三角函数公式练习题及答案详解

合集下载

数学课程三角函数公式练习题及答案

数学课程三角函数公式练习题及答案

数学课程三角函数公式练习题及答案在学习数学的过程中,三角函数是一个非常重要的概念。

它们是研究三角形及各种周期现象的数学工具。

熟练掌握三角函数公式可以帮助我们解决很多实际问题。

本文将为大家提供一些三角函数公式的练习题及答案,以帮助大家巩固对这一知识点的掌握。

练习题一:正弦函数的基本关系式1. 已知角A的正弦值sin(A)=0.6,求角A的度数。

2. 已知角B的度数为45°,求sin(B)的值。

3. 已知角C的正弦值为√3/2,求角C的度数。

答案一:1. 根据正弦函数的定义,sin(A)=对边/斜边,可得对边=0.6×斜边。

由此可知,三角形中的角A的度数为arcsin(0.6)。

2. 对于一个45°的角度,根据特殊角的性质得知,sin(B)=cos(B)=1/√2。

3. 根据正弦函数的定义,sin(C)=√3/2,可得角C的度数为arcsin(√3/2)。

练习题二:余弦函数的基本关系式1. 已知角D的余弦值cos(D)=0.8,求角D的度数。

2. 已知角E的度数为60°,求cos(E)的值。

3. 已知角F的余弦值为1/2,求角F的度数。

答案二:1. 根据余弦函数的定义,cos(D)=邻边/斜边,可得邻边=0.8×斜边。

由此可知,三角形中的角D的度数为arccos(0.8)。

2. 对于一个60°的角度,根据特殊角的性质得知,cos(E)=1/2。

3. 根据余弦函数的定义,cos(F)=1/2,可得角F的度数为arccos(1/2)。

练习题三:正切函数的基本关系式1. 已知角G的正切值tan(G)=1.5,求角G的度数。

2. 已知角H的度数为30°,求tan(H)的值。

3. 已知角I的正切值为√3,求角I的度数。

答案三:1. 根据正切函数的定义,tan(G)=对边/邻边,可得对边=1.5×邻边。

由此可知,三角形中的角G的度数为arctan(1.5)。

三角函数的公式运用习题含答案解析

三角函数的公式运用习题含答案解析

三角函数、同角三角函数基本关系、三角函数的诱导公式三角函数要点一:三角函数定义设α是一个任意角,它的终边与半径是r 的圆交于点(,)P x y ,则r =,那么:(1)yr做α的正弦,记做sin α,即sin y r α=;(2) xr叫做α的余弦,记做cos α,即cos x r α=;(3)yx叫做α的正切,记做tan α,即tan (0)y x x α=≠.类型一:三角函数的定义例1.已知角α的终边经过点P (-4a ,3a )(a ≠0),求sin α,cos α,tan α的值.【解析】 5||r a ==. 若a >0,则r =5a ,α是第二象限角,则33sin 55y a r a α===,44cos 55x a r a α-===-,33tan 44y a x a α===--,若a <0,则r =-5a ,α是第四象限角,则3sin 5α=-,4cos 5α=,3tan 4α=-.举一反三:【变式1】已知角α的终边在直线y =上,求sin α,cos α,tan α的值.【答案】122122--【解析】因为角α的终边在直线y =上,所以可设()(0)P a a ≠为角α终边上任意一点.则2||r a ==(a ≠0). 若a >0,则α为第一象限角,r=2a ,所以sin 22a α==, 1cos 22a a α==,tan aα==. 若a <0,则α为第三象限角,r=-2a ,所以sin 22a α==--,1cos 22a a α=-=-,tan a α==. 要点二:三角函数在各象限的符号 三角函数在各象限的符号:在记忆上述三角函数值在各象限的符号时,有以下口诀:一全正,二正弦,三正切,四余弦.类型二:三角函数的符号例2.判断下列各三角函数值的符号(1)17tan 6π⎛⎫- ⎪⎝⎭;(2)tan120°·sin269°;(3)tan191°-cos191°.【解析】 (1)因为177466πππ-=-+,且76π是第三象限角,所以176π-是第三象限角.所以17tan 06π⎛⎫-> ⎪⎝⎭.(2)∵120°是第二象限的角,∴tan120°<0. ∵269°是第三象限的角,∴sin269°<0. ∴tan120°·sin269°>0. (3)∵191°是第三象限的角,∴tan191°>0,cos191°<0,∴tan191°―cos191°>0. 举一反三: 【变式1】(1)若sin α=―2cos α,确定tan α的符号;正切、余切余弦、正割正弦、余割(2)已知α为第二象限角,判断3sin αcos α+2tan α的符号; (3)若sin α<0,cos α>0,则α是第几象限角? 【答案】(1)负(2)负(3)四 【解析】(1)由sin α=―2cos α,知sin α与cos α异号,故α是第二或第四象限角.当α是第二象限角时,tan α<0;当α是第四象限角时,tan α<0.综上知,tan α<0.(2)因为α为第二象限,所以sin α>0,cos α<0,tan α<0,所以3sin αcos α+2tan α<0.(3)因为sin α<0,所以α为第三或第四象限角, 又cos α>0,所以α为第一或第四象限角, 所以α为第四象限角.类型三:三角函数定义域的求法例3.求函数sin 1tan y x x =+-的定义域.【思路点拨】要使式子有意义,则必须使被开方数大于等于零,然后再解三角不等式.【解析】 由题意得sin 0tan 1()2x x x n n Z ππ⎧⎪≥⎪≤⎨⎪⎪≠+∈⎩.由图可知:sin x ≥0时,角x 的终边落在图中横线阴影部分; tan x ≤1时,角x 的终边落中图中竖线阴影部分. 从终边落在双重阴影部分的角中排除使2()2x n n Z ππ=+∈的角即为所求.∴该函数的定义域为:22,22,42x n x n n Z x n x n n Z πππππππ⎧⎫⎧⎫≤≤+∈+<≤+∈⎨⎬⎨⎬⎩⎭⎩⎭. 【注意】(1)在求三角函数定义域时,一般应转化为不等式(组),利用数轴或三角函数线解三角不等式是最常用的方法,因此必须牢固掌握三角函数的画法及意义.(2)不可忽略正切函数自身的定义域|,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭.举一反三: 【变式1】求函数sin cos tan x xy x+=的定义域:【答案】|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭【解析】 要使函数有意义,需tan x ≠0,∴2x k ππ≠+(k ∈Z )且x ≠k π(k ∈Z )∴2kx π≠(k ∈Z ).∴函数的定义域为|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭.角三角函数基本关系要点一:同角三角函数的基本关系式 (1)平方关系:22sin cos 1αα+=(2)商数关系:sin tan cos ααα= (3)倒数关系:tan cot 1⋅=αα,sin csc 1αα⋅=,cos sec 1αα⋅= 要点诠释:2sin α是2(sin )α的简写;要点二:同角三角函数基本关系式的变形 1.平方关系式的变形:2222sin 1cos cos 1sin αααα=-=-,,212sin cos (sin cos )αααα±⋅=±2.商数关系式的变形sin sin cos tan cos tan αααααα=⋅=,。

三角函数诱导公式练习题集附答案解析

三角函数诱导公式练习题集附答案解析

三角函数诱导公式练习题一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣3B、﹣2C、D、﹣17、本式的值是()A、1B、﹣1C、D、8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0 D、110、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、 D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d的大小关系是()A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b15、在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan tan;④,其中恒为定值的是()A、②③B、①②C、②④D、③④16、已知tan28°=a,则sin2008°=()A、B、C、D、17、设,则值是()A、﹣1B、1C、D、18、已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2007)=5,则f(2008)=()A、3B、5C、1D、不能确定19、给定函数①y=xcos(+x),②y=1+sin2(π+x),③y=cos(cos(+x))中,偶函数的个数是()A、3B、2C、1D、020、设角的值等于()A、B、﹣C、D、﹣21、在程序框图中,输入f0(x)=cosx,则输出的是f4(x)=﹣csx()A、﹣sinxB、sinxC、cosxD、﹣cosx二、填空题(共9小题)22、若(﹣4,3)是角终边上一点,则Z的值为.23、△ABC的三个内角为A、B、C,当A为°时,取得最大值,且这个最大值为.24、化简:=25、化简:=.26、已知,则f(1)+f(2)+f(3)+…+f(2009)=.27、已知tanθ=3,则(π﹣θ)=.28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)的值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)=.30、若,且,则cos(2π﹣α)的值是.答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。

(完整版)任意角的三角函数练习题及标准答案详解

(完整版)任意角的三角函数练习题及标准答案详解

任意角的三角函数一、选择题1.以下四个命题中,正确的是( )A .在定义域内,只有终边相同的角的三角函数值才相等B .{α|α=k π+6π,k ∈Z }≠{β|β=-k π+6π,k ∈Z } C .若α是第二象限的角,则sin2α<0D .第四象限的角可表示为{α|2k π+23π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A .22 B .-22 C .±22 D .14.α是第二象限角,其终边上一点P (x ,5),且cos α=42x ,则sin α的值为( )A .410B .46C .42D .-4105.使lg (cos θ·tan θ)有意义的角θ是( )A .第一象限角B .第二象限角C .第一或第二象限角D .第一、二象限角或终边在y 轴上6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角7. 已知集合E={θ|cos θ<sin θ,0≤θ≤2π},F={θ|tan θ<sin θ},那么E ∩F 是区间( )二、填空题1.已知角α的终边落在直线y =3x 上,则sin α=________. 2.已知P (-3,y )为角α的终边上一点,且sin α=1313,那么y 的值等于________. 3.已知锐角α终边上一点P (1,3),则α的弧度数为________.4.(1)sin49πtan 37π_________ 5.三、解答题1.已知角α的终边过P (-3 ,4),求α的三角函数值2.已知角β的终边经过点P (x ,-3)(x >0).且cos β=2x,求sin β、cos β、tan β的值.3.(1)已知角α终边上一点P(3k ,-4k)(k <0),求sinα,cosα,tanα 的值;4. 一个扇形的周长为l,求扇形的半径、圆心角各取何值时,此扇形的面积最大.9 .化简或求值:三角函数的诱导公式一、选择题(本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选择中,只有一项是符合题目要求的.)1、与-463°终边相同的角可表示为( ) A .k·360°+436°(k ∈Z ) B .k·360°+103°(k ∈Z ) C .k·360°+257°(k ∈Z )D .k·360°-257°(k ∈Z )2、下列四个命题中可能成立的一个是( ) A 、21cos 21sin ==αα且 B 、1cos 0sin -==αα且 C 、1cos 1tan -==αα且 D 、α是第二象限时,αααcos tan sia -= 3、若54sin =α,且α是第二象限角,则αtan 的值为( ) A 、34- B 、43 C 、43± D 、34±4、若2cos sin =+αα,则ααcot tan +等于( )A 、1B 、2C 、-1D 、-2 1、 ︒︒+450sin 300tan 的值为( ) A 、31+B 、31-C 、31--D 、31+-5、若A 、B 、C 为△ABC 的三个内角,则下列等式成立的是( ) A 、A C B sin )sin(=+ B 、A C B cos )cos(=+ C 、A C B tan )tan(=+ D 、A C B cot )cot(=+6、)2cos()2sin(21++-ππ等于 ( )A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos27、sinαcosα=81,且4π<α<2π,则cosα-sinα的值为( ) A .23B .23-C .43 D .43-8、在△ABC 中,若最大角的正弦值是22,则△ABC 必是( ) A 、等边三角形 B 、直角三角形 C 、钝角三角形 D 、锐角三角形9、下列不等式中,不成立的是( )A 、︒︒>140sin 130sin B 、︒︒>140cos 130cos C 、︒︒>140tan 130tan D 、︒︒>140cot 130cot10、已知函数2cos)(xx f =,则下列等式成立的是( ) A 、)()2(x f x f =-π B 、)()2(x f x f =+π C 、)()(x f x f -=- D 、)()(x f x f =-11、若θsin 、θcos 是关于x 的方程0242=++m mx x 的两个实根,则m 值为( ) A 、⎪⎭⎫⎢⎣⎡-∈0,34m B 、51-=m C 、51±=m D 、51+=m 12、已知()sin()cos()4f x a x b x παπβ=++++(,,,a b αβ为非零实数),(2011)5f =则(2012)f =( )A .1B .3C .5D .不能确定二、填空题(本大题共4个小题,每小题5分,共20分.将答案填在题中横线上)13、化简=+-+βαβαβα222222cos cos sin sin sin sin .14、若0cos 3sin =+αα,则ααααsin 3cos 2sin 2cos -+的值为 .15、=-︒)945cos( .16、=⋅⋅⋅⋅⋅⋅︒︒︒︒89tan 3tan 2tan 1tan .三、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17、求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒18、 化简:)(cos )tan()2tan()cos()(sin 32πααππααππα--⋅+--+⋅+.19、已知21)sin(=+απ,求απααπcos )tan()2sin(⋅-+-的值.20、已知54sin -=α. 求ααtan cos 和的值 .21、(10分)已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+22、已知1)sin(=+βα,求证 0tan )2tan(=++ββα。

高一数学三角函数试题答案及解析

高一数学三角函数试题答案及解析

高一数学三角函数试题答案及解析1.已知角为第二象限角,则点位于哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为角为第二象限角,所以,,即点位于第四象限,故选D.2.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A. B. C. D. A=B=C【答案】B【解析】锐角必小于 ,故选B.3.已知角的终边过点,且,则的值为A.B.C.D.【答案】C【解析】因为,所以角的终边在第二,三象限,,从而,即,解得,故选C。

4.若,,则角的终边在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】本题考查三角函数的性质。

由知角可能在第一、四象限;由知角可能在第三、四象限;综上得角的终边在箱四象限故正确答案为5.已知函数相邻两对称轴间的距离为,若将的图像先向左平移个单位,再向下平移1个单位,所得的函数为奇函数.(1)求的解析式,并求的对称中心;(2)若关于的方程在区间上有两个不相等的实根,求实数的取值范围.【答案】(1),对称中心为:,(2)或.【解析】(1)相邻两对称轴间的距离为半周期,由,可得,按三角函数的平移变换,得表达式,函数为奇函数,得值,且过点得值,求出表达式后由性质可得对称中心;(2)由得的范围,将利用换元法换元,将问题转化为一个一元二次方程根的分布问题,利用判别式得不等式解得取值范围.试题解析:(1)由条件得:,即,则,又为奇函数,令,,,,由,得对称中心为:(2),又有(1)知:,则,的函数值从0递增到1,又从1递减回0.令则由原命题得:在上仅有一个实根.令,则需或,解得:或.【考点】1. 性质;2.一元二次方程;3.换元法.6.设函数的最小正周期为,且,则()A.在单调递减B.在单调递减C.在单调递增D.在单调递增【答案】A【解析】由得,,又,则,即.当时,,递减,故选A.【考点】函数的解析式,函数的奇偶性,单调性.7.若,且,则是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】C【解析】根据且,可得角为第三象限角,故选择C.【考点】三角函数定义.8.已知函数 .(1)求函数的单调递减区间;(2)求函数在区间上的最大值及最小值.【答案】(Ⅰ),;(Ⅱ)取得最大值,取得最小值.【解析】(Ⅰ)先根据两角和余弦公式、二倍角公式、配角公式将函数化为基本三角函数:,再根据正弦函数性质求单调区间:由解得,最后写出区间形式(Ⅱ)先根据自变量范围确定基本三角函数定义区间:,再根据正弦函数在此区间图像确定最值:当时,取得最小值;当时,取得最大值1.试题解析:(Ⅰ). ……………………………………3分由,,得,.即的单调递减区间为,.……………………6分(Ⅱ)由得,………………………………8分所以. …………………………………………10分所以当时,取得最小值;当时,取得最大值1. ………………………………13分【考点】三角函数性质【思路点睛】应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”。

高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析

高一数学 知识点 三角函数  诱导公式 常考题 经典题 50道 含答案和解析

高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。

【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。

属于基础题型。

================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。

【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。

================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。

三角函数计算练习(含详细答案)

三角函数计算练习(含详细答案)

三角函数计算练习1.已知x∈(﹣,0),cosx=,则tan2x=( )A.B.C.D.2.cos240°=( )A.B.C.D.3.已知cosα=k,k∈R,α∈(,π),则sin(π+α)=( )A.﹣B.C.±D.﹣k4.已知角α的终边经过点(﹣4,3),则cosα=5.cos480°的值为6.已知,那么cosα=7.已知sin(+α)=,则cos2α等于( )8.已知α是第二象限角,P(x,)为其终边上一点,且cosα=x,则x=9.已知sinα=,则cos2α=.10.若cos(α+)=,则cos(2α+)=.11.已知θ∈(0,π),且sin(θ﹣)=,则tan2θ= .试卷答案1.D考点:二倍角的正切.专题:计算题.分析:由cosx的值及x的范围,利用同角三角函数间的基本关系求出sinx的值,进而求出tanx的值,然后把所求的式子利用二倍角的正切函数公式变形后,将tanx的值代入即可求出值.解答:解:由cosx=,x∈(﹣,0),得到sinx=﹣,所以tanx=﹣,则tan2x===﹣.故选D点评:此题考查了同角三角函数间的基本关系,以及二倍角的正切函数公式.学生求sinx 和tanx时注意利用x的范围判定其符合.2.B考点:运用诱导公式化简求值.专题:计算题;三角函数的求值.分析:运用诱导公式及特殊角的三角函数值即可化简求值.解答:解:cos240°=cos(180°+60°)=﹣cos60°=﹣,故选:B.点评:本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知识的考查.3.A考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.解答:解:∵cosα=k,k∈R,α∈(,π),∴sinα==,∴sin(π+α)=﹣sinα=﹣.故选:A.点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.4.D考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.5.D考点:运用诱导公式化简求值.专题:三角函数的求值.分析:运用诱导公式即可化简求值.解答:解:cos480°=cos(360°+120°)=cos120°=﹣cos60°=﹣.故选:D.点评:本题主要考查了运用诱导公式化简求值,属于基础题.6.C考点:诱导公式的作用.专题:三角函数的求值.分析:已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.解答:解:sin(+α)=sin(2π++α)=sin(+α)=cosα=.故选C.点评:此题考查了诱导公式的作用,熟练掌握诱导公式是解本题的关键.7.C考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:由sin(+α)=及诱导公式可得cosα=,由二倍角的余弦公式可得cos2α的值.解答:解:∵sin(+α)=,∴cosα=,∴cos2α=2cos2α﹣1=2×=﹣,故选:C.点评:本题主要考查了二倍角的余弦公式,诱导公式的应用,属于基础题.8.D考点:任意角的三角函数的定义.专题:三角函数的求值.分析:根据三角函数的定义有cosα=,条件cosα=x都可以用点P的坐标来表达,借助于角的终边上的点,解关于x的方程,便可求得所求的横坐标.解答:解:∵cosα===x,∴x=0(∵α是第二象限角,舍去)或x=(舍去)或x=﹣.故选:D.点评:本题巧妙运用三角函数的定义,联立方程求出未知量,不失为一种好方法.9.考点:二倍角的余弦.专题:三角函数的求值.分析:由二倍角的余弦公式化简所求后代入已知即可求值.解答:解:∵sinα=,∴cos2α=1﹣2sin2α=1﹣2×=.故答案为:.点评:本题主要考查了二倍角的余弦公式的应用,属于基本知识的考查.10.考点:二倍角的余弦;两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:由二倍角的余弦函数公式根据已知即可求值.解答:解:cos(2α+)=2cos2(α+)﹣1=2×﹣1=.故答案为:.点评:本题主要考查了二倍角的余弦函数公式的应用,属于基本知识的考查.11.﹣考点:二倍角的正切;两角和与差的正弦函数.专题:三角函数的求值.分析:依题意,可得sinθ﹣cosθ=①,sinθ+cosθ=②,联立①②得:sinθ=,cosθ=,于是可得cos2θ、sin2θ的值,从而可得答案.解答:解:∵sin(θ﹣)=(sinθ﹣cosθ)=,∴sinθ﹣cosθ=,①∴1﹣2sinθcosθ=,2sinθcosθ=>0,依题意知,θ∈(0,),又(sinθ+cosθ)2=1+sin2θ=,∴sinθ+cosθ=,②联立①②得:sinθ=,cosθ=,∴cos2θ=2cos2θ﹣1=﹣,∴tan2θ==﹣.故答案为:﹣.点评:本题考查两角和与差的正弦函数,考查同角三角函数间的关系式的应用,考查二倍角的正弦、余弦与正切,属于中档题.。

高一三角函数诱导公式练习题(带详解答案)

高一三角函数诱导公式练习题(带详解答案)

三角函数诱导公式1.全国Ⅱ)若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角2.(07·湖北)tan690°的值为( )A .-33 B.33 C. 3 D .- 33.f (sin x )=cos19x ,则f (cos x )=( )A .sin19xB .cos19xC .-sin19xD .-cos19x4.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,且ab ≠0,α≠k π(k ∈Z).若f (2009)=5,则f (2010)等于( )A .4B .3C .-5D .55.(09·全国Ⅰ文)sin585°的值为( )A .-22 B.22 C .-32 D.326.函数y =5sin ⎝⎛⎭⎫25x +π6的最小正周期是( ) A.25π B.52π C.π3 D .5π7.(2010·重庆文,6)下列函数中,周期为π,且在[π4,π2]上为减函数的是( ) A .y =sin(2x +π2) B .y =cos (2x +π2) C .y =sin(x +π2) D .y =cos(x +π2)8.函数y =-2tan ⎝⎛⎭⎫3x +π4的单调递减区间是________.三角函数诱导公式(答案)1.[答案] C2.[答案] A[ 解析] tan690°=tan(-30°+2×360°)=tan(-30°)=-tan30°=-33,选A. 3.[答案] C[解析] f (cos x )=f (sin(90°-x ))=cos19(90°-x )=cos(270°-19x )=-sin19x .4.[答案] C[解析] ∵f (2009)=a sin(2009π+α)+b cos(2009π+β)=-a sin α-b cos β=5, ∴a sin α+b cos β=-5.∴f (2010)=a sin α+b cos β=-5.5.[答案] A[解析] sin585°=sin(360°+225°)=sin225°=sin(180°+45°)=-sin45°=-22. 6.[答案] D[解析] T =2π25=5π. 7.7.[答案] A[解析] 选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2]上为减函数; 选项B :y =cos(2x +π2)=-sin2x ,周期为π,在[π4,π2]上为增函数; 选项C :y =sin(x +π2)=cos x ,周期为2π; 选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A. 8. [答案] ⎝⎛⎭⎫k π3-π4,k π3+π12(k ∈Z)[解析] 求此函数的递减区间,也就是求y =2tan ⎝⎛⎭⎫3x +π4的递增区间,由k π-π2<3x +π4<k π+π2,k ∈Z 得:k π3-π4<x <k π3+π12, ∴减区间是⎝⎛⎭⎫k π3-π4,k π3+π12,k ∈Z.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数公式
1.同角三角函数基本关系式
sin2α+cos2α=1
sinα
cosα
=tanα
tanαcotα=1
2.诱导公式 (奇变偶不变,符号看象限)
(一)sin(π-α)=___________ sin(π+α)= ___________ cos(π-α)=___________ cos(π+α)=___________
tan(π-α)=___________ tan(π+α)=___________
sin(2π-α)=___________ sin(2π+α)=___________
cos(2π-α)=___________ cos(2π+α)=___________
tan(2π-α)=___________ tan(2π+α)=___________
(二) sin(π
2
-α)=____________ sin(
π
2
+α)=____________
cos(π
2
-α)=____________ cos(
π
2
+α)=_____________
tan(π
2
-α)=____________ tan(
π
2
+α)=_____________
sin(3π
2
-α)=____________ sin(

2
+α)=____________
cos(3π
2
-α)=____________ cos(

2
+α)=____________
tan(3π
2
-α)=____________ tan(

2
+α)=____________
sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα公式的配套练习
sin(7π-α)=___________ cos(5π
2
-α)=___________
cos(11π-α)=__________ sin(9π
2
+α)=____________
3.两角和与差的三角函数
cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ
sin (α+β)=sin αcos β+cos αsin β
sin (α-β)=sin αcos β-cos αsin β
tan(α+β)= tan α+tan β1-tan αtan β
tan(α-β)= tan α-tan β1+tan αtan β
4. 二倍角公式
sin2α=2sin αcos α
cos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α
tan2α=2tan α1-tan 2α
5. 公式的变形
(1) 升幂公式:1+cos2α=2cos 2α 1—cos2α=2sin 2α
(2) 降幂公式:cos 2α=1+cos2α2 sin 2α=1-cos2α2
(3) 正切公式变形:tan α+tan β=tan(α+β)(1-tan αtan β)
tan α-tan β=tan(α-β)(1+tan αtan β)
(4) 万能公式(用tan α表示其他三角函数值)
sin2α=2tan α1+tan 2α cos2α=1-tan 2α1+tan 2α tan2α=2tan α1-tan 2α
6. 插入辅助角公式
asinx +bcosx=a 2+b 2 sin(x+φ) (tan φ= b a
) 特殊地:sinx ±cosx = 2 sin(x ±
π4
) 7. 熟悉形式的变形(如何变形)
1±sinx ±cosx 1±sinx 1±cosx tanx +cotx
1-tan α1+tan α 1+tan α1-tan α
若A 、B 是锐角,A+B =π4
,则(1+tanA )(1+tanB)=2 cos αcos2αcos22α…cos2 n α= sin2 n+1α 2 n+1sin α 8. 在三角形中的结论(如何证明)
若:A +B +C=π A+B+C 2 =π2
tanA +tanB +tanC=tanAtanBtanC
tan A 2 tan B 2 +tan B 2 tan C 2 +tan C 2 tan A 2
=1
9.求值问题
(1)已知角求值题
如:sin555°
(2)已知值求值问题
常用拼角、凑角
如:1)已知若cos(π4 -α)=35 ,sin(3π4 +β)=513
, 又π4 <α<3π4 ,0<β<π4
,求sin(α+β)。

2)已知sin α+sin β=35 ,cos α+cos β=45
,求cos(α-β)的值。

(3)已知值求角问题
必须分两步:1)求这个角的某一三角函数值。

2)确定这个角的范围。

如:.已知tan α= 17 ,tan β= 13 ,且αβ都是锐角,求证:α+2β=π4
10.满足条件的x 的集合
sinx>cosx ________________________________
sinx<cosx _________________________________
|sinx|>|cosx| __________________________________
|sinx|<|cosx| __________________________________
11.三角函数的图像与性质
y=sinx 的图像与性质是关键
y=Asin(ωx +φ)的性质都仿照y=sinx 来做,注意在求其单调性的时候遵循“同增异减”(保证一定要在定义域范围讨论)。

相关文档
最新文档