w1[i] = w[index[i]];v1[i] = v[index[i]];}(w1));(v1));int s=0;//包内现存货品的重量int value=0;//包内现存货品总价值for(int i = 0; i < n;i++){i f(s + w1[i] < weight){value += v1[i];s += w1[i];}}"背包中物品的最大总价值为" + value);}}回溯法:public class BacktrackKnapSack {public static void main(String[] args) {int[] value = { 0, 60, 100, 120 };int[] weigh = { 0, 10, 20, 30 };int weight = 50;Knapsack1(weight, value, weigh);}private static void Knapsack1(int weight, int[] v, int[] w) { int n = ;double[] r = new double[n];int[] index = new int[n];for(int i = 0;i < n; i++) {r[i] = (double)v[i] / (double)w[i];index[i] = i;}//按单位重量价值r[i]=v[i]/w[i]降序排列double temp = 0;for(int i = 0;i < n-1;i++){for(int j = i+1;j < n;j++){if(r[i] < r[j]){temp = r[i];r[i] = r[j];r[j] = temp;int x = index[i];index[i] = index[j];index[j] = x;}}}//排序后的重量和价值分别存到w1[]和v1[]中int[] w1 = new int[n];int[] v1 = new int[n];for(int i = 0;i < n;i++){w1[i] = w[index[i]];v1[i] = v[index[i]];}//调用函数KnapSackBackTrack(),输出打印装完物品以后的最大价值KnapSackBackTrack(w1,v1,,weight);}private static void KnapSackBackTrack(int[] w1, int[] v1, int length,int weight) {int CurrentWeight = 0;int CurrentValue = 0;int maxValue = 0;int i = 0;int n = ;while(i >= 0){if(CurrentWeight + w1[i] < weight){CurrentWeight += w1[i];CurrentValue += v1[i];i++;}elsebreak;}if(i < n){maxValue = CurrentValue;"1背包中物品的最大总价值为" + maxValue);}}}分支限界算法:package bag01b;import class bag01do {public static void main(String[] args) {// TODO Auto-generated method stubArrayList<object> objects=new ArrayList<>();(new object(10,60));(new object(20,100));(new object(30,120));bag b=new bag(50,objects);();();}}-----------------------------------------------------------------------package bag01b;import class bag {private int bagv;private ArrayList<object> objects;private int maxvalue;private ArrayList<object> result_objects;public bag(int v,ArrayList<object> o){super();=v;=o;=0;=null;(objects);}public void show(){"maxvalue :"+ ;"the object when maxvalue:"+;}public void findmaxvalue(){PriorityQueue<Node> enode=new PriorityQueue<>();Node node=new Node(0,null,bagv,;(node);while(true){if())break;node=();if()){=();=new ArrayList<>());return;}int i=();object iobject= if()+()<={ArrayList<object> newnodeinbag=new ArrayList<object>());(iobject);int newnodebagv=()();Node newnode=new Node(i+1,newnodeinbag,newnodebagv,;(newnode);if()>{=();=new ArrayList<>());}}Node newnode=new Node(i+1,(),(),;if()>(newnode);}}}-----------------------------------------------------------------------package bag01b;import class Node implements Comparable<Node>{private int node_in;private ArrayList<object> inbag_object;private ArrayList<object> outbag_object;private int leftv;private int prio;public Node(int i,ArrayList<object> in,int l,ArrayList<object> out){ super();=i;if(in==null)in=new ArrayList<>();=in;=l;=out;=();}private int find_prio() {// TODO Auto-generated method stubint bag_left=;int p=();int i=;object iobject=null;while(true){if(i>= break;iobject= if()>bag_left)break;bag_left-=();p+=();i++;}if(i<= p+=()*bag_left;return p;}public int get_bag_weight(){int w=0;for(object o:{w+=();}return w;}public int get_bag_value(){int w=0;for(object o:{w+=();}return w;}@Overridepublic int compareTo(Node o) {// TODO Auto-generated method stubif> return -1;if< return 1;return 0;}public boolean isend(){if== return true;elsereturn false;}public ArrayList<object> get_in_bag_object(){ return ;}public int get_node_in(){return ;}public int get_bag_leftv(){return ;}public int get_bag_prio(){return ;}public String toString(){return"node in"++"node prio"+;}}-----------------------------------------------------------------------package bag01b;public class object implements Comparable<object>{ private static int ids=1;private int id;private int weihgt;private int value;public object(int w,int v){super();=w;=v;=ids++;}public int getid(){return ;}public int getweight(){return ;}public int getvalue(){return ;}public float getvw(){return (float);}@Overridepublic int compareTo(object o) {// TODO Auto-generated method stubif()>()) return -1;if()<()) return 1;return 0;}public String toString(){return"object "++" ";}}。