第三章 卫星运动的基础知识与
第三章 卫星运动的基础知识与

1、卫星运行平均角速度 GM 值见 P19,为 3986005×108. 2、平近点角和偏近点角 3、真近点角 cos V
n0 n
M M 0 n(t toe ), Es M es sin Es
(cos Es es ) /(1 es cos Es )
4、升交距角及摄动改正项
x x0 Rz L Rx i y0 y 再将瞬地转换为协地。 z z 瞬地 0 轨道
第二节
GPS卫星星历
卫星星历是描述卫星运行轨道的参数,分 预报星历和后处理星历。 1、预报星历 由卫星向用户播发。可用于实时定位。分 C/A码星历和P码星历。 内容:分三部分,开普勒六参数、轨道 摄动九参数、时间二参数。
春分 点
地心
Ω
(t ST GA
0
t 时 升交点
oe
t 时格林 威治
o
预报星历的内容: 1)开普勒六参数
开普勒六参数
偏近点角E
3、偏近点角与真近点角的计算
偏近点角: E=M+e.sinE 真近点角:
1 es Es V tan tan 2 1 es 2
1 2
4、无摄卫星位置计算
在轨道直角坐 标系中的位置: 卫星在天球坐 标系和地球坐标系中 的位置通过坐标系的 转换求得。但在转换 前需加摄动改正。
x 0 cos V x0 cos u y0 r sin V y0 r sin u 0 z 0 0 z0
二、卫星的受摄运动
受摄运动的卫星位置是在无摄位置的基础上加相应的改正数求
第三章 卫星运动基础及GPS卫星星历

V
6
卫星运动基础及GPS卫星星历 卫星运动基础及GPS卫星星历 GPS
3.3 卫星的受摄运动
各种作用力 地球引力 日、月引力 太阳辐射压力 地球潮汐作用力 大气阻力
9
卫星运动基础及GPS卫星星历 卫星运动基础及GPS卫星星历 GPS
& 轨道倾角的变化率( 轨道倾角的变化率 弧度/ I ——轨道倾角的变化率(弧度/秒)
Cuc——纬度幅角的余弦调和项改正的振幅(弧度), 纬度幅角的余弦调和项改正的振幅( 纬度幅角的余弦调和项改正的振幅 弧度), Cus——纬度幅角正弦调和项改正的振幅(弧度), 纬度幅角正弦调和项改正的振幅( 纬度幅角正弦调和项改正的振幅 弧度), Crc——轨道半径的余弦调和项改正的振幅(米), 轨道半径的余弦调和项改正的振幅( 轨道半径的余弦调和项改正的振幅 Crs——轨道半径的正弦调和项改正的振幅(米), 轨道半径的正弦调和项改正的振幅( 轨道半径的正弦调和项改正的振幅 Cic——道倾角的余弦调角和项改正的振幅(弧度), 道倾角的余弦调角和项改正的振幅( 道倾角的余弦调角和项改正的振幅 弧度), Cis——轨道倾角的正弦调角和项改正的振幅(弧度), 轨道倾角的正弦调角和项改正的振幅( 轨道倾角的正弦调角和项改正的振幅 弧度), GPD——周数(周), 周数( 周数 Tgd——电离层延迟改正(秒), 电离层延迟改正( 电离层延迟改正 IODC——星钟的数据龄期(N), 星钟的数据龄期( ), 星钟的数据龄期 卫星钟差( 时间偏差, ɑ0——卫星钟差(秒)——时间偏差, 卫星钟差 时间偏差 卫星钟速( 秒 频率偏差系数, ɑ1——卫星钟速(秒/秒)——频率偏差系数, 卫星钟速 频率偏差系数 卫星钟速变率( 秒 ) 漂移系数, ɑ2——卫星钟速变率(秒/秒2)——漂移系数, 卫星钟速变率 漂移系数 卫星精度——(N), 卫星精度 ( ), 卫星健康——(N)。 卫星健康 ( )。
第3章 卫星运动基础与卫星星历

卫星的无摄运动
开普勒轨道参数 (轨道根数)
z
① 椭圆长半径a
② 椭圆短半径b ③ 升交点的赤径Ω :地球赤道平面上, 升交点N与春分点r之间的地心夹角。 ④ 近地点角距:轨道平面上近地点 A与升交点N之间的地心角距。 ⑤ 真近点角v:轨道平面上卫星与近 地点之间的地心角距。 ⑥ 轨道面的倾角i:卫星轨道平面与地球赤道面之间的夹角。
响下的轨道根数。
卫星的受摄运动
卫星的摄动轨道(或瞬时轨道):卫星运动的真
实轨道
各种作用力的特性及其影响:
1)地球引力
地球引力场对卫星的引力包括地球质心引力和地球 引力场摄动力两部分。地球引力场摄动力是由于地球形 状不规则及其质量不均匀而引起。 2)日、月引力 卫星和地球同时受到日、月的引力。
卫星的受摄运动
GPS卫星星历 卫星星历:描述卫星运动轨道的信息,即一组对应某
一时刻的轨道根数及其变化率。可以计算出任一时刻的 卫星位置及其速度。分为两类即广播星历和精密(事后 处理)星历。
广播星历:包括相对某一参考历元的开普勒轨道根数
和必要的轨道摄动改正项参数。
广播星历参数:共有16个,摄运动
无摄运动:仅考虑地球质心引力作用的运动,在天体 力学中称为二体问题。卫星的无摄运动一般可通过一 组适宜的参数来描述,若已知六个轨道根数,就可以 唯一地确定卫星的运动状态。
卫星运动的轨道参数
卫星运行的轨道:通过地心平面上的椭圆,且椭 圆的一个焦点与地心相重合。(开普勒定律)
3)太阳辐射压力
4)地球潮汐作用力
5)大气阻力 综上所述,在人造地球卫星所受的摄动力中,地球引力 场摄动力最大,约为10-3量级。其他摄动力大多小于或 近于10-6量级。这些摄动力引起卫星位置的变化,引起 轨道根数的变化。 通过解算卫星受摄运动的微分方程,可以得到卫星轨道 根数的变化规律。
GPS课件第三章卫星运动基础及GPS卫星

卫星
赤道 地心 春分 点 轨道
v Ω ω
升交 点
近地点
i y
3.2.2 二体问题的运动方程
卫星的无摄运动—二体问题 3.2 卫星的无摄运动 二体问题
研究卫星绕地球的运动,主要是研究卫星运动状态 随时间的变化规律。根据物理学中牛顿定律确定的微 分方程(3-6)用直角坐标表示的二体问题微分方程:
ɺɺ = − x ɺɺ = y ɺɺ = z r = 加速度
卫星的无摄运动—二体问题 3.2 卫星的无摄运动 二体问题
为轨道的长半径,e a 为轨道的长半径,e 为 轨道椭圆偏心率, 轨道椭圆偏心率,这 两个参数确定了开普 勒椭圆的形状和大小。 为升交点赤经: Ω为升交点赤经:即地球 赤道面上升交点与春 分点之间的地心夹角。 为轨道面倾角: i为轨道面倾角:即卫星 轨道平面与地球赤道 面之间的夹角。这两 个参数唯一地确定了 卫星轨道平面与地球 x 体之间的相对定向。
(µ − (µ − (µ
x
2
/ r / r / r +
3 3 3
)x )y )z
:
2
( 3 − 6)
卫星地心向径 y
+ z
2
,
: ɺ ɺ ɺ , a = (X ɺ , Y ɺ , Z ɺ )
µ
= GM
地球引力常数
.
微分方程的解为六个轨道参数。
卫星的无摄运动—二体问题 3.2 卫星的无摄运动 二体问题
卫星运动基础及GPS GPS卫星星历 第三章 卫星运动基础及GPS卫星星历
本章需学习的内容: 本章需学习的内容: 3.1 概述 卫星的无摄运动( 3.2 卫星的无摄运动(弄清二体问题的六个轨 道参数) 道参数) 3.3 卫星的受摄运动 GPS卫星星历 星历参数有哪些) 卫星星历( 3.4 GPS卫星星历(星历参数有哪些)
GNSS-第3讲 卫星运动基础与位置计算

§3.1 卫星无摄运动
开普勒第一定律(轨道定律): 卫星沿一个椭圆轨道环绕地 球运行,而地球处于椭圆的 一个焦点上
b a
m
r f
M
近地点
r a (1 e2 ) 1 e cos f
§3.1 卫星无摄运动
1、卫星运动轨道参数
m
a
b M
f
近地点
z
ω
升交点
a :椭圆长半轴 b :椭圆短半轴,也可以用偏心率e表示
n
(
i0 ik
x xk
xi xi
)
yk
拉格朗日多项式内插
内插精度
➢ 采用17阶多项式,精度可优于5mm
注意事项
➢ 要对某一时段的轨道内插,精密轨道数据应该完全 覆盖该时段,最好前后有9个历元的延伸
➢ 下载数据时,需要观测当天及前后各一天的数据
2、根据精密星历计算卫星位置
任意时刻 t 卫星位置的计算
➢ 原理:插值法 ➢ 方法:拉格朗日插值法、且贝雪夫插值法等
拉格朗日插值法:
已知函数y f (x)的n个结点x0 , x1,...,xn及其对应的 函数值y0 , y1,...,yn对于插值区间内的任一点x,其函数 值为
f
(x)
n k 0
X轴旋转i角、绕Z轴旋转 M
y
角,求出卫星在天球坐
i
标系下的坐标。
x 春分点
升交点
3)将天球坐标转换到地球 坐标。
起始子 午面 Z
春分点 x
z
Y
f Mω
Ω0
升交点
X
近地点 y
计算过程
1) 计算卫星运行的平均角速度(引力常数和长半轴)
n0
GM a3
卫星运动原理

卫星运动原理卫星运动原理是一种描述天体运动的基本原理,这种原理是建立在牛顿第二定律之上的,牛顿第二定律描述的是力和物体运动的关系,即力的方向和物体运动的方向是相同的。
卫星运动原理的实质是,天体之间存在着相互引力,当一个天体的质量很大,那么它会产生强烈的引力,拉动其他的天体,使其运动起来。
二、卫星运动的类型1、自转运动:卫星运动的一种类型,即以天体自身的轴线为轴心,绕自身轴线旋转的运动。
自转运动特点:沿同一方向旋转,运动角速度不变,旋转周期由质量和半径决定。
2、公转运动:卫星运动的另一种类型,即以另一次天体(即母体)的轴线为轴心,绕母体轴线运动的运动。
公转运动特点:沿着另一次天体轴线旋转,运动角速度不变,旋转周期由两次天体之间的距离决定。
三、卫星运动的能量卫星运动所需的能量有引力能和动能:1、引力能是由天体之间的相互引力产生的。
由于运动天体之间存在引力,引力与质量和距离成正比,即引力能=G×质量1×质量2÷距离3,其中G为斯特林常数。
2、动能是由卫星的自转、公转和其他运动产生的。
动能=质量×动量,其中动量是指物体在一定时间内受力而行走的距离,即动量=位移÷时间。
四、卫星运动的规律1、卫星运动的逆时针规律:卫星运动的路径大体上是以逆时针的方向运动的,如地球的公转、月球的公转和极星的公转等。
2、卫星运动的双重规律:卫星运动是自转和公转交替进行的,比如,月球是以两个运动周期:一次公转和一次自转,无穷循环运动。
这种双重运动也叫做双重规律。
3、卫星运动的拉格朗日定律:即同一次天体轨道上,两次卫星运动之间的时间差是一定的,这一定值被称为拉格朗日数(T),用公式表示:T=2π(a3/μ)1/2,其中μ为母体和卫星的共同的质量,a 为卫星的平均运动半径。
五、卫星运动的应用1、航天飞行:卫星运动在航天飞行中起着重要作用,只有通过科学计算,才能使航天器达到规定的轨道,保持合理的运行状态,以保证航天器在太空中的顺利通行。
第三章 卫星运动基础及GPS卫星星历

3.2.1 开普勒行星运动三定律
三 开普勒第三定律
内容:卫星围绕地球运动周期的平方与轨道椭
球长半径的立方成正比,其比值等于地球
引力常数的GM倒数.
3.2 卫星的无摄运动
3.2.2卫星运动的轨道参数(1)
1.确定卫星轨道形状、大小 和卫星在轨道上的瞬时位置 a(椭圆长半径) e(偏心率) V(真近点角)(位置) 真近点角
3.为了制订GPS测量的观测计划和便于捕获卫星发射 的信号,需要知道卫星的轨道参数
5 10 5
3.1 概述
二.卫星受到的作用力
1.地球对卫星的引力;(中心引力) 2.太阳、月亮对卫星的引力;
3.大气阻力;
4.太阳光压;
5.地球潮汐力等。
注:1.如果将地球引力视为1,则其他作用力均小于10(5数量级) 2.在多种作用力的作用下,卫星在空间运动的轨迹 极其复杂,难以用简单而精确的数学模型表达.
3.用户接收机在接收到卫星播发的导航电文后,通过解码即可直 接获得预报星历。由于预报星历是以电文方式由卫星直接播送 给用户接收机,因此又称为广播星历。 4.1)C/A码星历 精度低 民用(几十米-------近百米,91年后SA)
2)P码
精度高 军事目的(5米)
3.4 GPS卫星星历
3.4.2 后处理星历
1.后处理星历:后处理星历是不含外推误差的 实测精密星历 2.它由地面跟踪站根据精密观测资料计算而得, 可向用户提供用户观测时刻的卫星精密星历, 其精度目前为米级,将来可望达到分米级。
3.缺点:用户不能实时通过卫星信号获得后处 理星历,只能在事后通过磁带、网络、电传 等通讯媒体向用户传递。(有偿)
第三章 结束
3.3 卫星的受摄运动
卫星运动基础与轨道计算

卫星轨道方程:r p
讨论:
1 e cos l
e=0, r=p 即a=b, 轨道为圆
e<1, m inpp,m axp 为椭圆轨道
1e 2
1e
e1,m inp,m ax 为抛物线,卫星飞离地
球e1 ,m in2pp,m ax
1e 2
为双曲线
发射参数与轨道方程的关系
第一、二、三宇宙速度
OMEGA_0= -0.6E+01 ;//100.0/180.0* pi; 点赤经
// 参 考 时 刻 的 升 交
i0=0.958512160302E+00; //30.0/180.0*pi; //参考时刻的轨道倾角
omega_s=-0.258419417299E+01;//50.0/180.0*pi; 点角距
// 近 地
OMEGA_=-0.819426989566E-08; //升交点赤经变率
i_=-0.253939149013E-09;
//轨道倾角变率
Cuc=0.2E-06;
//改正项振幅
Cus=0.912137329578E-05 ;
Crc=0.201875E+03;
Crs=0.40625E+01;
开普勒方程求解
6.求卫星在轨道面的直角坐标系中的坐标
cos
r
sin
0
r
M
ms
近地点
开普勒方程求解
7.轨道面坐标转向升交点为轴
x0 cos
y0
r
sin
z 0 0
w
w
i 升交点
x
春分点
x0
开普勒方程求解
8.卫星在天球坐标系中位置
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x0 y0
r
cosV sin V
x0 y0
r
cos u sin u
z0
0
z0
0
二、卫星的受摄运动
受摄运动的卫星位置是在无摄位置的基础上加相应的改正数求 得。 1、地球赤道隆起的影响
1)引起升交点赤经变化,变率Ω′; 2)引起近地点角距变化,变率ω′; 3)引起平近点角M变化,变率M′或n′或Δn; 2、其它影响。
4、升交距角及摄动改正项
u0 s V u Cus sin 2u0 Cuc cos 2u0 r Crs sin 2u0 Crc cos 2u0 i Cis sin 2u0 Cic cos 2u0
5、观测历元的升交距角、向径及轨道倾角
u u0 u
r as (1 es cos Es ) r i i0 i i(t toe )
x0 y0 z0
轨道
再将瞬地转换为协地。
第三章 卫星运动的基础知识与GPS卫星星 历
第一节 卫星的无摄运动与受摄运动
一、卫星的无摄运动
卫星运动不仅受地心引力的作用,而且还受到非地心引力、日 月引力、行星引力、太阳光压、地球潮汐、大气阻力等影响。除地心引 力外的其它作用力称为摄动力。只考虑地心引力的卫星运动叫无摄运动, 考虑其它作用力的卫星运动叫受摄运动。
1、卫星运动的开普勒定律
第一定律:卫星轨道是椭圆,一个焦点是地心。 第二定律:卫星与地心连线在相同时间内扫过的面积相等。 第三定律:卫星运行的周期平方与轨道长半径立方成比例。
1
Ts2 as3
4 2
GM
.......n2as3
GM
........n
GM as3
2
扫过的面积相等
2、无摄运动的轨道参数 轨道形状与大小:轨道长半径as;扁心率es; 轨道椭圆在轨道平面上的定向:近地点角距ω;
围:0~604800s。 AODE——数据龄期,即用于推算星历的监测站观测
数据的最后观测时刻tL到toe的时间间隔,AODE= toe- tL。 注:不属于星历的其它信息表2.3前3行,后5行,与星历同 属导航电文。
1)卫星钟差改正参数:Δts=a0+a1(t-toC)+a2(t-toC)2 toC——星钟参考时刻。
和。
开普勒六参数 偏近点角E
3、偏近点角与真近点角的计算
偏近点角: E=M+e.sinE 真近点角:
1
tan
V 2
1 1
es es
2
tan
Es 2
4、无摄卫星位置计算
在轨道直角坐 标系中的位置:
卫星在天球坐 标系和地球坐标系中 的位置通过坐标系的 转换求得。但在转换 前需加摄动改正。
) GAST(t
地心
Ω
oe
Ω
o
toe 时 升交点
0
to 时格林 威治
预报星历的内容: 1)开普勒六参数
e, i0, ωs, Ω0, M0
Ω0——星期日子夜零时的格林威治子午面与参考时刻toe时的升交点所 在子午面之间的夹角。
2)轨道摄动九参数
3)时间二参数 toe——星期日子夜零时起算的星历参考时刻。取值范
卫星在轨道平面上的位置:真近点角V(变量);
轨道平面与地球体之间的相对定向:升交点赤经Ω;轨道面倾角i。 辅助参数平近点角M和偏近点角E。 M=n(t-t0)…………t0为卫星过近地点时刻。
参数说明 近地点角距——近地点与升交点的地心夹角。 真近点角——卫星与近地点的地心夹角。 升交点赤经——升交点与春分点的地心夹角。 轨道面倾角——卫星轨道面与天球赤道面的夹角。 升交距角——卫星与升交点的地心夹角,即真近点角与近地点角距之
第三节 GPS卫星坐标计算
1、卫星运行平均角速度
GM 值见 P19,为 3986005×108.
1
n0
GM as3
n 2 ……
n0
n
2、平近点角和偏近点角 M M0 n(t toe )os Es es ) /(1 es cos Es )
2)GPD——星期数,取值范围0~1024, 1980.1.6~1999.8.22,1999.8.22~2019.4.6
2、后处理星历
国际组织、国家、城市、仪器制造商等由自已的跟踪站观测数 据推算,由网络、手机、电视、光盘、磁带等介质以免费或收费的方式 向用户提供。一般不能实时定位。
利用精密星历及其它手段进行精密单点定位,精度可达0.1m。
x 0
c o s u
y0 r sin u
6、卫星在轨道直角坐标系中的位置 z 0
0
7、升交点在 WGS-84 中的大地经度 L 0 ( )(t toe ) toe
ω为地球自转角速度,见 P19.
8、卫星在 WGS-84 中的坐标
x
y
z
瞬地
Rz
LRx i
引起切向、法向、径向偏移。增加6个参数Cus,Cuc,Cis,Cic, Crs,Crc。
第二节 GPS卫星星历
卫星星历是描述卫星运行轨道的参数,分
预报星历和后处理星历。
春分
1、预报星历
点
由卫星向用户播发。可用于实时定位。分
C/A码星历和P码星历。
内容:分三部分,开普勒六参数、轨道
摄动九参数、时间二参数。