最短路径问题将军饮马问题

合集下载

人教版八年级数学上册:13.4课题学习最短路径问题(将军饮马为题)教案

人教版八年级数学上册:13.4课题学习最短路径问题(将军饮马为题)教案
5.结合实际情境,让学生体会数学与生活的密切联系,增强数学学习的兴趣和信心,培养正确的数学价值观。
三、教学难点与重点
1.教学重点
-理解并掌握轴对称的性质,以及在实际问题中的应用。
-学会利用轴对称性质解决最短路径问题,特别是将军饮马问题。
-掌握通过直观感知、操作确认、推理证明等数学活动来解决几何问题。
其次,小组讨论环节,学生的参与度很高,大家积极分享自己的观点。但我注意到,有些小组在讨论时可能会偏离主题,讨论一些与最短路径问题不相关的内容。这提示我在今后的教学中,需要更加明确讨论的主题和目标,适时引导学生回到主题上来。
另外,实践活动的设计上,我觉得还可以进一步优化。虽然实验操作能够帮助学生理解最短路径的概念,但我觉得可以增加一些更具挑战性和实际意义的任务,让学生在实践中遇到更多的问题,从而激发他们更深层次的思考和探索。
教学内容:
(1)回顾线段的性质,强调线段是两点间距离最短的路径。
(2)引入将军饮马问题,探讨在给定条件下如何找到最短路径。
(3)学习轴对称的性质,掌握将问题转化为轴对称问题的方法。
(4)应用轴对称性质解决将军饮马问题,得出最短路径的解法。
(5)通过例题和练习,巩固最短路径问题的求解方法。
二、核心素养目标
在难点和重点的讲解上,我尽量使用了简单的语言和生动的例子,但仍有部分学生在理解上存在障碍。我考虑在下一节课前,通过一些小测验来检测学生对这些概念的理解程度,以便我能够更有针对性地进行辅导。
此外,我也意识到,对于一些接受能力较强的学生,他们在掌握了基本概念后,可能需要更多拓展性的内容来满足他们的学习需求。因此,我计划在后续的课程中,提供一些难度较高的题目,让他们在挑战中进一步提升自己的能力。
3.重点难点解析:在讲授过程中,我会特别强调轴对称性质和线段性质这两个重点。对于难点部分,我会通过具体例题和图形比较来帮助大家理解。

《最短路径-将军饮马问题》教学课件ppt

《最短路径-将军饮马问题》教学课件ppt

• A2
AB+BC+CA的和
为什么是最小呢?
·
M
A
两点之间
N
线段最短
反思验证
将军饮马问题
为什么AB+BC+CA的和最小?Fra bibliotek情节1:
O
B
C
• A2
A1 •
C′
B′ ·
M
A
N
两点之间 线段最短
反思验证
将军饮马问题
为什么AB+BC+CA的和最小?
情节2: A1 •
O
C
B
·
M
A
• A2
两点之间 线段最短
N
y
4
A′• 3 2 1•P
-4 -3 -2 -1 0 1 -1 -2 -3 -4
•A
2 3•P 4 x
•B
若换成y 轴呢?
一题多变
将军饮马问题
探究3 若将军要先让马到草地OM吃草,再到河边ON喝水 ,最后回到出发点A,你能画出最短路径吗?
O
A
M
N
探究新知
将军饮马问题
分析:1、建模:点在两直线的内部 2、在OM上找点B,在ON上找点C, 使AB+BC+CA的和最小。
O
B
·
M
A
考虑对称点的作用
C
1.将直线同侧两点问题转 化为直线异侧两点问题;
2.利用轴对称的性质可以 将相等线段转化。
N
方法揭晓
将军饮马问题
作法:
1、作点A关于直线OM的对称点A1,点A关于直线ON的对称点A2 , 2、连接A1,A2,交OM于B,交ON于C,
则路径A-B-C-A是最短路径。

课题学习 最短路径问题——将军饮马

课题学习 最短路径问题——将军饮马

教师活动学生活动设计意图【活动一】问题引入前几节课,我们学习了轴对称性质在等腰三角形中的应用,本节课,我们将继续探究轴对称性质的另一个实际应用——经典的“将军饮马问题”,请看视频。

【活动二】解决问题问题1:你能把“将军饮马”这个问题抽象为数学问题吗?问题2:注意观察,当饮马点C的位置改变时,你能确定使AC+CB最小的饮马点C的位置吗?问题3:当点A、B在直线l的异侧时,你能在直线l上确定一点C,使线段AC与CB的和最小?问题4 回到“将军饮马”问题,怎样将直线同侧两点转化为直线异侧两点?问题5:你能用所学的知识证明AC+CB最小学生认真观看视频,明晰本节课要探究的问题。

将A、B两地抽象为两个定点,将河抽象为一条直线l。

学生回答并相互补充,最后达成共识。

已知:直线l和直线l的同侧两点A,B;求作:直线l上一点C,使得AC+CB 最小.通过老师的引导启发,使同学们想到作定点的对称点,将两点在直线同侧的问题,转化为两点在直线异侧的问题,提高学生的空间想象能力与逻辑思维能力,让学生在思考和解决问题的过程中,感悟转化的数学思想。

教师引导点拨,从数学史上久负盛名的“将军饮马”问题引入,增加学生们的数学底蕴,提高其人文思想,同时引导学生分析题意,将实际问题转化为数学问题更有利于分析问题、解决问题。

从异侧问题入手,由简到难,逐步深入。

让学生进一步吗?小结:“将军饮马”问题的已知条件是什么?求什么?“将军饮马”的实质是什么?“将军饮马”的作图步骤是什么?跟踪练习:如图P、Q是△ABC的边AB、AC 上的点,你能在BC上确定一点R,使△PQR的周长最短吗?【活动三】“将军饮马”变式1如图,点A 是∠MON 内的一点,分别在OM、ON上作点B、C,使△ABC 的周长最小。

结合几何画板的演示,师生共同完成证明过程。

学生回答,并相互补充,最后由教师总结。

要求学生用两种方法画图,学生独立思考,画出图形,点名一名学生在黑板上画图。

最短路径问题(将军饮马问题)

最短路径问题(将军饮马问题)

C
B N
M A
O
2020/4/5
15
变式2:
M
作法:(1)作点A关于OM的对称点A' ,
点B关于ON的对称点B'.
(2)连结A'和B',交OM于C,交ON于D。. A
则点C、D为所求。
B.
.
N
.D
A.' .C
O
2020/4/5
B'
16
课堂小结:
本节课研究问题的基本过程是什么?
把实际问题变成数学问题或数学模型 →推理 →猜想 →证明 ↓
N 河边
9
如图:已知 MON 内一点A
求作:OM上一点B,ON 上一点C,使 AB+BC+AC最小
作法: (1)作点A关于OM、
ON的对称点A'、A''
.A' B.
O
M
ቤተ መጻሕፍቲ ባይዱ.A .N C .A''
2020/4/5
(2)连结A'和A'',交OM于B,交ON于C, 则点B、C为所求。
10
变式1:
已知P是△ABC的边BC上的点,你能在AB、AC 上分别确定一点Q和R,使△PQR的周长最短吗?
2020/4/5
11
两点在两相交直线内部
如图,A为马厩,B为帐篷,将军某一天要从马 厩牵出马,先到草地边某一处牧马,再到河边 饮马,然后回到帐篷,请你帮助确定这一天的 最短路线。
2020/4/5
12
答案:如图,A是马厩,B为帐篷,牧马人某一天要从马厩 牵出马,先到草地边某一处牧马,再到河边饮马,然后 回到帐篷.请你帮他确定这一天的最短路线.

13.4将军饮马——最短路径问题

13.4将军饮马——最短路径问题

A
BP

B'
最短路线:A ---P--- B.
将军饮马:
例2.如图:一位将军骑马从城堡A到城堡B, 途中马要到 河边饮水一次,问:这位将军怎样走路程最短?
BP B'
A
P'

AP + BP < AP' + BP'
将军饮马:
例2变式:已知:P、Q是△ABC的边AB,AC上的点,你能
在BC上确定一点R,使△PQR的周长最短吗?
将军饮马:
例4:如图,A为马厩,B为帐篷,将军某一天要 从马厩牵出马,先到草地边某一处牧马,再到河 边饮马,然后回到帐篷,请你帮助确定这一天的 最短路线。
将军饮马:
A'
P
NQ
B'
A
M
B将军饮马:
例4变式:如图,OMCN是矩形的台球桌面,有黑、白两 球分别位于B、A两点的位置上,试问怎样撞击白球,使 白球A依次碰撞球台边OM、ON后,反弹击中黑球?
将军饮马:
例3.如图:一位将军骑马从驻地A出发,先牵马去草地
OM吃草,再牵马去河边ON喝水, 最后回到驻地A,
问:这位将军怎样走路程最短?
A' M 草地
最短路线:
P
O
. A ---P--- Q---A 驻地A
Q
N 河边
A''
将军饮马:
例3变式:已知P是△ABC的边BC上的点,你能在
AB、AC上分别确定一点Q和R,使△PQR的周 长最短吗?
八年级 上册
13.4 课题学习 最短路径问题
恩施州清江外国语学校 教师:刘玉兰
将军饮马:

13.4最短路径问题将军饮马专题训练人教版八年级上册2024—2025学年八年级上册

13.4最短路径问题将军饮马专题训练人教版八年级上册2024—2025学年八年级上册

13.4最短路径问题将军饮马专题训练人教版八年级上册2024—2025学年八年级上册一.将军饮马:线段和的最小值例1.唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”.诗中隐含着一个有趣的数学问题.如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的C点饮马后再到B点宿营.请问怎样走才能使总的路程最短?请你用所学的数学知识在图2中画出.例2.已知x+y=7,且x,y均为正数,则的最小值是.变式1.如图,在平面直角坐标系中,点A(﹣2,2),B(2,1),点P(x,0)是x轴上的一个动点.结合图形得出式子的最小值是()A.3B.C.5D.变式2.如图,牧童在A处牧马,牧童的家在B处,A,B处到河岸的距离分别是AC=300m,BD=500m,且C,D两地之间的距离为600m.牧童从A处将马牵到河边去饮水,再牵回家,他至少要走的路程是()A.1400m B.(500+300)mC.1000m D.(300+100)m变式4.如图,在△ABC中,AB⊥AC,AB=3,BC=5,AC=4,EF垂直平分BC,点P为直线EF上的任意一点,则△ABP周长的最小值是()A.12B.6C.7D.8变式5.如图,在△ABC中,AB=7,BC=5,AC的垂直平分线分别交AB,AC于点D,E,点F是DE上任意一点,△BCF的周长的最小值是()A.2B.12C.5D.7二.选址造桥例3.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A.B.C.D.变式1.河的两岸成平行线,A,B是位于河两岸的两个车间(如图),要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短确定桥的位置的方法是:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB,EB交MN于D.在D处作到对岸的垂线DC,垂足为C,那么DC就是造桥的位置.请说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.变式2.如图,在平面直角坐标系中,O为原点,点A,C,E的坐标分别为(0,4),(8,0),(8,2),点P,Q是OC边上的两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐标为()A.(2,0)B.(3,0)C.(4,0)D.(5,0)三.线段差最大例4.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|PA﹣PB|的最大值为.变式1.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12cm,△BMC的周长是20cm,若点P在直线MN上,则P A﹣PB的最大值为()A.12cm B.8cmC.6cm D.2cm四.角中对称问题例5.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C.D.变式1.如图,点P是∠AOB内任意一点,OP=8cm,点M和点N分别是射线OA和射线OB上的动点,若PN+PM+MN的最小值是8cm,求∠AOB的度数.变式2.如图所示,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2.连接P1P2交OA于M,交OB于N,若P1P2=6,求则△PMN的周长.变式3.如图,∠AOB=60°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,求MP+PQ+QN的最小值课后练习1.如图,在△ABC中,AB=6,AC=8,EF垂直平分BC,P为直线EF上任意一点,则AP+BP的最小值是.2.如图,在Rt△ABC中,∠A=90°,AB=4,AC=3,M、N、P分别是边AB、AC、BC 上的动点,连接PM、PN和MN,则PM+PN+MN的最小值是.3.如图,过边长为2的等边三角形ABC的顶点C作直线l⊥BC,然后作△ABC关于直线l对称的△A′B′C,P为线段A′C上一动点,连接AP,PB,则AP+PB的最小值是()A.4B.3C.2D.2+4.如图,∠AOB=30°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.3B.C.D.65.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80°B.90°C.100°D.130°6.如图,△ABC中,AD⊥BC,垂足为D,AD=BC,P为直线BC上方的一个动点,△PBC的面积等于△ABC的面积的,则当PB+PC 最小时,∠PBC的度数为()A.30°B.45°C.60°D.90°7.如图,直线y=x+8分别与x轴、y轴交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,当PC+PD值最小时,点P的坐标为()A.(﹣4,0)B.(﹣3,0)B.C.(﹣2,0)D.(﹣1,0)8.如图,等边△ABC中,BD⊥AC于D,QD=15,点P、Q分别为AB、AD上的两个定点且BP=AQ=20,在BD上有一动点E使PE+QE最短,则PE+QE的最小值为()A.35B.40C.50D.609.如图,在△ABC中,∠A=90°,AB=6,BC=10,EF是BC 的垂直平分线,P是直线EF上的任意一点,则P A+PB的最小值是()A.6B.8C.10D.1210.如图,在锐角三角形ABC中,AB=4,∠BAC=60°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM+MN取得最小值时,AN=()A.2B.4C.6D.811.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上的点,当△PMN的周长最小时,∠MPN=100°,求∠AOB.12.如图,在锐角△ABC中,∠C=40°;点P是边AB上的一个定点,点M、N分别是AC 和BC边上的动点,当△PMN的周长最小时,求∠MPN的度数13.如图,∠AOB=30°,点P在OB上且OP=2,点M、N分别是OA、OB上的动点,求PM+MN的最小值14.如图,在Rt△ABC中,∠C=90°,∠B=60°,点D在BC上且BD=1,AD=4,点E、F分别为边AC、AB上的动点,求△DEF的周长的最小值为.15.如图,在锐角△ABC中,∠ACB=30°,点P为边AB上的一定点,连接CP,CP=4,M,N分别为边AC和BC上的两动点,连接PM,PN,MN,则△PMN周长的最小值为;当△PMN周长的最小值时,∠MPN的度数为.16.如图,在△ABC中,AC=BC=4,∠ACB=120°,点M在边BC上,且BM=1,点N 是直线AC上一动点,点P是边AB上一动点,求PM+PN的最小值.17.如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D是线段BF上的动点,连接AD,在AD的右侧作等边△ADE,连接BE,求△ABE周长的最小值。

将军饮马问题总结

将军饮马问题总结

最短路径——“将军饮马”问题基本类型总结【问题1】作法图形原理在直线l 上求一点P ,使PA +PB 值最小.连AB ,与l 交点即为P .两点之间线段最短.PA +PB 最小值为AB .【问题2】“将军饮马”作法图形原理在直线l 上求一点P ,使PA +PB 值最小.作B 关于l 的对称点B '连A B ',与l 交点即为P .两点之间线段最短.PA +PB 最小值为A B '.【问题3】作法图形原理在直线l 1、l 2上分别求点M 、N ,使△PMN 的周长最小.分别作点P 关于两直线的对称点P '和P '',连P 'P '',与两直线交点即为M ,N .两点之间线段最短.PM +MN +PN 的最小值为线段P 'P ''的长.在直线1l 、2l 上分别求点N ,使四边形PQMN 的周长最小.【问题5】“造桥选址”图形直线m ∥n ,在m 、上分别求点M 、N ,使m ,且AM +MN +BN 的值最小.【问题6】图形在直线l 上求两点M 、在左),使a MN ,并使MN +NB 的值最小.【问题7】图形1上求点A ,在2l ,使PA +AB 值最小.m n BA【问题8】作法图形原理A 为1l 上一定点,B 为2l 上一定点,在2l 上求点M ,在1l 上求点N ,使AM +MN +NB 的值最小.作点A 关于2l 的对称点A ',作点B 关于1l 的对称点B ',连A 'B '交2l 于M ,交1l 于N .两点之间线段最短.AM +MN +NB 的最小值为线段A 'B '的长.【问题9】作法图形原理在直线l 上求一点P ,使PB PA -的值最小.连AB ,作AB 的中垂线与直线l 的交点即为P .垂直平分上的点到线段两端点的距离相等.PB PA -=0.【问题10】作法图形原理在直线l上求一点P,使PB PA -的值最大.作直线AB ,与直线l 的交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB .PB PA -的最大值=AB .【问题11】作法图形原理在直线l 上求一点P ,使PB PA -的值最大.作B 关于l 的对称点B '作直线A B ',与l 交点即为P .三角形任意两边之差小于第三边.PB PA -≤AB '.PB PA -最大值=AB '.【问题12】“费马点”作法图形原理△ABC 中每一内角都小于120°,在△ABC 内求一点P ,使PA +PB +PC 值最小.所求点为“费马点”,即满足∠APB =∠BPC =∠APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P即为所求.两点之间线段最短.PA +PB +PC 最小值=CD .。

最短路径(将军饮马造桥选址)

最短路径(将军饮马造桥选址)
平移的方法有四种:三个桥长都平移 到A点处;都平移到B点处;MN、PQ 平移到A点处;PQ、GH平移到B点处
M N P Q
G
H
B
问题解决 A
A1
沿垂直于河岸方向依次把A点平 A 2 移至A1、A2、A3,使AA1 A3 =MN,A1A2 =PQ,A2A3 =GH ; 连接A3B交于B点相邻河岸于H 点,建桥GH; 连接A2G交第二河与G对岸的P 点,建桥PQ; 连接A1P交第一条河与A的对岸 于N点,建桥MN. 此时从A到B点路径最短.
M N
P Q
G H
B
问题解决
沿垂直于河岸方向依次把A点平 移至A1、A2、A3,使AA1 =MN,A1A2 =PQ,A2A3 =GH ; 连接A3B交于B点相邻河岸于H 点,建桥GH; 连接A2G交第二河与G对岸的P 点,建桥PQ; 连接A1P交第一条河与A的对岸 于N点,建桥MN. 此时从A到B点路径最短.
B
Q+QB.
思维方法二
沿垂直于第一条河岸方
A
向平移A点至A1 点,沿 A1
垂直于第二条河岸方向平移
B点至B1点,连接A1B1
M
分别交A、B的对岸于N、P 两点,建桥MN和PQ.
N P
最短路径 AM+MN+NP+PQ+QB转化为
AA1+A1B1+BB1.
Q B
思维方法三
沿垂直于河岸方向依次把 B点平移至B1、B2,使 BB1=PQ,B1B2 =MN ; 连接B2A交于A点相邻河 岸于M点,建桥MN; 连接B1N交B1的对岸于 P点,建桥PQ; 从A点到B点的最短路径 为AM+MN+NP+MN +NP+PQ+QB转化 为AB2+B2B1+B1B.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M A'
N
B'
B A
变式1:
已知: MON内两点A、B.
求作:点C和点D,使得点C在OM上,点D在ON 上,且AC+CD+BD+AB最短。
A' M
C
A
B
O
N
D
B'
变式2:如图,OMCN是矩形的台球桌面,有 黑、白两球分别位于B、A两点的位置上,试 问怎样撞击白球,使白球A依次碰撞球台边 OM、ON后,反弹击中黑球?
两点在两相交直线内部
如图,A为马厩,B为帐篷,将军某一天要从马 厩牵出马,先到草地边某一处牧马,再到河边 饮马,然后回到帐篷,请你帮助确定这一天的 最短路线。
答案:如图,A是马厩,B为帐篷,牧马人某一天要从马厩 牵出马,先到草地边某一处牧马,再到河边饮马,然后回 到帐篷.请你帮他确定这一天的最短路线.
应用到实际问题中← 得出结论
今天我们学习了最短路径的相关问题,我们应 该怎么样找到它们的最短路径呢?
1、确定对称轴,找出定点的对称点。 2、连接对称点与另一点确定所求位置点(连接各 对称点确定所求位置点)。
课后拓展:
在矩形ABCD中,在边和对角线AD、BD上有两个动点M、 N,当M、N运动到何处时,BM+MN最短?
M 草地
O
.驻地A
N 河边
如图:已知 MON 内一点A
求作:OM上一点B,ON上 一点C,使AB+BC+AC最 小
. A' B.
作法:
(1)作点A关于OM、
O
ON的对称点A'、A''
M
.A .N . C
A''
(2)连结A'和A'',交OM于B,交ON于C,则点 B、C为所求。
变式1:
已知P是△ABC的边BC上的点,你能在AB、AC 上分别确定一点Q和R,使△PQR的周长最短吗?
A
B
作法:
(1)作点B关于直线 MN 的对称点 B' (2)连结B'A,交MN于点 P;
所以 点P就是所求的点.
B
A
M
N
P
B'
证明:
A B
在MN 上任取另一点P', M
N
P
P'
连结BP、BP'、AP' 、B'P' .
B'
∵ 直线MN是点B、B'的对称轴,点P、P'在对称轴上, ∴BP=B'P,BP'=B'P'.
C
M
B N
A O
变式2:
M
作法:(1)作点A关于OM的对称点A' ,
点B关于ON的对称点B'.
. (2)连结A'和B',交OM 于C,交ON于D。 A
则点C、D为所求。
B.
.
N
.D
B'
A.' .C
O
课堂小结:
本节课研究问题的基本过程是什么?
把实际问题变成数学问题或数学模型 →推理 →猜想 →证明 ↓
——将军饮马问题及延伸
为什么有的人会经常践踏草地呢?
两点之间,线段最短
绿地里本没有路,走的人多 了… …
禁止践 踏
在公路l两侧有两村庄,现要在公路l旁修建一 所候车亭P,要使候车亭到两村庄的距离之和最短, 试确定候车亭P的位置。
A P
l
B
★思考:本题运用了 两点之间,线段最短.
.
将军饮马问题:
∴ BP+AP=B'P'= B'P'+AP'
在△AB'P'中,AB'<AP'+B'P',
∴ BP+AP < BP'+AP',即AP+BP最小.
变式1:
已知:P、Q是△ABC的边AB、 AC上的点,你能在 BC上确定一点R, 使△PQR的周长最短吗?
如图:一位将军骑马从驻地A出发,先牵马去草地 OM吃草,再牵马去河边ON喝水, 最后回到驻地A 问:这位将军怎样走路程最短?
A
M
D
N
C B
两线段之和最短这个问题早在古罗马时代就 有了,传说亚历山大城有一位精通数学和物理的 学者,名叫海伦.一天,一位罗马将军专程去拜 访他,向他请教一个百思不得其解的问题:
将军每天骑马从城堡A出发,到城堡B,途 中马要到小溪边饮水一次。将军问怎样走路程 最短?
这就是被称为"将军饮马"而广为流传的问题。
如图:一位将军骑马从城堡A到城堡B,途中马要 到河边饮水一次,问:这位将军怎样走路程最短?
相关文档
最新文档