0-1背包问题-贪心法和动态规划法求解

合集下载

数据结构 背包问题

数据结构 背包问题

数据结构背包问题背景介绍:数据结构是计算机科学中非常重要的一门学科,它研究的是数据组织、存储和管理的方式。

背包问题是数据结构中的一个经典问题,它涉及到在给定的一组物品中选择一些物品放入背包中,使得背包的总重量或总价值达到最大化。

在本文中,我们将详细介绍背包问题的定义、解决方法和应用领域。

一、问题定义背包问题可以被描述为:给定一个背包,它能容纳一定的重量,再给定一组物品,每个物品有自己的重量和价值。

我们的目标是找到一种方式将物品放入背包中,使得背包的总重量不超过其容量,同时背包中物品的总价值最大化。

二、解决方法1. 贪心算法贪心算法是一种简单而有效的解决背包问题的方法。

它基于贪心的思想,每次选择当前具有最大价值重量比的物品放入背包中。

具体步骤如下:- 计算每个物品的价值重量比,即物品的价值除以其重量。

- 按照价值重量比从大到小对物品进行排序。

- 依次将物品放入背包中,直到背包的总重量达到容量限制或所有物品都放入背包。

贪心算法的优点是简单快速,但它并不能保证一定能找到最优解。

2. 动态规划动态规划是解决背包问题的一种经典方法。

它将问题划分为若干子问题,并通过求解子问题的最优解来求解原问题的最优解。

具体步骤如下:- 定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。

- 初始化dp数组的第一行和第一列为0,表示背包容量为0或物品数量为0时的最大价值都为0。

- 逐行填充dp数组,对于每个物品,考虑将其放入背包或不放入背包两种情况,选择价值最大的方案更新dp数组。

- 最终dp数组的最后一个元素dp[n][m]即为问题的最优解,其中n为物品数量,m为背包容量。

动态规划方法能够保证找到最优解,但其时间复杂度较高,对于大规模的问题可能会耗费较长的计算时间。

三、应用领域背包问题在实际生活和工程领域中有着广泛的应用,以下是一些常见的应用领域:1. 物流配送在物流配送中,背包问题可以用来优化货车的装载方案,使得货车的装载量最大化,从而减少运输成本。

用蛮力法、动态规划法和贪心法求解0 1背包问题

用蛮力法、动态规划法和贪心法求解0 1背包问题
}
printf("\n");
}

以下要依次判断每个子集的可行性,找出可行解:
voidpanduan(inta[][4],intcw[])////判断每个子集的可行性,如果可行则计算其价值存入数组cw,不可行则存入0
{
int i,j;
int n=16;
int sw,sv;
for(i=0;i<16;i++)
用蛮力法解决0/1背包问题,需要考虑给定n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。
所以蛮力法解0/1背包问题的关键是如何求n个物品集合的所有子集,n个物品的子集有2的n次方个,用一个2的n次方行n列的数组保存生成的子集,以下是生成子集的算法:void force(int a[][4])//蛮力法产生4个物品的子集
{
int i,j;
int n=16;
int m,t;
for(i=0;i<16;i++)
{t=i;
for(j=3;j>=0;j--)
{
m=t%2;
a[i][j]=m;
t=t/2;
}
}
for(i=0;i<16;i++)//输出保存子集的二维数组
{
for(j=0;j<4;j++)
{
printf("%d",a[i][j]);
i++;
}
return maxprice;
}
#include<stdio.h>
#include<stdlib.h>

用动态规划法求解0-1背包问题

用动态规划法求解0-1背包问题

0 — 1背包 问题 的解 决 方法 多 种 多样 ,常用 的算法 有贪 心算 法 、 回溯法 、 分 枝一限界法 等 。本文 采用 动态
规 划 原理 来 求 解 0 一 l背 包 问题 也不 失 为 一 种 简单 明 了、 清 晰 易懂 的方法 。 参考 文献 :
[ 1 ] 王 晓东. 计算机 算法设计与分析 [ M] . 北京: 电子 工业 出版社
w h i l e( m【 i Ⅱ c 】 = = m[ i 一 1 ] [ c ] ) i - - ; w h i l e( i > 0 ) { j = i 一 1 ; w h i l e( m『 j 1 [ c ] 一 m [ j 】 【 c ] != v i i - 1 ] & &- j > 0 )
[ i ] [ j 】 是 下 面两 个 量 的最 大值 : m[ i + 1 ] [ j ] 和 m【 i + 1 】 【 j — w [ i 】
] + V 嘲


f o r ( j = 0 ; j < = c ; j + + ) p r i n t f ( ” %3 d . t , m f i 1 【 j 】 ) ; p i f n f ( ” \ I 1 ” ) ;}
等于 v 『 n 1 ;
k n a p s a c k ( ) ;d i s p O ; p r i n t f ( ” 最 大价值= %d \ n ” , m 【 n ] [ c 】 ) ;
o f r ( i _ 0 ; i < = n ; i + + )
②当前的背包容量 J 大于等于物品重量 w [ i ] 时, m
2 0 07 .
i n t n , C , w [ M A X ] , v [ MA X ] , m [ MA x】 [ MA x 】 = { 0 } ; v o i d k n a p s a c k 0 {i n t i ;

贪心算法之背包问题

贪心算法之背包问题

贪⼼算法之背包问题贪⼼算法之背包问题1.与动态规划的区别通过研究解决经典的组合优化问题,来说明⼆者的差别。

即0-1背包问题与背包问题0-1背包问题:给定n中物品和⼀个背包。

物品i的重量为W i,其价值为V i,背包的容量为C。

应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?对于每种物品i只有俩种选择,即装⼊背包或不装⼊背包背包问题:与0-1背包问题类似,不同在于选择物品i装⼊背包时,可以选择物品i的⼀部分,⽽不⼀定要全部装⼊背包,1≤i≤n。

这2类问题都具有最优⼦结构性质,极为相似。

背包问题可以⽤贪⼼算法求最优解,0-1背包不能使⽤贪⼼求解。

2.贪⼼解决背包问题步骤贪⼼策略:每次选择单位重量价值最⾼的物品装⼊背包计算每种物品单位重量的价值V iW i,按单位重量的价值从⼤到⼩将n中物品排序。

以排序后的次序依次将物品装⼊背包。

直⾄全部物品都装⼊或者因背包容量不⾜不能装⼊为⽌如果背包尚有容量,将最后不能完全装⼊物品切割⼀部分装满背包算法结束3.代码实现/*** n 物品数* M 背包容量* v[] 物品价值数组* w[] 物品重量数组* x[] 保存最优解路径数组,为1则表⽰该物品完全装⼊,否则装⼊该物品的⼀部分**/void Knapsack(int n, float M, float v[], float w[], float x[]) {// 按照物品单位重量的价值递减排序Sort(n, v, w);int i;for (i = 1; i <= n; i++)x[i] = 0;float c = M;for (i = 1; i <= n; i++) {if (w[i] > c)break;x[i] = 1;c -= w[i];}if (i <= n)x[i] = c / w[i];}Processing math: 100%。

01背包问题的数学逻辑

01背包问题的数学逻辑

01背包问题的数学逻辑1.引言1.1 概述01背包问题是一类经典的组合优化问题,它是数学逻辑中的一个重要问题之一。

在实际生活中,我们经常会面对资源有限的情况,而如何在有限的资源下做出最佳决策,已经成为一个重要的研究领域。

01背包问题就是在给定总容量和一组物品的情况下,选取其中的一些物品放入背包中,使得背包中物品的总价值最大化,而不超过背包的总容量。

这个问题由G. Dantzig在1957年首次提出,并且成为组合优化中的一个经典问题。

它的名字来源于背包只能放入0或1个同样特性的物品。

虽然问题看似简单,但由于问题的解空间庞大,是一个NP完全问题,因此求解过程通常使用一些近似算法。

1.2 目的本文的目的是探究01背包问题的数学逻辑,并介绍一些常用的求解方法。

通过深入研究01背包问题,我们可以更好地理解其数学模型,在实际应用中解决类似的优化问题。

具体目标包括:1. 分析01背包问题的数学模型,并介绍相关的定义和术语;2. 探讨01背包问题的求解方法,包括动态规划、贪心算法和近似算法等;3. 介绍优化问题的评价指标,包括背包的总价值、总重量和可行性等;4. 分析不同情况下的算法复杂性,讨论解决01背包问题的时间和空间复杂性;5. 举例说明01背包问题在实际生活中的应用,如旅行行李、采购决策等。

通过对01背包问题的研究,我们能够更好地理解和应用数学逻辑,提高问题求解的能力。

了解背包问题的求解方法和评价指标,对我们在实际生活中面对资源有限的情况下做出最佳决策具有重要意义。

无论是在物流管理、金融投资还是其他领域,都可以通过对01背包问题的研究,提高决策的效率和准确度。

在接下来的文章中,将会详细介绍01背包问题的数学逻辑,分析不同求解方法的优劣,并给出实际应用的例子,以便读者更好地理解和应用该问题。

2.正文2.1 01背包问题的定义和背景介绍01背包问题是运筹学中的一个经典问题,在算法和动态规划中有重要的应用。

该问题的核心是在给定的背包容量和一组物品的情况下,如何选择物品放入背包中,使得背包中的物品总价值最大化。

用贪心法求解0-1背包问题

用贪心法求解0-1背包问题

算法设计与分析期末论文题目用贪心法求解“0-1背包问题”专业计算机科学与技术班级09计算机一班学号0936021姓名黄帅日期2011年12月28日一、0-1背包问题的算法设计策略分析1.引言对于计算机科学来说,算法的概念是至关重要的,例如,在一个大型软件系统的开发中,设计出有效的算法将起决定性的作用。

算法是解决问题的一种方法或一个过程。

程序是算法用某种设计语言具体实现描。

计算机的普及极大的改变了人们的生活。

目前,各行业、各领域都广泛采用了计算机信息技术,并由此产生出开发各种应用软件的需求。

为了以最小的成本、最快的速度、最好的质量开发出适合各种应用需求的软件,必须遵循软件工程的原则。

设计一个高效的程序不仅需要编程小技巧,更需要合理的数据组织和清晰高效的素算法,这正是计算机科学领域数据结构与算法设计所研究的主要内容。

2. 算法复杂性分析的方法介绍算法复杂性是算法运行所需要的计算机资源的量,需要时间资源的量称为时间复杂性,需要的空间资源的量称为空间复杂性。

这个量应该只依赖于算法要解的问题的规模、算法的输入和算法本身的函数。

如果分别用N 、I 和A 表示算法要解问题的规模、算法的输入和算法本身,而且用C 表示复杂性,那么,应该有C=F(N,I,A)。

一般把时间复杂性和空间复杂性分开,并分别用T 和S 来表示,则有: T=T(N,I)和S=S(N,I) 。

(通常,让A 隐含在复杂性函数名当中最坏情况下的时间复杂性:最好情况下的时间复杂性:平均情况下的时间复杂性:其中DN 是规模为N 的合法输入的集合;I*是DN 中使T(N, I*)达到Tmax(N)的合法输入; 是中使T(N, )达到Tmin(N)的合法输入;而P(I)是在算法的应用中出现输入I 的概率。

算法复杂性在渐近意义下的阶:渐近意义下的记号:O 、Ω、θ、o 设f(N)和g(N)是定义在正数集上的正函数。

O 的定义:如果存在正的常数C 和自然数N0,使得当N ≥N0时有f(N)≤Cg(N),则称函数f(N)当N 充分大时上有界,且g(N)是它的一个上界,记为f(N)=O(g(N))。

5.5动态规划求解01背包问题

5.5动态规划求解01背包问题
xn-1: 若xn=0,则判断(Pl,Wl)∈ Sn-2?,以确定Xn-1的值 若xn=1,则依据(Pl-pn,Wl-wn)∈ Sn-2?,以判断Xn-1的值
xn-2,…,x1将依次推导得出
例2的解向量推导
S0={(0,0)}
S1={(0,0),(1,2)}
S2={(0,0),(1,2), (2,3),(3,5)}
● Si的构造
记S1i 是fi-1(X-wi)+pi的所有序偶的集合,则
S1i {( P,W ) | (P pi ,W wi ) S i1}
其中,Si-1是fi-1的所有序偶的集合
Si的构造:由Si-1和 S1i 按照支配规则合并而成。
支配规则:如果Si-1和S1i 之一有序偶(Pj,Wj),另一有(Pk,Wk),
5.5动态规划求解 0/1背包问题
1.问题描述 背包容量M,n个物品,分别具有效益值P1…Pn,物
品重量w1…wn,从n个物品中,选择若干物品放入 背包,物品要么整件放入背包,要么不放入。怎 样决策可以使装入背包的物品总效益值最大?
形式化描述:
目标函数:
约束条件:
max pixi
1i j
wixi M
1in
xi
0或1,
pi
0, wi
0,1
i
n
0/1背包问题:KNAP(1,n,M)
❖ 0/1背包问题:M=6,N=3,W=(3,3,4),P=(3,3,5) ❖ 贪心法:p3/w3 > p1/w1 > p2/w2 ❖ 贪心解 ∑P=5(0,0,1) ❖ 最优解是:∑P=6(1,1,0)
❖ 贪心法求解0/1背包问题不一定得到最优解! ❖ 动态规划求解的问题必须满足最优化原理

0-1背包问题动态规划和贪心法实现

0-1背包问题动态规划和贪心法实现

算法设计与分析实验报告实验二 0-1背包问题院系:班级:计算机科学与技术学号:姓名:任课教师:成绩:湘潭大学2016年5月实验二0-1背包问题一. 实验内容分别编程实现动态规划算法和贪心法求0-1背包问题的最优解,分析比较两种算法的时间复杂度并验证分析结果。

二.实验目的1、掌握动态规划算法和贪心法解决问题的一般步骤,学会使用动态规划和贪心法解决实际问题;2、理解动态规划算法和贪心法的异同及各自的适用范围。

三. 算法描述/*动态规划 0-1背包问题算法如下*/Template<class Type>Void Knapsack(Type v,int w,int c,int n,Type ** m){int jMax = min(w[n] - 1,c);For(int j = 0;j <= jMax;j++){m[n][j] = 0;}For(int j = w[n];j <= c;j++){m[n][j] = v[n];}For(int i = n- 1;i > 1;i--){jMax = min(w[i] - 1,c);For(int j = 0;j <= jMax;j++) m[i][j] = m[i+1][j];For(int j = w[i];j <= c;j++) min[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);}m[1][c] = m[2][c];If(c >= w[1]) m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}Template<class Type>Void Traceback(Type**m,int w,int c,int n,int x){for(int i =1 ;i < n;i ++)If(m[i][c] == m[i+1][c]) x[i] = 0;Else{x[i] = 1;c -=w[i];}x[n] = (m[n][c]) ? 1:0;}按上述算法Knapsack计算后m[1][c]给出所要求的0-1背包问题的最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四“0-1”背包问题
一、实验目的与要求
熟悉C/C++语言的集成开发环境;
通过本实验加深对贪心算法、动态规划算法的理解。

二、实验内容:
掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。

三、实验题
1.“0-1”背包问题的贪心算法
2.“0-1”背包问题的动态规划算法
说明:背包实例采用教材P132习题六的6-1中的描述。

要求每种的算法都给出最大收益和最优解。

设有背包问题实例n=7,M=15,,(w0,w1,。

w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。

,p6)=(10,5,15,7,6,18,3)。

求这一实例的最优解和最大收益。

四、实验步骤
理解算法思想和问题要求;
编程实现题目要求;
上机输入和调试自己所编的程序;
验证分析实验结果;
整理出实验报告。

五、实验程序
// 贪心法求解
#include<iostream>
#include"iomanip"
using namespace std;
//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序
void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量
float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u);
int main(){
float w[7]={2,3,5,7,1,4,1}; //物品重量数组
float p[7]={10,5,15,7,6,18,3}; //物品收益数组
float avgp[7]={0}; //单位毒品的收益数组
float x[7]={0}; //最后装载物品的最优解数组
const float M=15; //背包所能的载重
float ben=0; //最后的收益
AvgBenefitsSort(avgp,p,w);
ben=GetBestBenifit(p,w,x,M);
cout<<endl<<ben<<endl; //输出最后的收益
system("pause");
return 0;
}
//按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序
void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ) {
//求出物品的单位收益
for(int i=0;i<7;i++)
{
arry_avgp[i]=arry_p[i]/arry_w[i];
}
cout<<endl;
//把求出的单位收益排序,冒泡排序法
int exchange=7;
int bound=0;
float temp=0;
while(exchange)
{
bound=exchange;
exchange=0;
for(int i=0;i<bound;i++)
{
if(arry_avgp[i]<arry_avgp[i+1])
{
//交换单位收益数组
temp=arry_avgp[i];
arry_avgp[i]=arry_avgp[i+1];
arry_avgp[i+1]=temp;
//交换收益数组
temp=arry_p[i];
arry_p[i]=arry_p[i+1];
arry_p[i+1]=temp;
//交换重量数组
temp=arry_w[i];
arry_w[i]=arry_w[i+1];
arry_w[i+1]=temp;
exchange=i;
}
}
}
}
//获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量
float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u) {
int i=0; //循环变量i
float benifit=0; //最后收益
while(i<7)
{
if(u-arry_w[i]>0)
{
arry_x[i]=arry_w[i]; //把当前物品重量缴入最优解数组
benifit+=arry_p[i]; //收益增加当前物品收益
u-=arry_w[i]; //背包还能载重量减去当前物品重量cout<<arry_x[i]<<" "; //输出最优解
}
i++;
}
return benifit; //返回最后收益
}
//动态规划法求解
#include<stdio.h>
#include<math.h>
#define n 6
void DKNAP(int p[],int w[],int M,const int m); void main()
{
int p[n+1],w[n+1];
int M,i,j;
int m=1;
for(i=1;i<=n;i++)
{
m=m*2;
printf("\nin put the weight and the p:");
scanf("%d %d",&w[i],&p[i]);
}
printf("%d",m);
printf("\n in put the max weight M:");
scanf("%d",&M);
DKNAP(p,w,M,m);
}
void DKNAP(int p[],int w[],int M,const int m) {
int p2[m],w2[m],pp,ww,px;
int F[n+1],pk,q,k,l,h,u,i,j,next,max,s[n+1];
F[0]=1;
p2[1]=w2[1]=0;
l=h=1;
F[1]=next=2;
for(i=1;i<n;i++)
{
k=l;
max=0;
u=l;
for(q=l;q<=h;q++)
if((w2[q]+w[i]<=M)&&max<=w2[q]+w[i])
{
u=q;
max=w2[q]+w[i];
}
for(j=l;j<=u;j++)
{
pp=p2[j]+p[i];
ww=w2[j]+w[i];
while(k<=h&&w2[k]<ww)
{
p2[next]=p2[k];
w2[next]=w2[k];
next++;
k++;
}
if(k<=h&&w2[k]==ww)
{
if(pp<=p2[k])
pp=p2[k];
k++;
}
else if(pp>p2[next-1])
{
p2[next]=pp;
w2[next]=ww;next++;
}
while(k<=h&&p2[k]<=p2[next-1])
k++;
}
while(k<=h)
{
p2[next]=p2[k];
w2[next]=w2[k];
next=next+1;
k++;
}
l=h+1;
h=next-1;
F[i+1]=next;
}
for(i=1;i<next;i++)
printf("%2d%2d ",p2[i],w2[i]);
for(i=n;i>0;i--)
{
next=F[i];
next--;
pp=pk=p2[next];
ww=w2[next];
while(ww+w[i]>M&&next>F[i-1])
{
next=next-1;
pp=p2[next];
ww=w2[next];
}
if(ww+w[i]<=M&&next>F[i-1])
px=pp+p[i];
if(px>pk&&ww+w[i]<=M)
{
s[i]=1;
M=M-w[i];
printf("M=%d ",M);
}
else s[i]=0;
}
for(i=1;i<=n;i++)
printf("%2d ",s[i]);
}
六、实验结果
1、贪心法截图:
七、实验分析。

相关文档
最新文档