换热器安全操作规程

换热器安全操作规程
换热器安全操作规程

换热器安全操作规程

一、目的为规范换热器的使用、维护和保养行为,防止事故发生,制定本规程。

二、范围适用于换热器的使用、维护、保养工作。

三、责任换热器的使用、维护、保养人员对本规程负责。

四、内容

1.换热器的基本结构及主要参数

1.1.换热器的基本结构

根据不同的使用目的,换热器可以分为四类:加热器、冷却器、蒸发器、冷凝器。

固定管板式列管式换热器,由管束、管板、折流板、分程隔板、壳体和封头等部件构成。

1.2.换热器的主要参数设计压力、最高工作压力、设计温度、换热面积

2.换热器的工作原理

2.1.列管式换热器是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。

2.2.进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。

2.3.为提高管外流体的传热分系数,通常在壳体内安装若干挡板。挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。

2.4.流体每通过管束一次称为一个管程;每通过壳体一次称为一个壳程。为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分成若干组。这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程。

2.5.同样,为提高管外流速,也可在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳程。多管程与多壳程可配合应用。

3.启动前的检查及准备工作

3.1.检查受压元件(如封头、筒体、设备法兰、管板、换热管等)有无异常情况。

3.2.检查安全附件(温度表、压力表等)是否完好和是否在有效检验期内。

3.3.检查阀门开启是否灵活,阀门开闭的位置是否正确。

4.开车程序

4.1.对采用加热形式的换热器时

4.1.1.先开启壳程出口阀门,然后开启管程出口阀门。

4.1.2.再开启管程的进口阀门,向加热器进料。

4.1.3.最后缓慢打开壳程进口阀门,对物料加热,将物料温度控制在规定范围内。

4.2.对采用冷却形式的换热器时

4.2.1.先打开壳程的出口阀门,然后打开壳程进口阀门,向冷却器中通冷却循环水。

4.2.2.再打开管程出口阀门。

4.2.3.最后缓慢打开管程进口阀门,向冷却器进料。

5.停车程序

5.1.对采用加热形式的换热器时

5.1.1.先缓慢关闭壳程进口阀门

5.1.2.后关闭管程进口阀门和管程出口阀门

5.1.3.最后关闭壳程出口阀门

5.2.对采用冷却形式的换热器时

5.2.1.先缓慢关闭管程进口阀门

5.2.2.后关闭管程出口阀门和壳程进口阀门

5.2.3.最后关闭壳程出口阀门

6.运行中重点检查部位和项目

6.1.检查安全附件,如安全阀、压力表、温度计是否正常,并控制它们在规定的参数范围内。

6.2.检查主要受压元件有无泄漏或其他异常情况。

6.3.检查换热器与连接的管道有无严重振动等。

7.注意事项

7.1.严格控制壳程和管程的进出口的压力差,发现压力差小于规定值时,应及时查明原因并采取措施。

7.2.定期检查壳程、管程出口压力表,对管壳间的泄漏而造成的压力异常及时采取措施。

7.3.应尽量采用较高流速,提高传热效果,减少结垢,防止局部过热,并做好定期排污

8.换热器的维护和保养

8.1.加热器使用前,应将壳程中的蒸汽凝液,由壳程的排尽阀排放掉;冷凝器使用时,应将上部的不凝气体,由壳程的排气阀排放掉。

8.2.定期检查壳程物料成分,判断换热器是否泄漏。

9.异常情况的紧急处置

9.1.当换热器超温、超压,减小负荷仍得不到有效控制时的操作程序。

9.1.1.对采用加热形式换热器时。

(1)迅速关闭加热进口阀;

(2)关闭物料进口阀;

(3)待温度、压力下降到允许值时,关闭物料出口阀和加热出口阀。

9.1.2.对采用冷却形式的换热器时。

(1)迅速关闭物料进口阀;

(2)待温度、压力下降到允许值时,关闭物料的出口阀;

(3)最后关闭冷却进口阀和出口阀

9.2.如发生主要受压元件裂缝、泄漏、鼓包、变形,压力表、温度表失灵,接管阀门损坏等异常情况危及容器安全运行时,应按上述9.1.步骤处理,待问题解决后再投入运行。

浮头式换热器毕业设计说明书

摘要 本次设计为浮头式换热器,浮头式换热器主要由管箱、管板、壳体、换热管、折流板、拉杆、定距管、钩圈、浮头盖等组成。浮头换热器的一端管板与壳体固定,另一端为浮动管板。因此其优点为热应力较小,便于检查和清洗,缺点为结构较为复杂。在传热计算工艺中,包括传热量、传热系数的确定和换热器径及换热管型号的选择,以及传热系数、阻力降等问题。在强度计算中主要讨论的是筒体、管箱、管板厚度计算以及折流板、法兰和接管、支座、分隔板等零部件的设计,还要进行一些强度校核。本设计是按照GB151《管壳式换热器》和GB150《钢制压力容器》设计的。换热器在工、农业的各个领域应用十分广泛,在日常生活中传热设备也随处见,是不可缺少的工艺设备之一。随着研究的深入,工业应用取得了令人瞩目的成果。 关键字:换热器,工艺计算,强度校核

Abstract This design is floating head heat exchanger, it is made up of tube box 、tube sheet、shell、heat exchange tube、baffle plate、draw bar、spacer pipe、hook circle、floating head cover and so on. One tube sheet of the exchanger is connected with shell, and the other tube sheet is floating tube sheet. So it’s easy to check and clean. On the other hand the structure of it complex. In the process of heat transfer calculation, include area computation 、capacity of heat transmission 、the determine of heat transfer coefficient and the choice of the heat exchange tube. About strength calculation, it involve the calculating of shell、tube box、sealing head and so on. This design is according to GB151 << shell-and-tube heat exchanger >> and GB150 << Steel pressure vessel >> to design. Heat exchanger is one of the indispensable process equipment. With the deepening of the research, industrial application made remarkable achievements. Keywords:heat exchanger; Process calculation;strength check

换热站操作规程

换热站操作规程

换热站操作规程 一、运行前的检查 1、确认换热器、水泵、软化器、真空脱气机、自动过滤器(水医生)、配电系统经过检修,存在隐患得到整改,设备处于完好状态,水泵转向正确。 2、检查换热站内管道、阀门、仪器仪表等安装可靠,连接部位无漏水等现象。检查安全阀、压力表等经过校验。所有手动、电动阀门开关灵活。 3、检查各设备地脚螺栓有无松动,水泵对轮防护罩安全牢固,并对水泵进行手动盘车,确保转动灵活。 4、检查水处理设备的出水水质,确认水质合格,且水箱水位在3/4处。 5、打开集水缸、分水缸进出水阀门。 6、检查换热器各夹紧螺母有无松动现象,同时关闭换热器 一、二次侧进、出口阀门。 7、打开真空脱气机、自动过滤器等进出口阀门。关闭水泵进出口阀门。 8、确认各电机电源已送上,各设备接地线牢固。 9、上岗人员经培训合格持证上岗并配备到位。换热站内各标示齐全,各项运行记录本准备到位。 二、注水

1、检查阀门开关情况:打开过滤器(水医生)进出口阀门,打开供回集水器进出口阀门,打开交换器(冷水)进出口阀门,打开进补水泵管道阀门。其余阀门处于关闭状态。 2、开始注水 注水启动顺序:开启软化器---启动补水泵---启动循环泵 (0.15MP)---手动操作水医生(每1小时手动排污一次) 3、注水中检查 1、检查所有密封面、法兰连接处及所有焊缝处有无渗漏等现象。 2、检查运行设备电机温升是否正常。 3、检查运转设备有无震动现象。 4、检查软化系统水质是否合格、出水量是否满足要求,保证水箱水位不低于安全水位线。 5、检查供电系统是否正常,指示灯能否正确指示,各电器元件、接线有无过热等现象。 6、检查供回水压力是否能稳压。 7、检查电脑监控显示内容是否正常。 三、供暖系统运行 一、设备的启动 一)换热器的启动 1、打开换热器二次侧进出水阀门。 2、待二次网循环正常后,方可打开一次侧进出水阀门。

标准系列化管壳式换热器的设计计算步骤(精)

标准系列化管壳式换热器的设计计算步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)计算传热量,并确定第二种流体的流量 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取经验传热系数 (7)计算传热面积 (8)查换热器标准系列,获取其基本参数 (9)校核传热系数,包括管程、壳程对流给热系数的计算。假如核算的K与原选的经验值相差不大,就不再进行校核。若相差较大,则需重复(6)以下步骤 (10)校核有效平均温度差 (11)校核传热面积 (12)计算流体流动阻力。若阻力超过允许值,则需调整设计。 非标准系列化列管式换热器的设计计算步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)计算传热量,并确定第二种流体的流量 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍(9)选取管长 (10)计算管数 (11)校核管内流速,确定管程数 (12)画出排管图,确定壳径和壳程挡板形式及数量等 (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。 甲苯立式管壳式冷凝器的设计(标准系列) 一、设计任务 1.处理能力: 2.376×104t/a正戊烷; 2.设备形式:立式列管式冷凝器。 二、操作条件 1.正戊烷:冷凝温度51.7℃,冷凝液于饱和温度下离开冷凝器; 2.冷却介质:为井水,流量70000kg/h,入口温度32℃; 3.允许压降:不大于105Pa; 4.每天按330天,每天按24小时连续运行。 三、设计要求 选择适宜的列管式换热器并进行核算。 附:正戊烷立式管壳式冷却器的设计——工艺计算书(标准系列)

列管式换热器说明书

目录 一、设计任务 (2) 二、概述与设计方案简介 (3) 2.1 概述 (3) 2.2设计方案简介 (4) 2.2.1 换热器类型的选择 (4) 2.2.2流径的选择 (6) 2.2.3流速的选择 (6) 2.2.4材质的选择 (6) 2.2.5管程结构 (6) 2.2.6 换热器流体相对流动形式 (7) 三、工艺及设备设计计算 (7) 3.1确定设计方案 (7) 3.2确定物性数据 (8) 3.3计算总传热系数 (8) 3.4计算换热面积 (9) 3.5工艺尺寸计算 (9) 3.6换热器核算 (11) 3.6.1传热面积校核 (11) 3.6.2.换热器压降的核算 (12) 四、辅助设备的计算及选型 (13) 4.1拉杆规格 (13)

4.2接管 (13) 五、换热器结果总汇表 (14) 六、设计评述 (15) 七、参考资料 (15) 八、主要符号说明 (15) 九、致 (16) 一、设计任务

二、概述与设计方案简介 2.1 概述 在工业生产中用于实现物料间热量传递的设备称为换热设备,即换热器。换热器是化工、动力、食品及其他许多部门中广泛采用的一种通用设备。 换热器的种类很多,根据其热量传递的方法的不同,可以分为3种形式,即间壁式、直接接触式、蓄热式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。 直接接触式换热器又称混合式换热器。在此类换热器中,冷、热流体相互接触,相互

浅谈换热器的常见问题及解决方法

浅谈换热器的常见问题及解决方法 【摘要】随着人们物质生活水平的不断提高,工业需求也日益加大,而换热器作为水主要设备在整个加工过程中占有重要地位。本文主要探讨了换热器的常见问题,并深入研究了其解决办法。 【关键词】换热器;常见;问题;解决;方法 换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。下面主要讨论一下换热器的常见问题及解决方法。 在管式换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。为提高管外流体给热系数,通常在壳体内安装一定数量的横向折流档板。折流档板不仅可防止流体短路,增加流体速度,还迫使流体按规定路径多次错流通过管束,使湍动程度大为增加。常用的档板有圆缺形和圆盘形两种,前者应用更为广泛.。流体在管内每通过管束一次称为一个管程,每通过壳体一次称为一个壳程。为提高管内流体的速度,可在两端封头内设置适当隔板,将全部管子平均分隔成若干组。这样,流体可每次只通过部分管子而往返管束多次,称为多管程。同样,为提高管外流速,可在壳体内安装纵向档板使流体多次通过壳体空间,称多壳程。在管式换热器内,由于管内外流体温度不同,壳体和管束的温度也不同。 1.机械及热应力损伤原因及解决方法 1.1换热设备会在使用中机械损伤类型。 1.1.1管子震动的损害 (1)碰撞损坏 由于发生振动管子的振幅大, 使得管子与管子, 管子与壳体之间的碰撞会导致管壁损坏破裂。 (2)折流板对管子损坏 由于管子振动, 折流板对穿过折流板的管子会有切割磨损, 严重的会使管壁破裂。 (3)影响管板的连接

浮头式换热器设计说明书

浮头式换热器设计说明书 设计者:徐凯 指导教师:张玲张亚男秦敏 系别:机械工程系 专业:热能与动力工程 日期:2009.11 宁夏理工学院

前言 换热器是非常重要的换热设备。在国民生产的各个领域得到了广泛的应用。本设计说明书主要介绍浮头式换热器的原理和设计思路及整个设计过程。 在浮头式换热器中,浮头式换热器的两端的管板,一端不与壳体相连,该端亦称浮头。管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。 浮头式换热器主要有如下特点:浮头式换热器的一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动,这个特点在现场就能清楚地看出来。这种换热器的壳体和管束的热膨胀是自由的,管束可以抽出,便于清洗管间和管内。其缺点是结构复杂造价高,一般比固定管板高20%左右,在运行中浮头处发生泄漏不易检查处理。浮头式换热器适应于壳体和管束温差较大或壳程介质易结垢的工作条件下。 本书内容系统、完整,理论与实际并重。书中对浮头式换热器设计中所需的各学科知识均有简要的介绍和解释。同时该书对换热器在编写时注重介绍的方法简明扼要,条理清楚,深入浅出,紧密结合工程实际。 期间得秦敏、张春兰、张亚男、张玲等老师的悉心指导。在此表示真挚的感谢!由于编者水平有限,其中难免不妥之处,恳请各位读者批评指正。 编者:徐凯 2009-11-26

目录 第一章绪论 第二章设计任务和设计条件 (1) 第三章确定设计方案 (3) 3.1 换热器类型的确定 (3) 3.2 管程及壳程的流体安排 (3) 第四章确定物性数据 (4) 4.1定性温度的确定 (4) 4.2列表 (6) 第五章传热面积的估算 (7) 第六章工艺结构尺寸的确定 (9) 6.1 管径和管内流速的确定 (9) 6.2 管程数和传热管数的确定 (9) 6.3 平均传热温差的校正 (10) 6.4 传热管排列和分程方法确定 (10) 6.5 壳体内径的确定 (11) 6.6 折流板的确定 (11) 6.7 其它附件的确定 (12) 第七章所设计换热器的校核算 (13) 7.1 传热热流量的核算 (13) 7.2 壁温的校核计算 (15) 7.3 换热器内流体的流动阻力的核算 (17) 参考文献 (19) 换热器原理课程设计心得体会 (21)

板式换热器操作规程及检修操作规程、板式换热器的日常维护与检修步骤(已完成-差二次网补水泵技术参数)

板式换热器操作规程及检修操作规程、板式换热器的日常维护与检修步骤(已完成-差二次网补水泵技术参数)

板式换热器安全操作规程 一、换热器的型号和技术参数 换热器型号和辅助设备技术参数:水-水换热2台,其型号:BR1.5BW-1.6-188-E-1板式水-水换热器;二次网供暖循环泵五台,其中2台KDBR300-80便拆式离心泵:其技术参数,额定流量720m 3/h,扬程80m,转速1480r/min,配用电机功率250KW,型号Y2-355M-4,电压380V,额定工作电流443A,效率95.2%,频率50Hz,功率因素0.9,转速1490r/min,连续工作制S1,防护等级IP55,绝缘等级F,水泵总成自重1720Kg;3台立式管道泵,其型号为KDBR200-80/A,流量374m3/h,扬程70m,转速1450r/min,配用电机型号Y2-315S-4,功率110KW,额定电压380V,额定电流200A,效率95.4%,功率因数0.88,转速1485r/min,防护等级IP54,绝缘等级F,工作制S1。 换热器的作用是通过一次网的高温热水经过板式换热器加热二次网循环水,主要是露天区域生产、生活、办公场所系统内的水。 二、细则 1.努力学习安全操作知识,严格遵守各项规章制度。 2.认真执行交接班制度,接班前必须认真检查本岗位的设备及安全设施是否齐全、完好。 3.认真监盘、精心操作,严格执行工艺纪律,记录清晰、详实、整洁,字体一律采用仿宋字体。 4.按时认真巡检,发现缺陷及时处理,并做好记录。保持作业场所清

五、岗位操作程序 (1)开车前的检查工作 a.检查板换各夹紧螺栓有无松动,如有松动应均匀拧紧到要求的尺寸(0.6MP为4×n mm,n为换热片片数),拧紧时应保证两压紧板平行。 b.检查各机脚螺栓有无松动,法兰连接是否紧密。 c.检查泵盘车是否灵活,有无异常声响。对轮防护罩是否安全牢固。 d.确认电机电源已送上,接地线须牢固。 e.机组启动前各阀门均处于关闭状态。 (2)开车前的准备工作 a.与板换相连的热源、室外热网、采暖设备必须经施工安装验收合格后,现场整理清洁。 b.管道吹扫、冲洗、打压、试漏及调试工作结束。各辅助工程、安全设施、标识准备到位,运转设备具备启动条件。确认工况符合设计要求(参考铭牌参数,确认系统压力不能超过名牌标注的设计压力和设计温度) c.上岗人员经培训合格持证上岗并配备到位。 d.系统充水(软化水)。 e.向系统注水,投水系统。开启软水器入口门,缓慢开启软水器出口门向软水箱注水,把水位控制在水位计3/4位置。 f.开启补水泵入口门,启动补水泵,缓慢开启补水泵出口门向循环管

第1章 换热器设计软件介绍与入门

第1章换热器设计软件介绍与入门 孙兰义 2014-11-2

主要内容 1 ASPEN EDR软件 1.1 Aspen EDR简介 1.2 Aspen EDR图形界面 1.3 Aspen EDR功能特点 1.4 Aspen EDR主要输入页面 1.5 Aspen EDR简单示例应用 2 HTRI软件 2.1 HTRI简介 2.2 HTRI图形界面 2.3 HTRI功能特点 2.4 HTRI主要输入页面 2.5 HTRI简单示例应用

Aspen Exchanger Design and Rating(Aspen EDR)是美国AspenTech 公司推出的一款传热计算工程软件套件,包含在AspenONE产品之中。 Aspen EDR能够为用户用户提供较优的换热器设计方案,AspenTech 将工艺流程模拟软件和综合工具进行整合,最大限度地保证了数据的一致性,提高了计算结果的可信度,有效地减少了错误操作。 Aspen7.0以后的版本已经实现了Aspen Plus、Aspen HYSYS和Aspen EDR的对接,即Aspen Plus可以在流程模拟工艺计算之后直接无缝集成转入换热器的设计计算,使Aspen Plus、Aspen HYSYS流程计算与换热器详细设计一体化,不必单独地将Aspen Plus计算的数据导出再导入给换热器计算软件,用户可以很方便地进行数据传递并对换热器详细尺寸在流程中带来的影响进行分析。

Aspen EDR的主要设计程序有: ①Aspen Shell & Tube Exchanger:能够设计、校核和模拟管壳式换热器的传热过程 ②Aspen Shell & Tube Mechanical:能够为管壳式换热器和基础压力容器提供完整的机械设计和校核 ③HTFS Research Network:用于在线访问HTFS的设计报告、研究报告、用户手册和数据库 ④Aspen Air Cooled Exchanger :能够设计、校核和模拟空气冷却器 ⑤Aspen Fired Heater:能够模拟和校核包括辐射和对流的完整加热系统,排除操作故障,最大限度的提高效率或者找出潜在的炉管烧毁或过度焦化 ⑥Aspen Plate Exchanger :能够设计、校核和模拟板式换热器; ⑦Aspen Plate Fin Exchanger:能够设计、校核和模拟多股流板翅式换热器

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

浮头式换热器(过程设备设计课程设计说明书)参考word

目录 设计题目及工艺参数---------------------------------------------------1 一、换热器的分类及特点---------------------------------------------------2 二、结构设计-------------------------------------------------------------5 1、管径及管长的选择---------------------------------------------------5 2、初步确定换热管的根数n和管子排列方式-------------------------------5 3、筒体内径确定-------------------------------------------------------5 4、浮头管板及钩圈法兰结构设计-----------------------------------------6 5、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------7 6、外头盖法兰、外头盖侧法兰设计---------------------------------------7 7、外头盖结构设计-----------------------------------------------------8 8、接管的选择--------------------------------------------------------------------------------------8 9、管箱结构设计-------------------------------------------------------8 10、管箱结构设计------------------------------------------------------8 11、垫片选择----------------------------------------------------------9 12、折流板------------------------------------------------------------------------------------------9 13、支座选取----------------------------------------------------------10 14、拉杆的选择--------------------------------------------------------13 15、接管高度(伸出长度)确定------------------------------------------13 16、防冲板------------------------------------------------------------13 17、设备总长的确定----------------------------------------------------13 18、浮头法兰---------------------------------------------------------------------------------------14 19、浮头管板及钩圈----------------------------------------------------14 三、强度计算--------------------------------------------------------------14 1、筒体壁厚的计算-----------------------------------------------------14 2、外头盖短节,封头厚度计算-------------------------------------------15 3、管箱短节、封头厚度计算 --------------------------------------------16 4、管箱短节开孔补强的核校 --------------------------------------------16 5、壳体压力试验的应力校核---------------------------------------------16 6、壳体接管开孔补强校核-----------------------------------------------17 7、固定管板计算-------------------------------------------------------18 8、无折边球封头计算 --------------------------------------------------19 9、管子拉脱力计算-----------------------------------------------------20 四、设计汇总-----------------------------------------------------21 五、设计体会--------------------------------------------------------------21 参考文献--------------------------------------------------------------22

板式换热器安装及操作规程

板式换热器安装及操作规程 换热器安装 1 、板式换热器的两块压紧板上有 4 个吊耳,供起吊时用,吊绳不得挂在接管、定位横梁或板片上。 2 、换热器周围要留有 1 米左右的空间,以便于检修。 3 、冷热介质进出口接管之安装,应严格按照出厂铭牌所规定方向连接,否则,换热器性能将受到影响。 4 、安装管路时,应在管路上配齐阀门、压力表、温度计,流量控制阀应装在换热器进口处,在出口处应装排气阀。 5 、设备管道里面要清理干净,防止砂石焊渣等杂物进入换热器,造成堵塞。 6 、当使用介质不干净,有较大颗粒或长纤维时,进口处应装有过滤器。 7 、换热器连接管道安装焊接时,应将电焊地线搭在焊接处,严禁将地线搭在远处,使电流回路通过换热器而造成损坏。 使用投产前准备

1 、设备使用前应检查夹紧螺栓是否松动,按照说明书应紧到尺寸 A 保证所有螺栓均匀一致。 2 、使用前按 1.25 倍的操作压力分到进行水压试验,保压二十分钟无泄漏方可投产。 3 、本设备使用前用清自来水进行 20 分钟左右清洗循环即可了。 4 、在管路系统中应设有放气阀开启后应排出设备中空气防止空气停留在设备中,降低传热效果。 5 、冷热介质进出口接管之安装,应严格按出厂铭牌所规定方向连接。否则,没能发挥设备最佳性能。 6 、本设备用于食品、制药投产前将每只螺栓松开,将每板片用棕刷清洗干净,应按照流程进行均匀组装完毕。 82 o - 90 o 热水进行 10 - 20 分钟循环消毒,立即起动物料泵,使冷却物料把板片内剩余水全部顶出,直至完全是物料即可生产了。 板式换热器操作规程 1 、开始运行操作时,如两种介质压力不一样,要先应缓慢打开低压侧阀门,然后开入高压侧阀门。 2 、停车运行时应缓慢切断高压侧流体,再切断低压流体,请注意这样做将大大有助于本设备之使用寿命。

列管式换热器设计说明书

摘要: 列管式换热器属于间壁式换热器,冷热流体通过换热管壁进行热量的交换。参照任务书的任务量,需设计年冷却15000吨乙醇的列管式换热器,设计时先确定流体流程,壳程走乙醇,其进、出口温度都为80℃,相变放出潜热,井水走管程冷却乙醇,进口温度为32℃,出口温度为40℃。再进行热量衡算、传热系数校核,初选冷凝器的型号,然后通过进行设备强度校核等一系列的计算和选型,最终确定的设计方案为固定管板式换热器,所选用型号为BEM400-2.5-30-9/25-2 Ⅰ,换热器壳径为400mm,总换热面积为27.79m2,管程为2,管子总根数为60,管长6000 mm,管束为正三角排列,两端封头选取标准椭圆封头。 关键词:列管式换热器,乙醇,水,温度,固定管板式。 Abstract: The tube type heat exchanger is a dividing wall type heat exchanger, fluids with different temperatures exchange heat by means of tube wall’s heat transfer.According to the assignment, A tube type heat exchanger which has a process capacity of .?4 1510t/a is needed. The ethanol flow in the shell,the temperature in the entrance and exits is 80℃.The water which cool the ethanol flow in tubes, the inlet and outlet temperatures are 32℃and 40℃.Then by taking series calculating to confirm the module of the heat exchanger . After the design of intensity designing and a series calculating and choosing , the last result of our design is the fasten-board heat exchanger. The style of the heat exchange is 9 BEM400 2.530 2 25 Ⅰ ----, and the diameter of the receiver is 400mm ,The area of the heat exchange is 27.79 m2, The heat-exchanger in cludes two tube passes,one shell passes and 60 tubes.And the length of tubes is 6000mm . Tubes are ranked of the shape of triangle ,the envelops are oval-shaped.

换热网络与热集成

换热网络与热集成 4.1概述 本章进行了甲苯甲醇烷基化的冷热流股之间的能量匹配设计病构建换热网络。热集成旨在最大程度的利用流程内部的能量,减少公用工程的消耗,从而减 少操作费用,降低生产成本。通过对流程流股的深入分析,利用Aspen Energy Analyzer 设计换热网络,其主要步骤如下: 1)确定流程中需要换热的冷流股和热流股; 2)利用物流数据做出冷热流股的温焓图和总组合曲线图(GCC); 3)确定最小传热温差; 4)找出夹点及最小冷、热公用工程用量; 5)构建优化换热网络。 4.2冷热流股确定 表4-1 换热冷热流股一览表 流股名称T in/℃T out/℃热负荷/KW 流股说明 6-to-7 25 480.3 8.06×105反应器R0101进料 4-to-5 25 485 9.85×108 反应器R0101进料Reboiler@T0101 124.7 127.63 3.2×105T0101再沸器Reboiler@T0102 142.5 143.7 8.4×104T0102再沸器Reboiler@T0201 163.9 167.6 2×104T0201再沸器15-to-16 460 25 7.15×108反应器R0103出料Condenser@T0101 115 113 3.8×106T0101冷凝器Condenser@T0102 119.3 118.3 7.2×106T0102冷凝器Condenser@T0201 144.2 143.4 1.07×105T0201冷凝器

利用Aspen Energy Analyzer 分析计算得到换热网络,如图4-1、4-2所示: 图4-1 换热网络示意图 图4-2 换热网络夹点图 换热网络设计流股分析报告如表4-2所示: 表4-2换热网络设计股流分析报告 最小传热温差最小热公用工程kj/h 最小冷公用工程kj/h 46.09℃ 1.063×109 4.025×109 4.3构建换热网络 根据Aspen Energy Analyzer 的计算,所有参与换热的流股形成的换热网络如图4-3所示:

换热器安全操作规程

换热器安全操作规程 一、目的为规范换热器的使用、维护和保养行为,防止事故发生,制定本规程。 二、范围适用于换热器的使用、维护、保养工作。 三、责任换热器的使用、维护、保养人员对本规程负责。 四、内容 1.换热器的基本结构及主要参数 1.1.换热器的基本结构 根据不同的使用目的,换热器可以分为四类:加热器、冷却器、蒸发器、冷凝器。 固定管板式列管式换热器,由管束、管板、折流板、分程隔板、壳体和封头等部件构成。 1.2.换热器的主要参数设计压力、最高工作压力、设计温度、换热面积 2.换热器的工作原理 2.1.列管式换热器是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。 2.2.进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。 2.3.为提高管外流体的传热分系数,通常在壳体内安装若干挡板。挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。 2.4.流体每通过管束一次称为一个管程;每通过壳体一次称为一个壳程。为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分成若干组。这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程。 2.5.同样,为提高管外流速,也可在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳程。多管程与多壳程可配合应用。 3.启动前的检查及准备工作 3.1.检查受压元件(如封头、筒体、设备法兰、管板、换热管等)有无异常情况。 3.2.检查安全附件(温度表、压力表等)是否完好和是否在有效检验期内。 3.3.检查阀门开启是否灵活,阀门开闭的位置是否正确。 4.开车程序 4.1.对采用加热形式的换热器时 4.1.1.先开启壳程出口阀门,然后开启管程出口阀门。 4.1.2.再开启管程的进口阀门,向加热器进料。

换热器设计指南汇总

换热器设计指南

1 总则 1.1 目的 为规范本公司工艺设计人员设计管壳式换热器及校核管壳式换热器而编制。 1.2 范围 1.2.1本规定规定了管壳式换热器的选型、设计、校核及材料选择。 1.2.2本规定适用于本公司所有的管壳式换热器。 1.3 规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款,凡注日期的应用文件,其随后所有的修改单或修改版均不适用本规定。凡不注日期或修改号(版次)的引用文件,其最新版本适用于本规定。 GB150-1999 钢制压力容器 GB151-1999 管壳式换热器 HTRI设计手册 Shell & tube heat exchangers——JGC 石油化工设计手册第3卷——化学工业出版社(2002) 换热器设计手册——中国石化出版社(2004) 换热器设计手册——化学工业出版社(2002) Shell and Tube Heat Exchangers Technical Specification ——SHESLL (2004) SHELL AND TUBE HEAT EXCHANGERS——BP (1997) Shell and Tube Exchanger Design and Selection——CHEVRON COP. (1989) HEAT EXCHANGERS——FLUOR DANIEL (1994) Shell and Tube Heat Exchangers——TOTAL(2002) 管壳式换热器工程规定——SEI(2005) 2 设计基础 2.1 传热过程名词定义

2.1.1 无相变过程 加热:用工艺流体或其他热流体加热另一工艺流体的过程。 冷却:用工艺流体、冷却水或空气等冷剂冷却另一工艺流体的过程。 换热:用工艺流体加热或冷却另外一股工艺流体的过程。 2.1.2 沸腾过程 在传热过程中存在着相的变化—液体加热沸腾后一部分变为汽相。此时除显热传递外,还有潜热的传递。 池沸过程:用工艺流体、水蒸汽或其他热流体加热汽化大容积设备中的工艺流体过程。 流动沸腾:用工艺流体、水蒸汽或其他热流体加热汽化狭窄流道中的工艺流体过程。 2.1.3 冷凝过程 部分或全部流体被冷凝为液相, 热流体的显热和潜热被冷流体带走,这一相变过程叫冷凝过程。 纯蒸汽或混合蒸汽冷凝:用工艺流体、冷却水或空气,全部或部分冷凝另一工艺流体。 有不凝气的冷凝:用工艺流体、冷却水或空气,部分冷凝工艺流体和同时冷却不凝性气体。 2.2 换热器的术语及分类 2.2.1 术语及定义 换热器装置:为某个可能包括可替换操作条件的特定作业的一个或多个换热器;位号:设计人员对某一换热器单元的识别号; 有效表面:进行热交换的管子外表面积; 管程:介质流经换热管内的通道及与其相贯通部分; 壳程:介质流经换热管外的通道及与其相贯通部分; 管程数:介质沿换热管长度方向往、返的次数; 壳程数:介质在壳程内沿壳体轴向往、返的次数; 公称长度:以换热管的长度作为换热器的公称长度,换热管为直管时,取直管长度,换热管为U形管时取U形管直管段的长度; 计算换热面积:以换热管外径为基准,扣除伸入管板内的换热管长度后,计算得到的管束外表面积,对于U形管式换热器,一般不包括U形弯管段的面积;公称换热面积:经圆整后的计算换热面积;

GBT151-2014年热交换器讲解

热交换器 戴季煌

热交换器2015.01 第一部分GB151-2014 1. 修改了标准名称,扩大了标准适用范围: 1.1提出了热交换器的通用要求,也就是适用于其他结构型式热交换器。并对安装、使用等提出要求。 1.2规定了其他结构型式的热交换器所依据的标准。 2. 范围: GB151-201X《热交换器》规定公称直径范围(DN≤4000mm,原为2600mm)、公称压力(PN≤35MPa)及压力和直径乘积范围(PN×DN≤2.7×104,原为1.75×104)。并且管板计算公式推导过程的许多简化假定不符合。也给制造带来困难。TEMA控制壳体壁厚3〞(76mm)、双头螺柱最大直径为4〞(102mm)。 3.术语和定义 3.1公称直径DN 3.1.1卷制、锻制、圆筒 以圆筒内直径(mm)作为换热器的公称直径。 3.1.2钢管制圆筒 以钢管外径(mm)作为换热器的公称直径。 3.2公称长度LN 以换热管的长度(m)作为换热器的公称长度,换热管为直管时,取直管长度;换热管为U形管时,取U 形管的直管段长度。 3.3换热面积A 3.3.1计算换热面积 换热面积是以换热管外径为基准,以二管板内侧的换热管长度来计算换热面积,计算得到的管束外表面积(m2);对于U形管换热器,一般不包括U形管弯管段的面积。当需要把U形弯管部分计入换热面积时,则应使U形端的壳体进(出)口安装在U形管末端以外,以消除U形管末端流体停滞的换热损失。 3.3.2公称换热面积 公称换热面积是将计算面积经圆整后的换热面积(m2),一般取整数。 4.工艺计算(新增加) 4.1设计条件(用户或设计委托方应以正式书面形式向设计单位提出工艺设计条件),内容包含 4.1.1操作数据:包括流量、气相分率、温度、压力、热负荷等; 4.1.2物性数据:包括介质密度、比热、粘度、导热系数或介质组成等; 4.1.3允许阻力降; 4.1.4其他:包括操作弹性、工况、安装要求(几何参数、管口方位)等。 4.2选型应考虑的因素 4.2.1合理选择热交换器型式及基本参数,满足传热、安全可靠性及能效要求; 4.2.2考虑经济性,合理选材; 4.2.3满足热交换器安装、操作、维修等要求。 4.3计算 热交换器工艺计算时应进行优化,提高换热效率,满足工艺设计条件要求。需要时管壳式热交换器还应考虑流体诱发振动。 5.设计参数 5.1压力 5.1.1压差设计 同时受管、壳程压力作用的元件,当能保证制造、开停工、及维修时都能达到按规定压差进行管、壳程同时升、降压和装有安全装置时,方可按元件承受的压差设计。 5.1.2真空设计 真空侧的设计压力,应按GB150的规定,当元件一侧受真空作用,另一侧受非真空作用时,其设计压力应为两侧设计压力之和,即为最苛刻的压力组合。

换热站操作规程 (1)

第一章总则 第一条为了确保换热机组运行安全、稳定、经济、状态完好,规范换热站运行管理工作及操作人员操作行为,结合本部门实际情况,特制定本管理制度。 第二章换热站设备操作规程 (一)运行前操作规程 第二条确定二次网补水定压点,检查水处理设备的出水水质,确认水质合格后开启水箱的进水阀门将水箱备满水。 第三条对补水泵及循环泵轴进行手动盘车,察看是否能转动灵活,检查润滑油量是否符合标准。 第四条设备运行前,应检查换热器各夹紧螺母有无松动现象,同时检查换热器一、二次侧进、出口阀门是否关闭。 第五条要注意清除管线、过滤器内的杂物,以免堵塞换热器。 第六条检查管线连接是否正确,避免冷热介质相混,同时开启一次侧旁通阀。

第七条开启二次侧的进口阀门,启动二次侧补水泵,将板式换热器和二次网管路系统充满水,并排净内部空气(在二次网系统顶点排气阀排掉系统空气。待排气阀排气带水时,关闭排气阀,保证补水点规定压力。) 第八条泵启动时应关闭其他所有的阀门,启动后再缓慢的开启这些阀,以避免流量和压力过大。 第九条接通电源,启动二次水循环水泵,先开循环泵进口阀门,随后缓慢开启循环水泵出口阀门。 第十条在循环泵试车的二十分钟内,应不断检测水泵电机的温升是否超出铭牌规定值,并检查整个管网是否有漏点。 第十一条将管网压力提高到安全阀规定的开启压力,检验安全阀是否灵敏可靠,超压保护装置要进行试验。 第十二条在确认二次侧循环泵及二次侧管网工作正常后,依次缓慢打开换热器上的一次侧热源介质出、进口阀门,使流量逐渐达到规定要求,关闭一次侧旁通阀。 第十三条检查所有密封面及所有焊缝处有无渗漏等不正常现象。 (二)运行时操作规程

中文版列管式冷却器说明书

中文版列管式冷却器说明 书 Prepared on 24 November 2020

冷却器 产品使用说明书 中国广东 郁南县中兴换热器有限公司 一﹑概述 郁南县中兴换热器有限公司是广东中兴液力传动有限公司下属生产热交换器的专业厂家,主要产品有GLC﹑GLL﹑LQ型系列列管式冷却器,BR型系列板式冷却器, FL型﹑KL型、YOFL型(液力偶合器专用)系列空气(风)冷却器及各种热交换器,换热面积从~800m2。产品广泛使用在电力﹑冶金﹑矿山﹑机械﹑船舶﹑化工﹑空调、食品以及液压润滑行业,将工作介质换热(冷却)到规定的温度。 列管式冷却器由进出端盖﹑壳体﹑管束﹑后端盖、密封件及紧固件等组成,冷却介质(水)一般从换热管内通过,被冷却介质(油)从换热管外壳体内通过,冷热介质通过换热管传热,使被冷却介质温度下降。 列管式冷却器一般采用优质铜管﹑不锈钢管﹑钛管等作为换热管,管程可采用单回程、二回程或多回程,管程数增加使冷却介质流通时间加长,提高换热效果,换热管束上一般采用弓形折流板,使被冷却介质(油)在壳程内的流道为S形,达到被冷却介质(油)与换热管充分接触目的。 空气冷却器由进出端盖、本体、后端盖、风机、密封件、紧固件等组成,换热管采用单金属或双金属高效复合管。空气冷却器采用空气(风)作为冷却介质,具有工作稳定、无介质混合、运行费用低、节能环保、维护方便的优点。 二﹑型号及参数

三﹑使用说明 1﹑首先检查冷却器型号与规定要求是否相符,资料附件是否齐全(见装箱单),检查冷却器外观是否破损,紧固螺栓是否松动,冷却器出厂时已进行压力试验和清洗,一般不允许拆动紧固螺栓,确需拆卸清洗的,清洗完后必须进行压力试验,无泄漏、无异常方可使用。 2﹑冷却器安装前须确认进入冷却器的介质压力不大于冷却器铭牌标示设计压力。冷却器一般安装在系统回路或系统中压力相对较低处,必要时设置压力保护装置。列管式冷却器介质为油水时,油侧压力一般应大于水侧压力。试车前应在系统中设计傍路防止过高压力冲坏冷却器。连接冷却器的管道和系统须清洗干净,进入冷却器的介质须进行过滤,严防杂质堵塞和污染冷却器,以免影响冷却器效果。 空气冷却器安装应考虑进出风顺畅,在1米内无阻挡物。安装在室外时,应设置遮盖,防曝晒、防雨淋,以提高换热效率和使用寿命。 3﹑安装时须检查冷却器介质进出口无堵塞,将冷却器与介质管道连接紧密无泄漏。 4﹑冷却器工作时,先打开冷却器出口阀门,缓慢打开冷介质(水)进入阀,再缓慢打开热介质(油)进入阀,调整介质进入流量,以达到最佳效果。注意在打开冷却水进口阀门时不要过快,否则使换热管表面产生导热性很差的“过冷层”影响换热效果。 5﹑冷却器接通介质后,应检查各部位有无泄漏,并注意排尽冷却器中的气体,以提高换热效率和减少腐蚀。 6﹑在冬季冷却器停用时应放尽介质,防止介质冻结澎胀损坏冷却器。长期停用,应将冷却器拆下进行清洗、防锈等维护保养。

相关文档
最新文档