人教版数学八年级上册将军饮马—最短路径最值问题教学设计
最短路径问题(将军饮马为题)优秀教案

最短路径问题(将军饮马为题)优秀教案
人教版八年级上册第十三章轴对称课题学习最短路径问题
教学设计
三、探究新知,教师主导
1、师生一起借助信息技术探究“将军饮马问题(一)”
传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题:将军每天骑马从城堡出发,到军营,途中马要到小溪边饮水一次。
将军
2、设想如果点A与点B在直线异侧,应该怎样找到点C的位置,由此及彼得出:利用轴对称可以先找到点A关于直线l的对称点A’,连接A’B,与直线l相较于点C,点就是所求做的点。
5、巩固练习
四、合作探究、学生主体
1、“将军饮马问题(二)”:牧马人从A地出发,先到草地边的某一处牧马,再到河边饮马,然后回到B处,请画出最短路径。
学生通过小组合作,把实际问题转化成数学问题。
、小组合作,画出最短路径。
五、课堂小结
引导学生自己总结本课收获
六、作业
七、教学反思:
1.思得:信息技术的应用大大提高了学生学习数学的兴趣,其中最为明显的有两点,一是利用几何画板,让学生观察随着点C位置的变化,AC+BC的值随之变化,只有当点C在点A的对称点A’与点B 的连线与直线l的焦点时最小。
二是练习题的网上提交,既激发了孩子们练习的热情、时间观念,又节省了教师批阅时间。
2、思失:最短的证明不能单靠信息技术,还是应该逐步书写过程步骤,板书的尺规作图还是必须的。
人教版八年级数学上册:13.4课题学习最短路径问题(将军饮马为题)教案

三、教学难点与重点
1.教学重点
-理解并掌握轴对称的性质,以及在实际问题中的应用。
-学会利用轴对称性质解决最短路径问题,特别是将军饮马问题。
-掌握通过直观感知、操作确认、推理证明等数学活动来解决几何问题。
其次,小组讨论环节,学生的参与度很高,大家积极分享自己的观点。但我注意到,有些小组在讨论时可能会偏离主题,讨论一些与最短路径问题不相关的内容。这提示我在今后的教学中,需要更加明确讨论的主题和目标,适时引导学生回到主题上来。
另外,实践活动的设计上,我觉得还可以进一步优化。虽然实验操作能够帮助学生理解最短路径的概念,但我觉得可以增加一些更具挑战性和实际意义的任务,让学生在实践中遇到更多的问题,从而激发他们更深层次的思考和探索。
教学内容:
(1)回顾线段的性质,强调线段是两点间距离最短的路径。
(2)引入将军饮马问题,探讨在给定条件下如何找到最短路径。
(3)学习轴对称的性质,掌握将问题转化为轴对称问题的方法。
(4)应用轴对称性质解决将军饮马问题,得出最短路径的解法。
(5)通过例题和练习,巩固最短路径问题的求解方法。
二、核心素养目标
在难点和重点的讲解上,我尽量使用了简单的语言和生动的例子,但仍有部分学生在理解上存在障碍。我考虑在下一节课前,通过一些小测验来检测学生对这些概念的理解程度,以便我能够更有针对性地进行辅导。
此外,我也意识到,对于一些接受能力较强的学生,他们在掌握了基本概念后,可能需要更多拓展性的内容来满足他们的学习需求。因此,我计划在后续的课程中,提供一些难度较高的题目,让他们在挑战中进一步提升自己的能力。
3.重点难点解析:在讲授过程中,我会特别强调轴对称性质和线段性质这两个重点。对于难点部分,我会通过具体例题和图形比较来帮助大家理解。
课题学习最短路径问题教学设计人教版数学八年级上册

高新技术产业开发区XX中学备课日志1.两点之间的所有连线中,什么线最短?2.连接直线外一点与直线上各点的所有线段中,什么线最短?【课堂引入】已知:如图,A,B在直线l的两侧,在l上求一点P,使得PA+PB最小.提示:连接AB,线段AB与直线l的交点P,就是所求.以学生学过的知识为基础引入课题,培养学生的学习兴趣【探究新知】1.问题1如图,牧马人从草场A 地出发,到一条笔直的河边l 饮马,然后回到帐篷B 地.问:到河边什么地方饮马可使他所走的路线全程最短?追问1这是一个实际问题,你打算首先做什么?你能用自己的语言解释这个题的意思吗?能把它抽象为数学问题吗?(1)将A,B两地抽象为两个点,将河l抽象为一条直线;(2)从A 地出发,到河边l 饮马,然后到B 地;探究活动,使学生经历将实际问题转化为数学问题的建模过程.2思考、合作交流,鼓励学生善于思考、勇于发现、大胆尝试,培养合作意识(3)在河边饮马的地点有无穷多处,把这些地点与A,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;(4)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C为直线上的一个动点,上面的问题就转化为:当点C在l的什么位置时,AC与CB的和最小(如图).追问2对于问题1,如何将点B“移”到l的另一侧B′处,满足直线l上的任意一点C,都保持CB与CB′的长度相等?追问3你能利用轴对称的有关知识,找到上问中符合条件的点B′吗?教师讲解作法:如图,点A,B在直线l的同侧,点C是直线上的一个动点,当点C在l的什么位置时,AC与CB的和最小?作法:(1)作点B关于直线l的对称点B′;(2)连接AB′,与直线l相交于点C.则点C即为所求.问题2你能用所学的知识证明AC+BC最短吗?证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC=B′C,BC′=B′C′.∴AC +BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′.在∴AB′C′中,AB′<AC′+B′C′,∴ AC +BC<AC′+BC′.即AC +BC 最短.师生活动:教师先让学生分组讨论,分析问题,解决问题,对有疑问的地方教师适时引导,最后共同总结.2.仿照上面分析问题的方法,你能解决下面的问题吗?(造桥选址问题)如下图,A,B两地在一条河的两岸,现要在河岸上造一座桥MN,桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)把河的两岸看成两条平行线a和b,N为直线b上的一个动点,MN垂直于直线b,交直线a于点M.上面的问题就转化为:如图,直线a∴b,N为直线b上的一个动点,MN∴b,交直线a于点M,当点N在直线b的什么位置时,AM+MN+NB最小?由于河岸宽度是固定的,因此当AM+BN最小时,AM+MN+NB最小.这样,问题就进一步转化为:当点N在直线b的什么位置时,AM+NB最小?追问4:能否通过图形的变化(轴对称、平移等),把上图的情况转化为下图的情况?如图,将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.这样问题就得到了转化.追问5:你能找到所要求的N点的位置吗?如图,连接A′B,交直线b于点N,则点N即为所求.即在点N处建桥MN,所得路径AMNB最短.追问6:你能证明点N的位置即为所求吗?如图,在直线b上另外任意取一点N′,过点N′作N′M′∴a,垂足为M′,连接AM′,A′N′,N′B.求证:AM+MN+NB<AM′+M′N′+N′B.证明:由作图可知M′N′=MN=AA′.由平移的性质可知AM=A′N,AM′=A′N′.根据“两点之间,线段最短”可知A′N′+N′B>A′B.∴AM′+N′B>AM+NB.∴AM′+N′B+M′N′>AM+NB+MN.师生活动:教师可引导学生分析,对于有疑问的地方进行讲解说明.归纳:在解决最短路径问题时,我们通常利用轴对称、平移等变换把已知问题转化为容易解决的问题,从而作出最短路径.重难点突破【典型例题】例1如图,在正方形网格中有M,N两点,在直线l上求一点P使PM+PN最短,则点P应选在(C)A.A点B.B点C.C点D.D点例2如图直线l1,l2表示一条河的两岸,且l1∴l2,现要在这条河上建一座桥(桥与河的两岸相互垂直),桥建在何处才能使从村庄A经过河到村庄B的路线最短?画出示意图,并说明理由.解:如图所示.理由:由作图过程可知,四边形ADCA′为平行四边形,AD平移至A′C即可得到线段A′B,两点之间,线段最短,由于河宽不变,CD即为桥.进一步巩固学生对最短路径问题的解决方法的掌握【课堂检测】1.如图,A,B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使PA+PB最短.下面四种选址方案符合要求的是(A)A B C D2.如图,在Rt∴ABC中,∴A=90°,∴C=30°,AB=2,EF是AC的垂直平分线,P是直线EF上的任意一点,则PA+PB的最小值是4.3.如图,一艘旅游船从大桥AB的P处前往山脚下的Q处接游客,然后送往河岸BC上,再回到P处,请画出旅游船的最短路线.解:连接PQ,作P关于BC的对称点P1,连接QP1,交BC于M,再连接MP.最短路线即为PQMP.师生活动:学生进行当堂检测,完成后,教师进行批阅、点评、讲解.针对本课时的主要问题,分层次进行检测,达到学有所成、了解课堂学习效果的目的。
最新数学人教版八年级上册《将军饮马》教学设计

精品资料
数学人教版八年级上册《将军饮马》教学
设计
........................................
微课教学设计方案
很多种走法,问走那条路线最短?精通数理的海伦稍加思索,便作出了解答。
后来这个问题被人们称作“将军饮马”问题。
活动2【讲授】探究“将军饮马问题”
1、提出问题,抽象模型
2、利用“几何画板”演示分析,化“折”为“直”
(1)我们看,当点P的位置发生改变的时候,PA加PB的长度也随之发生改变,而且PA与PB始终成一条折线。
我们知道,两点之间,线段最短。
能不能把这条折线转化成一条直呢?
(2)我们可以把线段PA沿直线l翻折,翻折后,无论点P在哪里,总有PA=PA’,这样PA+PB就=PA’+PB了。
(3)让学生观察老师的演示,顿悟出点P的位置。
将军饮马的教案

将军饮马的教案一、教学目标1.了解“将军饮马”问题的基本原理,掌握解决此类问题的方法。
2.通过实例分析,培养学生的数学思维能力和解题技巧。
3.激发学生对数学的兴趣,提高学习数学的积极性。
二、教学内容1.引入“将军饮马”问题:通过讲述古代将军饮马的故事,引出数学中的对称问题。
2.讲解基本原理:介绍“将军饮马”问题的基本原理,即两点之间线段最短。
3.实例分析:通过具体实例,让学生了解如何运用“将军饮马”原理解决实际问题。
4.练习与巩固:提供相关练习题,让学生在实际操作中掌握解题方法。
三、教学步骤1.导入新课:通过讲述古代将军饮马的故事,引出数学中的对称问题,激发学生的学习兴趣。
2.讲解基本原理:详细讲解“将军饮马”问题的基本原理,让学生明确线段最短的性质。
3.实例分析:通过具体实例,让学生了解如何运用“将军饮马”原理解决实际问题。
教师可以先演示一遍,然后让学生自己动手操作,加深理解。
4.练习与巩固:提供相关练习题,让学生在实际操作中掌握解题方法。
教师可以根据学生的实际情况进行个别辅导,确保每个学生都能掌握解题方法。
5.总结与回顾:对本节课的内容进行总结与回顾,让学生明确学习目标和学习内容。
6.布置作业:布置相关作业,让学生在课后继续巩固所学知识。
四、教学评价1.课堂表现:观察学生在课堂上的表现,评估他们对“将军饮马”问题的理解程度。
2.作业完成情况:检查学生的作业完成情况,评估他们对解题方法的掌握程度。
3.综合评价:根据学生的课堂表现和作业完成情况,综合评价他们的学习效果。
人教版数学八年级上册13.4课题学习最短路径问题将军饮马优秀教学案例

在本章节的学习过程中,学生将经历以下过程与方法:
1.通过小组合作、讨论交流的方式,培养学生的团队协作能力和沟通能力。
2.引导学生从实际问题出发,培养学生的发现问题、分析问题和解决问题的能力。
3.利用数学软件、教具等辅助工具,培养学生的动手操作能力和实际应用能力。
4.通过对最短路径问题的探讨,引导学生掌握数学建模的方法,提高学生的数学思维能力。
4.教师巡回指导,关注每个小组的学习情况,及时解答学生疑问。
(四)反思与评价
1.教师引导学生对所学知识进行总结、反思,帮助学生巩固知识点,形成知识体系。
2.鼓励学生自我评价,反思自己在解决问题过程中的优点和不足,培养学生的自我认知能力。
3.组织小组互评,让学生学会欣赏他人的优点,发现自身的不足,促进团队合作。
3.对学生提出的解决方案进行讨论、分析,找出最优解,并解释其原理。
(三)小组合作
小组合作是实现教学目标的重要途径,具体策略如下:
1.将学生分成若干小组,每组4-6人,确保组内成员在知识、能力、性格等方面具有一定的互补性。
2.各小组针对问题进行讨论、研究,共同寻找解决方案。
3.小组间进行交流、分享,互相学习,取长补短。
4.教师对学生在课堂上的表现进行评价,给予肯定和鼓励,指出需要改进的地方。
(五)作业小结
在作业小结环节,我将布置以下任务:
1.请学生运用所学知识,解决一个生活中的最短路径问题,并以作文或报告的形式提交。
2.要求学生在作业中阐述自己的思考过程、解决方案和心得体会,以提高学生的书面表达能力。
3.鼓励学生进行课后拓展,了解其他求解最短路径的方法,如:A*算法、遗传算法等,提升学生的自主学习能力。
3.小组间进行分享、交流,互相借鉴,完善各自的方法和思路。
最短路径问题(将军饮马问题)教学设计

最短路径问题(将军饮马问题)教学设计最短路径问题——将军饮马问题及延伸最短路径问题教学内容解析:本节课的主要内容是利用轴对称研究某些最短路径问题,最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“三角形两边之和大于第三边”为知识根底,有时还要借助轴对称、平移变换进行研究。
本节课以数学史中的一个经典故事----“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间、线段最短”的问题。
教学目标设置: 1、能利用轴对称解决最短路径问题。
2、在解题过程能总结出解题方法,,能进行一定的延伸。
3、体会“轴对称”的桥梁作用,感悟转化的数学思想。
教学重点难点:重点:利用轴对称将最短路径问题转化为“两点之间、线段最短”问题。
难点:如何利用轴对称将最短路径问题转化为线段和最小问题。
学情分析: 1、八年级学生的观察、操作、猜想能力较强,但演绎推理、归纳和运用数学意识的思想比较薄弱,自主探究和合作学习能力也需要在课堂教学中进一步引导。
此年龄段的学生具有一定的探究精神和合作意识,能在一定的亲身经历和体验中获取一定的数学新知识,但在数学的说理上还不标准,集合演绎推理能力有待加强。
2、学生已经学习过“两点之间,线段最短。
”以及“垂线段最短”。
以及刚刚学习的轴对称和垂直平分线的性质作为本节知识的根底。
教学条件分析: 在初次解决问题时,学生出现了多种方法,通过测量,发现利用轴对称将同侧两点转化为异侧两点求得的线段和比较短;进而利用PPT动画演示,实验验证了结论的一般性;最后通过逻辑推理证明。
教具准备:直尺、ppt 教学过程:环节教师活动学生活动设计意图一复习引入 1.【问题】:看到图片,回忆如何用学过的数学知识解释这个问题? 2.这样的问题,我们称为“最短路径”问题。
1、两点之间,线段最短。
2、两边之和大于第三边。
《最短路径-将军饮马问题》教学设计

《最短路径问题》教学设计一、内容和内容解析1、教学内容《最短路径问题》是人教版八年级上册第十三章课题学习第1课时的内容.本节课的主要内容是解决由“将军饮马问题”引出的数学问题“两点在直线同侧求最短路径”以及“两线一点”,“两线两点”等最短路径问题.2、教学内容解析本节课是在学生学习了轴对称的知识以及“两点之间,线段最短”,“连接直线外一点与直线上各点的所有线段中,垂线段最短”等知识的基础上,展开了本节课的求最短路径问题,这节课是轴对称知识的一个很好的应用,进一步巩固了轴对称的知识,使轴对称知识更加灵活,并在学生头脑中打下扎实的基础。
最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等变换进行研究。
本节课以数学史中的一个经典问题一“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”(或“三角形两边之和大于第三边”)问题.3、教学重点:利用轴对称将最短路径问题转化为“两点之间,线段最短问题”二、教学目标及其解析1、教学目标:(1)理解并掌握平面内一条直线同侧两个点到直线上的某一点距离之和为最小值时点的位置的确定。
(2)能利用轴对称解决简单的最短路径问题。
(3)通过独立思考,合作探究,培养学生运用数学知识解决实际问题的能力。
2、目标解析:要求学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线”把实际问题抽象为数学的线段和最小问题:能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题:能另选一点,通过比较、逻辑推理证明所求距离最短:在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想。
三、学生学情分析八年级学生的观察、操作、猜想能力较强,但演绎推理、归纳和运用数学的意识比较薄弱,此年龄段的学生具有一定的探究精神和合作意识,能在一定的亲身经历和体验中获取一些数学知识,但在数学的说理上还不规范,演绎推理能力有待加强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将军饮马—最短路径最值问题教学设计
一、教学内容解析
为了解决生产,经营中省时省力省钱而希望寻求最佳的解决方案而产生了最短路径问
题.
初中阶段,主要以“两点之间,线段最短”,“连接直线外一点与直线上各点的所有线段
中,垂线段最短”,为理论基础,有时还要借助轴对称、平移、旋转等变换进行研究.
本节内容是在学生学习平移、轴对称等变换的基础上对数学史中的一个经典问题——
“将军饮马问题”为载体进行变式设计,开展对“最短路径问题”的课题研究,让学生经历
将实际问题抽象为数学的线段和最小问题,再利用轴对称、平移将线段和最小问题转化为“两点之间,线段最短”的问题.从中,让学生借助所学知识和生活经验独立思考或与他人合作,
经历发现问题和提出问题,分析问题和解决、验证问题的全过程,感悟数学各部分内容之间,
数学与实际生活之间及其他学科的联系,激发学生学习数学的兴趣,加深对所学数学内容的
理解,它既是轴对称、平移知识运用的延续,又能培养学生自行探究,学会思考,在知识与
能力转化上起到桥梁作用。
基于以上分析,本节课的教学重点确定为:
[教学重点]
利用轴对称、平移等变换将最短路径问题转化为“两点之间,线段最短”问题.
二、教学目标解析
新课程标准明确要求,数学学习不仅要让学生获得必要的数学知识、技能,还要包括在启迪思维、解决问题、情感与态度等方面得到发展.因此,确定教学目标如下:[教学目标]
能利用轴对称、平移解决简单的最短路径问题,体会图形的变化在解决最值问题中的作
用,感悟领会转化的数学思想,培养学生探究问题的兴趣和合作交流的意识,感受数学的实用性,体验自己探究出问题的成就感.
[目标解析]
达线目标的标志是:学生能将实际问题中的“地点”、“河”、“草地”抽象为数学中的“点”、“线”,把最短路径问题抽象为数学中的线段和最小问题,能利用轴对称将处在直线同侧的
两点,变为两点处在直线的异侧,能利用平移将两条线段拼接在一起,从而转化为“两点之间,线段最短”问题,能通过逻辑推理证明所求距离最短,在探索问题的过程中,体会轴对
称、平移的作用,体会感悟转化的数学思想.
三、学生学情诊断
八年级的学生直接经验少,理解能力差,抽象思维水平较低,处于直觉经验型思维向逻
辑思维的过渡阶段,辩证思维还只是处在萌芽和初始的状态上.
最短路径问题从本质上说是最值问题,作为初中生,在此前很少涉及最值问题,解决这
方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手.
解答:“当点A、B在直线的同侧时,如何在上找点C,使AC与CB的和最小”,需要将其转化为“直线异侧的两点,与上的点的线段和最小”的问题,为什么需要这样转
化,怎样通过轴对称实现转化,一些学生会存在理解和操作方面的困难.
在证明“最短”时,需要在直线上任取一点,证明所连线段和大于或等于所求作的线段
和.这种思路和方法,一些学生还想不到.
在解答“使处在直线两侧的两线段和最小”的问题,需要把它们平移拼接在一起,一些学生想不到.
教学时,教师可以让学生首先思考“直线的异侧的两点,与上的点的线段和最小”,给予学生启发,在证明“最短”时,点拨学生要另选一个量,通过与求证的那个量进行比较
来证明,同时让学生体会“任意”的作用,因此确定本节课的教学难点为:
[教学难点]
如何利用轴对称将最短路径问题转化为线段和最小问题.
四、教学策略分析
建构主义理论的核心是“知识不是被动接受的而是认知主体积极建构的.”
根据本节课的教学目标、教材内容以及学生的认知特点和实际水平,教学上采用“引导——探究——发现——证明——归纳总结”的教学模式,鼓励引导学生、开动脑筋、大胆尝试,在探究活动中培养学生创新思维与想象能力.
教师的教法:突出解题方法的引导与启发,注重思维习惯的培养,为学生搭建参与和交
流的平台.通过对“将军饮马问题”而改编与设计,增强数学课堂趣味性,相同背景,不同问题,由浅入深、层层递进,有利于学生分析与解决问题,同时利用现代的信息技术,直观地
展示图形的变化过程,提高学生学习兴趣与激情.
学生的学法:突出探究与发现,思考与归纳提升,在动手探究、自主思考、互动交流中,
获取知识与能力.
五、教学基本流程
探索新知——运用新知——拓展新知——提炼新知——课外思考
六、教学过程设计
(一)探索新知
1、建立模型
问题1 唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍
交河”.诗中隐含着一个有趣的数学问题.如图1所示,诗中将军在观望烽火之后从山脚下
的指挥部A地出发,到一条笔直的河边饮马,然后到军营B地,到河边什么地方饮马可使他所走的路线全程最短?
追问1,这是一个实际问题,你打算首先做什么呢?
师生活动:将A、B两地抽象为两个点,将河抽象为一条直线
追问2,你能用自己的语言说明这个问题的意思,并把它抽象为数学的问题吗?
师生活动:学生交流讨论,回答并相互补充,最后达成共识:
(1)行走的路线:从A地出发,到河边饮马,然后到B地;
(2)路线全程最短转化为两条线段和最短;
(3)现在的问题是怎样找出使两条线段长度之和为最短的直线上的点.设C为直线l 上的一个动点,上面的问题转化为:当点C在的什么位置时,AC与CB的和最小
[设计意图]从数学史上久负盛名的“将军饮马问题”引入,增加学生们的数学底蕴,提高
其人文思想.同时引导学生分析题意,画出图形.将实际问题转化为数学问题更有利于分析问题、解决问题.。