平行线的性质和判定培优讲义
平行线的性质(基础)知识讲解

平行线的性质(基础)知识讲解【学习目标】1. 掌握平行线的性质公理、定理,并能依据平行线的性质公理、定理进行简单的推解;2. 了解并掌握平行线的性质定理的探究过程;3. 了解平行线的判定与性质的区别和联系•【要点梳理】要点一、平行线的公理、定理公理:两条平行线被第三条直线所截,得到的同位角相等•(简记为:两直线平行,同位角相等)•定理:两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等)•定理:两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁内角互补).要点诠释:(1)"同位角相等、内错角相等”、"同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、平行线的性质定理的探究过程1. 两条平行线被第三条直线所截,得到的内错角相等(简记为:两直线平行,内错角相等).因为a // b,所以/ 1 = Z 2 (两直线平行,同位角相等),又/ 3=/ 1 (对顶角相等)所以/ 2=/3.2. 两条平行线被第三条直线所截,得到的同旁内角互补(简记为:两直线平行,同旁内角互补).所以/ 3=/ 2 (两直线平行,内错角相等)又/ 3+/仁180°(补角的定义),所以/ 2+/仁180° .要点诠释:平行线性质定理的证明,要借助平行线线性质公理,因为公理是人们在生产和生活中总结出来的正确的结论,不需要证明,但是定理、性质或推论到的证明其正确性•要点三、平行线的性质与判定(1)平行线的判定是由角的数量关系判断两直线的位置关系•平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.【典型例题】类型一、平行线的性质公理、定理的应用1. 如图所示,如果AB// DF, DE// BC,且/ 1 = 65。
第1讲 平行线的性质与判定

∠AMD=∠AGF. 证明:∵BD⊥AC,EF⊥AC(已知), ∴∠BDF=∠EFC=90°(垂直的性质)
∴BD∥EF(同位角相等,两直线平行),
∴∠2=∠CBD(两直线平行,同位角相等), ∵∠2=∠1(已知), ∴∠1=∠CBD(等量代换),
∴∠D=∠AHC(_两___直__线__平__行___,__同__位__角__相___等____) ∵∠A=∠D(已知) ∴∠AHC=∠A(__等__量__代__换____________________)
∴___A__B_∥__C__D___(__内__错__角__相__等___,__两__直__线___平__行_____).
★ 例题精讲
例题5 如图,已知∠ABC+∠BCD+∠CDE=360°,求证:AB∥ED.
解:连接BD, ∴∠DBC+∠BCD+∠CDB=180°, ∵∠ABC+∠BCD+∠EDC=360° ∴∠ABD+∠EDB=180°, ∴AB∥DE.
★ 例题精讲
练习5 如图,EF∥AD,∠1=∠2,∠BAC=75°。 (1)求证:AB∥DG;(2)求∠AGD.
4. 把下列命题写成“如果……那么……”的形式,并判断其真假: (1)等角的补角相等; (2)两个锐角的和是锐角; (3)负数之和仍为负数.
(1)如果两个角相等,那么这两个角的补角相等; 真命题 (2)如果两个角是锐角,那么这两个角的和也是锐角;假命题 (3)如果几个数是负数,那么它们的和也是负数. 真命题
∴ CE∥DF(同位角相等,两直线平行)
∴ ∠BCE=∠BDF(两直线平行,同位角相等) ∠EDF=∠CED(两直线平行,内错角相等)
初中数学教案:平行线的性质与判定

初中数学教案:平行线的性质与判定一、平行线的性质平行线是在同一个平面上,永远不会相交的直线。
在初中数学中,平行线是一个重要的概念,学生需要掌握平行线的性质和判定方法。
1. 平行线的定义平行线是指在同一个平面上,永远不会相交的两条直线。
在几何中,我们用符号 "∥" 表示两条平行线,例如 AB ∥ CD 表示线段 AB 和线段 CD 是平行的。
2. 平行线的性质(1)平行线上的任意一对对应角相等。
例如,若 AB ∥ CD,则∠A = ∠C,∠B = ∠D。
(2)平行线上的内对顶角相等。
例如,若 AB ∥ CD,则∠ABC = ∠DCB,∠ACB = ∠DBA。
(3)平行线上的同旁内角互补。
例如,若 AB ∥ CD,则∠ABC + ∠DCB = 180°, ∠ACB + ∠DBA = 180°。
(4)平行线上的同旁外角相等。
例如,若 AB ∥ CD,则∠ABD = ∠CDA,∠ADC = ∠BAC。
3. 利用平行线性质解题在解题过程中,我们可以利用平行线的性质来推导或证明一些几何问题。
例如,当我们需要证明两条线段平行时,可以利用平行线上的性质,通过角的等式来推导出结论。
二、平行线的判定方法判定两条直线是否平行是初中数学中的一个重要内容,学生需要熟练掌握几种常用的判定方法。
1. 直线的判定两条直线平行的判定方法之一是直线的判定。
如果两条直线上分别有一对对应角相等,那么这两条直线一定是平行的。
例如,若∠A = ∠C, ∠B = ∠D,则可判定 AB ∥ CD。
2. 平行线的判定除了直线的判定方法,我们还可以利用平行线的判定方法来判断两条直线是否平行。
(1)同旁内角判定法:若一条直线与另外两条平行线相交,那么它与其中一条平行线上的同旁内角相等,则这两条直线平行。
(2)同旁外角判定法:若一条直线与另外两条平行线相交,那么它与其中一条平行线上的同旁外角相等,则这两条直线平行。
平行线的性质和判定讲解与判定

平行线的性质和判定精品资料教学过程:一、基础知识点:性质1:两条直线被第三条直线所截,如果两条直线平行,那么同位角相等。
简单说成:两直线平行,同位角相等。
几何语言:∵ AB//CD ∴ ∠PMA=∠MNC性质2:两条直线被第三条直线所截,如果两条直线平行,那么内错角相等。
简单说成:两直线平行,内错角相等。
几何语言:∵ AB//CD ∴ ∠BMN=∠CNM性质3:两条直线被第三条直线所截,如果两条直线平行,那么同旁内角互补。
简单说成:两直线平行,同旁内角互补。
几何语言:∵ AB//CD∴ ∠AMN+∠CNM=180°几何符号语言: (1)∵∠3=∠2∴AB ∥CD (同位角相等,两直线平行)(2)∵∠1=∠2∴AB ∥CD (内错角相等,两直线平行) (3)∵∠4+∠2=180°∴AB ∥CD (同旁内角互补,两直线平行)如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离。
注意:直线AB ∥CD ,在直线AB 上任取一点G ,过点G 作CD 的垂线段GH ,则垂线段GH 的长度也就是直线AB 与CD 间的距离。
⑴命题的概念:判断一件事情的语句,叫做命题。
A BC DEF 1 2 3 4 A EG BC FH D⑵命题的组成每个命题都是题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。
命题常写成“如果……,那么……”的形式。
具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显。
对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式。
注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述。
平行线的判定和性质讲义

在同一平面内,不相交的两条直线叫做平行线.角是平面几何图形中最活跃的元素,前面我们已学习过特殊角、数量关系角等角的知识.当两条直线相交或分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,进一步丰富了角的知识,它们在角的计算与证明中有广泛的应用.与平行线相关的问题一般都是平行线的判定与性质的综合运用,主要体现在如下两个方面:1. 由角定角已知角的关系→(判定)两直线平行→(性质)确定其他角的关系.2.由线定线已知两直线平行→(性质)角的关系行→(判定)确定其他两直线平行..平行线判定方法:(1) 同位角 相等,两直线平行。
.(2) 内错角相等,两直线平行。
(3) 同旁内角互补,两直线平行。
(4) 垂直于同一直线的两直线平行(5) 如果两条直线都与第三条直线平行,那么这两条直线平行。
平行线的性质:(1)两直线平行,同位角相等。
(2) 两直线平行,内错角相等。
(3) 两直线平行, 同旁内角互补。
【基础训练】1.下列命题正确的有 (填序号 )(1)两条直线被第三条直线所截,一定有同位角,所以这两条直线一定平行.(2)两直线不平行,同旁内角不互补.(3)如图,若1l ∥2l ,则∠1+∠2=180°.(4)如图,AD ∥BC ,则∠B +∠C =180°.(5)平行线的同位角的平分线互相平行.2.下列说法正确的是( )A .经过一点有一条直线与已知直线平行B .经过一点有无数条直线与已知直线平行C .经过一点有且只有一条直线与已知直线平行D .经过直线外一点有且只有一条直线与已知直线平行3.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种; ③若线段AB 与CD 没有交点,则AB ∥CD ;④若a ∥b ,b ∥c ,则a 与c 不相交.⑤两条射线或线段互相垂直是指它们所在的直线互相垂直.A .1个B .2个C .3个D .4个N FE D C B A N M A CD B EB DC A 4.已知:如图,∠BAE +∠AED =180°,∠1=∠2.求证:∠M =∠N .证明:∵∠BAE +∠AED =180°( ),∴ ∥ ( ).∴∠BAE = .又∵∠1=∠2(已知 ),∴∠BAE -∠1= - ( ).即∠MAE = .∴ ∥ ( ).∴∠M =∠N ( ).5如图,一张长方形纸条ABCD 沿MN 折叠后形成的图形,∠DMN =80°,求∠BNC 的度数.6.已知:如图AB //CD ,BCD DAB ∠=∠,AE 、BE 分别平分DAB ∠、ABC ∠.请求出E ∠的度数.7.如下图,已知AD ⊥BC ,NE ⊥BC ,∠E =∠EFA ,求证:AD 平分∠BAC .8.如图,已知︒=∠+∠18021, B ∠=∠3.试判断AED ∠与C ∠的关系,并予以说明.G EB D 321FCA9.如图,︒=∠25B ,︒=∠45BCD ,︒=∠30CDE ,︒=∠10E .求证: AB ∥EF .【例1】如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB互余的角有个. (安徽省中考题)思路点拨 充分运用对顶角、平行线性质等与角相关的知识,借助互余的概念判断. 注:平面几何的研究除了运用计算方法外,更多的要依靠时图形的观察(直觉能力),运用演绎推理的方法去完成,往往需要通过观察、实验操作进而猜想蛄论(性质),或由预设结论去猜想条件,再运用演绎推理方法加以证明.在学习完相交线、平行线内容后,平面几何的学习就由实验几何阶段进入论证几何阶段,顺利跨越推理论证阶段,需注意以下几点:(1)过好语言关;(2)学会识图;(3)善于分析.【例2】 如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( ) .A .4对B .8对C .12对D .16对( “希望杯”邀请赛试题)思路点拨 每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解人手.【例3】如图,已知∠B =25°,∠BCD =45°,∠CDE=30°,∠E =10°求征:AB ∥EF .思路点拨 解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角”或作出与AB 或CD 平行的直线.【例4】 如图,在ΔABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线.求证:∠EDF =∠BDF .(天津市竞赛题)EC DF A MN思路点拨综合运用角平分线、垂直的定义、平行线的判定与性质等知识,因图形复杂,故需恰当分解图形.【例5】探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?思路点拨已知AB∥CD,连结AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.注:分析主要从以下两个方面进行:(1)由因导果(综合法),即从已知条件出发推出相应结论.(2)执果溯因(分析法),即要得到结论需具备什么条件.解题时,我们既要抓住条件,又要盯住目标,努力促使已知与来知的转化与沟通.探索性问题一般具有以下特点:(1)给出了条件,但没有明确的结论;(2)给出了结论,但没有给出或没有全部给出应具备的条件,(3)先提出特殊情况进行研究,再要求归纳、猜测和确定一般结论;(4)先对某一给定条件和结论的问题进行研究,再探讨改变条件时其结论相应发生的变化,或改变结论时其条件相应发生的变化;(5)解题方法需要独立创新.“解题千万道,解后抛九霄”是难以达到提高解题能力,发展思维的目的的.善于作解题后小结,回顾解题过程,总结解题经验和体会,再进而作一题多解,一题多问,一题多变的思考,挖掘题目的深度和广度,扩大题目的辐射面,这对解题能力的提高是十分有益的.学力训练1.如图,已知AE∥CD,EF交AB于M,MN⊥EF于M,NN交CD于N,若∠BME=110°,则∠MND= .(湖北成宁市中者题)2.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2一∠3=90°,∠4=115°,那么∠3= .3.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α= .(内蒙古中考题)4.已知两个角的两边分别平行,其中一个角为40°,那么另一角是度.5.如图,下列条件中,不能判断直线l1∥l2的是( ).A.∠l=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°(南通市中考题)6..已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,符合条件l 的条数为( ).A.1 B.2 C.3 D.4(安徽省中考题)7.如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是( ).A.(1)、(3) B.(2)、(4) C.(1)、(3)、(4) D.(1)、(2)、(3)、(4)(江苏盐城市中考题)8.如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有( ).A.6个D.5个C.4个D.3个(湖北省荆门市中考题)9.如图,已知∠l+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并对结论进行证明.10.如图,已知∠1十∠2=180°,∠A=∠C,AD平分∠BDF.求证:BC平分∠DBE.15.如图,D、G是ΔABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( ).A,4对B.5对 C .6对D.7对16.如图,若AB∥CD,则( ).A.∠1=∠2+∠3 B.∠1=∠3一∠2C.∠1+∠2+∠3=180°∠l一∠2十∠3=180°17.如图,AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于( ).A.180°B.270°C.360°D.450°18.如图,AB∥EF,∠C=90°,则α、β和γ的关系是( ).A.β=α+γB.α+β+γ=180°C.α+β-γ=180°D.β+γ-α=180°19.如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明.20.如图,已知AB∥CD,α=∠A+∠E,β=∠B+∠C+∠D,证明:β=2α.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.。
5.26 平行线的判定与性质 讲解

平行线的判定与性质要点一、平行线1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b。
要点诠释:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行。
(3)在同一平面内,两条直线的位置关系只有相交和平行两种。
特别地,重合的直线视为一条直线,不属于上述任何一种位置关系。
2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质。
(2)公理中“有”说明存在;“只有”说明唯一。
(3)“平行公理的推论”也叫平行线的传递性。
要点二、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形。
要点三、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”。
(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质。
要点四、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点五、命题、定理、证明1.命题:判断一件事情的语句,叫做命题。
平行线的判定与性质讲义

平行线的判定与性质讲义一.知识回顾: (一)、与平行线相关的问题一般都是平行线的判定与性质的综合应用,主要体现在以下两个方面:1. 由角定角已知角的关系两直线平行 确定其它角的关系2. 由线定线已知两直线平行 角的关系 确定其它两直线平行(二)、探索几何问题的解决方法,主要从以下两个方面去分析:1. 由因导果(综合法):即——从已知条件出发,推出相应的结论。
2. 执果溯因(分析法):即——要得到结论需要具备什么条件。
所以:解题时,我们即要抓住条件,又要盯住目标,努力促使已知与未知的转化与沟通。
二.例题评析1.如图, 已知:∠1=∠2,∠3=∠4,∠5=∠6.求证: AD ∥BC.2如图,AD ⊥BC 于点D ,EF ⊥BC 于点F ,EF 交AB 于点G ,交CA 的延长线于点E ,且∠1=∠2.AD 平分∠BAC 吗?说说你的理由.A BCD E F2 3 145 6 12 AB CD F GE3. 如图,已知一个面积为50cm 2的正方形与另一个小正方形并排放在一起,求:⊿ABC 的面积。
(重庆市竞赛题)4.如图,如果AB ∥CD ,请猜想α、β、γ之间的关系,并加以说明。
三.专题精练(一)平行线之间的基本图形 如图,AB//CD ,那么A E C A ∠∠∠与、有什么关系?DDECγβαDCB A(二) 两组平行线的证明题【找出连接两组平行线的角】已知:如图,CD 平分∠ACB ,AC ∥DE ,∠DCE=∠FEB ,求证:EF 平分∠DEB .(三)、两组平行线构造平行四边形已知:如图,AB 是一条直线,∠C = ∠1,∠2和∠D 互余,BE ⊥FD 于G .求证:AB ∥CD .(四)、证特殊角已知:如图,AB ∥DE ,CM 平分∠BCE ,CN ⊥CM .求证:∠B =2∠DCN .(五)、寻找角之间的关系已知,如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4。
初中数学平行线的性质与判定

初中数学平行线的性质与判定一、引言平行线是初中数学中的重要概念,它在几何学中具有许多重要的性质和应用。
了解平行线的性质和判定方法,对于进行几何证明和解题都有着重要的指导意义。
本文将从平行线的性质和判定方法两个方面进行探讨,以帮助初中学生更好地理解和掌握平行线的相关知识。
二、平行线的性质1. 平行线的定义在平面上,任意两条直线如果永不相交,那么我们称它们是平行线。
2. 平行线的唯一性平面上,通过一点可以画无数条与已知直线平行的直线,但经过一点存在且只存在一条与已知直线平行的直线。
3. 平行线的性质1:对应角相等如果一组平行线被一条截线所切,那么它们所对应的内角和外角分别相等。
4. 平行线的性质2:同位角相等如果两条平行线被一条截线所切,那么它们所对应的同位角相等。
5. 平行线的性质3:内错角互补如果两条平行线被一条截线所切,那么它们所对应的内错角互补,即角的度数之和为180度。
三、平行线的判定方法1. 直线与直线的判定两条直线如果有一点与一直线上的两个角分别相等,那么这两条直线平行。
2. 角与直线的判定如果两条直线上的内角或外角、同位角或内错角相等,那么这两条直线平行。
3. 举例说明例如,已知直线l与直线m分别与一直线n相交,且∠A = ∠B和∠C = ∠D,则可以得出直线l与直线m平行。
四、平行线的应用1. 平行线的应用1:解题在解题中,平行线常常被用来求解线段比例关系、求解角度关系等。
通过运用平行线的性质和判定方法,我们可以更加简洁地解决一些几何问题。
2. 平行线的应用2:建筑设计在建筑设计中,平行线的应用非常广泛。
建筑师常常利用平行线的性质来设计建筑物的立面和空间布局,使其更加美观和合理。
3. 平行线的应用3:地理测量在地理测量中,平行线广泛应用于测量线段的长度和角度的测量。
利用平行线的性质和判定方法,地理测量师可以更准确地进行测量和勘测工作。
五、结论通过对初中数学平行线的性质和判定方法的讨论,我们可以看到平行线在几何学和实际生活中的重要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的性质和判定培优讲义Document number:NOCG-YUNOO-BUYTT-UU986-1986UT平行线的性质与判定培优讲义教师寄语:. 努力向上吧,星星就躲藏在你的灵魂深处;做一个悠远的梦吧,每个梦想都会超越你的目标。
——佚名【知识精要】:1.平面上两条不重合的直线,位置关系只有两种:相交和平行。
2.两条不同的直线,若它们只有一个公共点,就说它们相交。
即,两条直线相交有且只有一个交点。
3.垂直是相交的特殊情况。
有关两直线垂直,有两个重要的结论:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上所有点的连线中,垂线段最短。
4.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________. 5.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_______________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:_______________________.6.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .7.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:__________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:__________________。
.【例题精析】:例1.如图(1),直线a与b平行,∠1=(3x+70)°,∠2=(5x+22)°,例2.已知:如图(2), AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数。
G例3.如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( ) .( “希望杯”邀请赛试题)A .4对B .8对C .12对D .16对例4.如图,在ΔABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线.求证:∠EDF =∠BDF .(天津市竞赛题)例5. 、(1) 如图,AB ∥DE ∥ CF ,你能找到∠BCE.∠B 和 ∠E 之间的关系吗(2)如图,AB ∥DE ,你能找到∠BCE.∠B 和 ∠E 之间的关系吗 (3)如图,AB ∥DE ,你能找到∠1.∠2和 ∠3 ∠4之间的关系吗(4)如图,AB ∥DE , 你能找到∠1.∠2. ∠3 ∠4. ∠5.∠6 ∠7之间的关系吗 A BDEA B DEFAB D2 31 43 14 6 2 57ABDE【巩固提高】:1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线( )条A .6B . 7C .8D .92.平面上三条直线相互间的交点个数是 ( )A .3B .1或3C .1或2或3D .不一定是1,2,3 3.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有( )A .36条B .33条C .24条D .21条4.已知平面中有n 个点C B A ,,三个点在一条直线上,E F D A ,,,四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这n 个点作一条直线,那么一共可以画出38条不同的直线,这时n 等于( ) (A )9 (B )10 (C )11 (D )125.若平行直线AB 、CD 与相交直线EF 、GH 相交成如图示的图形,则共得同旁内角( )A .4对B .8对C .12对D .16对 6.如图,已知FD ∥BE ,则∠1+∠2-∠3=( ) A .90° B .135° C .150° D .180°FC第 5 题第 6 题第7题7.如图,已知AB ∥CD ,∠1=∠2,则∠E 与∠F 的大小关系 ;8.平面内有4条直线,无论其关系如何,它们的交点个数不会超过 个。
9.已知:如图,DE ∥CB ,求证:∠AED=∠A+∠B10.已知:如图,AB ∥CD ,求证:∠B+∠D+∠F=∠E+∠G11.如图,已知CB ?AB ,CE 平分∠BCD ,DE 平分∠CDA ,∠EDC+∠ECD =90°, 求证:DA ?AB【数学故事】:第 15 题阿基米德11岁那年,离开了父母,来到了古希腊最大的城市之一的亚历山大里亚求学。
当时的亚历山大里亚是世界闻名的贸易和文化交流中心,城中图书馆异常丰富的藏书,深深地吸引着如饥似渴的阿基米德。
当时的书是订在一张张的羊皮上的,也有用莎草茎剖成薄片压平后当作纸,订成后粘成一大张再卷在圆木棍上。
那时没有发明印刷术,书是一个字一个字抄成的,十分宝贵。
阿基米德没有纸笔,就把书本上学到的定理和公式,一点一点地牢记在脑子里。
阿基米德攻读的是数学,需要画图形、推导公式、进行演算。
没有纸,就用小树枝当笔,把大地当纸,因为地面太硬,写上去的字迹看不清楚,阿基米德苦想了几天,又发明了一种"纸",他把炉灰扒出来,均匀地铺在地面上,然后在上面演算。
可是有时天公不作美,风一刮,这种"纸"就飞了。
一天,阿基米德来到海滨散步,他一边走一边思考着数学问题。
无边无垠的沙滩,细密而柔软的沙粒平平整整地铺展在脚下,又伸向远方。
他习惯地蹲下来,顺手捡起一个贝壳,便在沙滩上演算起来,又好又便捷。
回到住地,阿基米德十分兴奋地告诉他的朋友们说:"沙滩,我发现沙滩是最好的学习地方,它是那么广阔,又是那么安静,你的思想可以飞翔到很远的地方,就象是飞翔在海面上的海鸥一样。
"神奇的沙滩、博大的海洋,给人智慧,给人力量。
打那以后,阿基米德喜欢在海滩上徜洋徘徊,进行思考和学习。
从求学的少年时代开始一直保持到生命的最后一息。
公元前212年,罗马军队攻占了阿基米德的家乡叙拉古城。
当时,已75岁高龄的阿基米德正在沙滩上聚精会神地演算数学,对于敌军的入侵竟丝毫未觉察。
当罗马士兵拔出剑来要杀他的时候,阿基米德安静地说:"给我留下一些时间,让我把这道还没有解答完的题做完,免得将来给世界留下一道尚未证完的难题。
" 由于阿基米德孜孜不倦、刻苦钻研,终于成为古希腊伟大的数学家、物理学家、天文学家和发明家,后人将他与牛顿、欧拉、高斯并称为"数坛四杰"、"数学之神"。
我国数学泰斗华罗庚说:"天才在于积累。
聪明在于勤奋。
"面对知识的大海,人们应该象阿基米德那样,信念是罗盘,执着和勇毅作双浆,不懈追求,毕生探索。
扬帆远航!【当堂小测验】:一、选择题1.如图,在△ABC中,∠C=90°.若BD∥AE,∠DBC=20°,则∠CAE的度数是()A.40°B.60°C.70° D.80°AB CDE2. 如右下图,l ∥m ,∠1=115o ,∠2= 95o ,则∠3=( )A .120oB .130oC .140oD .150o3.如左下图,直线AB ∥CD ,∠A =70?,∠C =40?,则∠E 等于( )(A)30° (B)40° (C )60° (D)70°4.将一副三角板如图放置,使点A 在DE 上,BC ∥DE ,则∠AFC 的度数为A .45°B .50°C .60°D .75° 知∠1 = 70o ,5.如右上图,已知直线AB 右上图,已如果CD ∥BE ,那么∠B 的度数为( )A .70oB .100oABCDE F AC BD E第3题图ABCDE第6题图B CE DA1C .110oD .120o7.如上中图,BC ⊥AE ,垂足为C ,过C 作CD ∥AB .若∠ECD =48°则∠B = .8.如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a 、b 上,已知∠1=55°,则∠2的度数为( )A. 45°B. 35°C. 55° °9.如图,AB ∥CD ,∠A =110°∠C =60°那么∠P =______10.如图,已知21//l l ,AB ⊥1l ,∠ABC=130°,则∠α= .11.如图,直线AB ∥CD ,∠EFA=30°,∠FGH=90°,∠HMN =30°,∠CNP= 50°,则∠GHM 的大小是 .(“希望杯”邀请赛试题)PDCB A12.如图,D、G是ΔABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( ).A,4对 B.5对 C .6对 D.7对(“数学新蕾”竞赛题)13.如图,若AB∥CD,则( ).A.∠1=∠2+∠3 B.∠1=∠3一∠2C.∠1+∠2+∠3=180°∠l一∠2十∠3=180°14.如图,AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于( ).A.180° B.270° C. 360° D. 450°15如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA若存在,求出其度数;若不存在,说明理由.【快乐作业】:1.如图,已知∠l+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并对结论进行证明.2. 探索 10条直线两两相交,最多将平面分成多少块不同的区域。