运用完全平方公式进行因式分解一ppt课件解析

合集下载

运用完全平方公式因式分解(课件)数学八年级上册同步备课系列(人教版)

运用完全平方公式因式分解(课件)数学八年级上册同步备课系列(人教版)

=3a(x+y)2
=(a+b-6)2
分解因式:
(1) ax2+2a2x+a3
(2) -3x2+6xy-3y2
(3) (x+y)2-12x-12y+36
解:(1)原式= a(x2+2ax+a2)
(2)原式= -3(x2-2xy+y2)
=a(x+a)2
=-3(x-y)2
(3)原式=(x+y)2-12(x+y)+36
A. x2-y2= (x+y) (x-y)
B. x2+6x+9= (x+3)2
C. x2+xy=x (x+y)
D. x2+y2= (x+y)2
5.若x2- 2(k+1)x+4是完全平方式,则k的值为( A )
A.1或-3
B. -1或3
C.±1
D.±3
6.已知 = + 2,则代数式32 − 6 + 3 2 + 2022的值为( D )
±
10.若x2﹣8x+m2=(x﹣4)2,那么m=_____.
11.若 2 + (3 − ) + 9可以用完全平方式来分解因式,则m的值为
−或9
__________.
12.分解因式:
(1) − 22 + 3 ;
(2)3 − 102 + 25;
(3) 2 − 5
(4)(2 + 2 − 2 )2 −42 2 .
例3.分解因式:
(1) 3ax2+6axy+3ay2

因式分解(完全平方公式)精选教学PPT课件

因式分解(完全平方公式)精选教学PPT课件
ab2 a2 2ab b2
现在我们把这个公式反过来
a2 2abb2 ab2
a2 2abb2 ab2
很显然,我们可以运用以上这个公式 来分解因式了,我们把它称为“完全 平方公式”
a2 2abb2 a2 2abb2
我们把以上两个式子叫做完全平方式
我开始虚伪,听着谎言却装做一无所知;我学会窥探,四处打听如蛇之祟行,而十分看轻自己; 我的故事越编越好,好莱坞金牌编剧也没这般丰富多采,只为让他多留一分钟。
最后,我打他一巴掌。干脆痛快,出手的瞬间,像那位绝望的母亲,远远掷出她的高跟鞋。掷中没有?并不重要。 有多爱,就有多不舍;有多温柔,就有多暴烈,爱得唇边有血,眼中有泪,胸口有纠缠的爱与恨,爱到如连体婴般骨肉相连。割爱,就一定不可能如拈去一片花叶般轻松微笑。 明知留不住,收不下,却不能自控我颠倒狂乱的脚步。那一遭,我是夜深街上,追逐汽车的女子。而我无声的哭泣,他没有听见。快乐是人类社会众望所归的最高境界。所谓君子之交谈如水。一个把名缰利锁看得太重的人。注定是不快乐的。快乐就是看淡尘世的物欲、烦恼,不慕荣利。假如你喜欢武侠小说,你没有必要愧对红楼梦; 假如你喜欢的人突然销声匿迹,你没有必要寻死觅活地断言他一定洒脱地离去;假如你的朋友不幸,你没有必要怨天尤人;假如你认为张曼玉艳美绝俗,你没有必要眼馋肚饱虐待老婆;假如你已经身心交病,那就去教堂忏悔,没有必要仇视别人的平庸;坦然面对心融神会,快乐就在你心里。我怜悯一个有点荣誉的人,就旁若无人而因此失 去快乐的人。能把名利得失置之度外,而凡事都能以诚相待的人一生将是快乐的。我们应从平谈的生活中去提炼体会,如:赤城待人的那种快乐。低待遇下一如既往工作的快乐,助人为乐一介不取的快乐,一片至诚去感化恶人的快乐,热心被人误解依然如故的快乐,信实可靠的服务态度为目的的快乐,尽责任吃苦耐劳的快乐,因为这些 “快乐”能保持住人内心的快乐,使人的容貌永远那么牵挂,一句亲切的问候。甚至一个关切的眼神,快乐无处不有,唯有胸襟开阔的人,才能体会到。形单影只的人仍然可以享受着闲情逸致的快乐。乐山乐水各不相同。爱静的人可以看书、听音乐、上网、写作、画画、搜集各种收藏品。爱动的人则不妨练习舞蹈、慢跑、爬山、游泳。看 电影、上健身房。做编织、陶艺。练瑜枷、潜心发明、闭门创作,摄影、观鸟,我们仍然兴复不浅,乐不可支。人生苦短,岁月如流,乐天知命,为什么不乐乐陶陶的。为什么要疾首蹙额,为眼前一时的顿挫心胆俱碎?为什么要对那些你看不惯的人和事心烦率乱?岂不知我们都是尘世间相映成趣的战友。人世一切冤天屈地,无妄之灾,荣 华富贵,香娇玉嫩……都将随身亡命殒。而人生长着百年,短则数十寒暑,又有何值得耀武扬威的,不过是烟云过眼矣?人生如月,月满则亏,凡事岂能尽人意,但求于心无愧。无愧我心,则恩同再造,那些得失又算不了甚么。世界上没有完美无缺得事物。奉劝多愁善感的朋友。饮醇自醉,快乐起来吧!芸芸众生,绿水青山,名胜古迹,

教学课件:七下湘教公式法第2课时 利用完全平方公式进行因式分解

教学课件:七下湘教公式法第2课时 利用完全平方公式进行因式分解
(a+b)2=a2+2ab+b2,(a-b)2= a2-2ab+b2 .
将完全平方公式从右到左地使用,就可以把形
如这样的多项式进行因式分解.
例如, x2+4x+4 = x2+2·x·2+22 = (x+2)2 .
a2+2·a·b+b2 = (a+b)2
知识讲授
因式分解的完全平方公式
a 2 2ab b 2 a b
2
a 2ab b a b
2
2
2
注意:公式中
的, 既可以
是单项式,也
可以是多项式.
语言叙述:两个数的平方和加上(或减去)这两个
数的积的2倍,等于这两个数的和(或差)的平方.
知识讲授
我们把a²+2ab+b²和a²-2ab+b²这样的式子叫做完全平方式.
能用完全平方公式分解因式的多项式的特点
(x2-1)2
[(x+1)(x-1)]2
(x+1)2(x-1)2.
知识讲授
例5 因式分解:
(1)3ax2+6axy+3ay2 ;
(2)( + )-( + ) + .
解:(1)原式=3a(x2+2xy+y2)
有公因式,先
提公因式
=3a(x+y)2.
(2)原式 = ( + )- × ( + ) × +
法公式,我们得到了因式分解的两种方法:提取公因
式法、平方差公式法.现在,大家自然会想,还有哪些
乘法公式可以用来分解因式呢?
完全平方公式

因式分解中的完全平方公式

因式分解中的完全平方公式
思路点拨
对于简单题型,首先要识别出多项式是否符合完 全平方公式的形式,然后确定$a$和$b$的值, 最后按照公式进行因式分解。
复杂题型解析及思路点拨
例题
$4x^2 + 12xy + 9y^2 - 25$
解析
思路点拨
观察该多项式,可以发现前三项 符合完全平方公式$a^2 + 2ab + b^2$的形式,其中$a = 2x, b = 3y$,而最后一项是常数项。因此, 可以将前三项因式分解为$(2x + 3y)^2$,然后与常数项组合进行 进一步的因式分解。
提取公因式法应用
01
在多项式中识别公因式,并将其 提取出来。这有助于简化多项式 ,并使其更容易识别出完全平方 项。
02
对提取公因式后的多项式进行观 察,判断是否可以通过完全平方 公式进行因式分解。
分组分解法应用
将多项式中的项进行分组,使 得每组内部能应用完全平方公 式。分组的方式可以根据多项 式的特点灵活选择。
对每个分组应用完全平方公式 进行因式分解,得到分组内的 因式。
将各分组的因式相乘,得到整 个多项式的因式分解结果。
04 典型例题解析与技巧指导
简单题型解析及思路点拨
1 2 3
例题
$x^2 + 2x + 1$
解析
观察该多项式,可以发现它符合完全平方公式 $a^2 + 2ab + b^2$的形式,其中$a = x, b = 1$。
教师点评和总结归纳
针对学生完成情况,教师给予及时的点评和反馈,指出学生在解题过程中的优点和 不足。
教师总结完全平方公式在因式分解中的应用及注意事项,强调公式运用的灵活性和 多样性。
教师可结合学生实际情况,对部分难题进行详细讲解和示范,帮助学生更好地理解 和掌握完全平方公式。

沪教版(上海)初中数学七年级第一学期 9.14 完全平方公式-的因式分解 课件

沪教版(上海)初中数学七年级第一学期 9.14 完全平方公式-的因式分解 课件

完全平方式特征: 首先:这个多项式应是三项式
其次:其中的两项是两个整式的平方和
最后:还有一项是这两个整式乘积的2倍 我们知道:
在运用上述公式分解因式时,关键 在于判断这个多项式是否为完全平 方式 。

一 快速判断下列多项式是否为完全平方式?为什么?

(1) 1+4a2
( 否)
(2)x2+2x+1
练一练1
(1) 9x2-12x+4
(2) x2-16xy+64y2
(3) a 2b2 ab 1 4
例2:分解因式
(1) (a+b)2+8(a+b)+16
例2:分解因式
(2) ax2+8ax+16a
例2:分解因式
(3) -x2-8x-16
练一练2
(1) (x-y)2-10(x-y)+25
复习:分解因式
(1) a2 b2 a ba - b
(2) x2 9 x 3x - 3
思考: x2 6x 9 如何分解因式呢?
还能用平方差公式分解吗? 提取公因式法呢?
利用乘法公式计算
a b2 a 2 2ab b2 a b2 a 2 2ab b2
反之:
x 32 = x2 6x 9
因式分解的完全平方公式
a2 2ab b2 a b2 a2 2ab b2 a b2
完全平方式
完全平方式特征:
a2 2ab b2 a b2
a2 2ab b2 a b2
首先:这个多项式应是三项式 其次:其中的两项是两个整式的平方和 最后:还有一项是这两个整式乘积的2倍
2x 3y2 = 4x2 12xy 9y2
什么叫因式分解?
把一个多项式化为几个整式 乘积的形式,叫做把这个多 项式因式分解。

《公式法》因式分解PPT课件(第2课时)

《公式法》因式分解PPT课件(第2课时)

B. + −
C. − +
D. − + +
D

课堂检测
基础巩固题
3.如果x2-6x+N是一个完全平方式,那么N是(
A . 11
B. 9
C. -11
)
B
D. -9
4.如果x2-mx+16是一个完全平方式,那么m的值为________.
±8
课堂检测
∴++=(+) =112=121.
连接中考


(2020•眉山)已知 + = − − ,则 −
. 4

的值为


解析:由 +

+






= − − ,
− + + = ,


即 − + + + + = ,
∵ − = , = ,
∴原式=2.
巩固练习
变式训练
已知-+-+=,求++的值.
解:∵x2-4x+y2-10y+29=0,
∴(-)+(-)=.
∵(-) ≥ ,(-) ≥ ,
∴-=,-=,∴=,=,
是.
巩固练习
变式训练
将前面例题的(2)(3)(4)变为完全平方式?
(2) + ²;
+ ² + ;
(3) + − ;
+ + ;
(4) + + .
+ + .
探究新知
知识点 2
用完全平方公式因式分解

111111完全平方公式进行因式分解一ppt课件

111111完全平方公式进行因式分解一ppt课件
2
2 2
2
(2) 49b a 14ab (3) a 10a 25
2 3 2 2 3
(4) 4 x y 4 x y xy
例2:因式分解
(1) x 18 x 81
4 2
(2)
(2 x y ) 6(2 x y ) 9
2
(3)
1 2 2 x 3xy 9 y 4
2 2
(x 7)
2
(2)
(m n) 6(m n) 9
2
原式 (m n) 2 2 (m n) 3 32 解:
(m n 3) 2
请运用完全平方公式把下 列各式分解因式: 2 2 1 x 4 x 4 原式 x 2 2 2 2 a 6a 9 原式 x 3 2 2 3 4a 4a 1 原式 2a 1 2 2 2 4 9m 6mn n 原式 3m n
2
a表示:2x+y b表示:3
(2 x y) 2 2 (2 x y) 3 32
( 2 x y 3) 2
填一填
多项式
x2 6x 9
是否是完全 平方式


4 y 4 y 1
2
a、b各表 表示(a+b)2 示什么 或(a-b)2 a表示x, ( x 3) 2 b表示3 a表示2y, ( 2 y 1) 2 b表示1
9a b 3ab 1
2 2
是否是完全 平方式
a、b各表 示什么
表示(a+b)2 或(a-b)2
是 否
a表示x, b表示1/2
1 2 (x ) 2

14.2.2 完全平方公式课件

14.2.2 完全平方公式课件

你发现了什么?
a
(a+b)2=a2+2ab+b2
a
b
问题1:计算下列多项式的积,你能发现什么规律? (1) (p+1)2=(p+1)(p+1)= p2+2p+1 . (2) (m+2)2=(m+2)(m+2)= m2+4m+4 . (3) (p–1)2=(p–1)(p–1)= p2–2p+1 . (4) (m–2)2=(m–2)(m–2)= m2–4m+4 .
简记为: “首平方,尾平方,积的2倍放中央”
你能根据下面图形的面积说明完全平方公式吗?
证明 设大正方形ABCD的面积为S.
S1
S2
S3
S4
S= (a+b)2 =S1+S2+S3+S4= a2+b2+2ab .
几何解释
b
a
=
+
+
+
a
b
a2
ab
ab
b2
和的完全平方公式:
(a+b)2= a2+2ab+b2 .
4.由完全平方公式可知:32+2×3×5+52=(3+5)2=64, 运用这一方法计算:4.3212+8.642×0.679+0.6792= ____2_5___.归纳新知源自法则完全平 注 意 方公式
常用 结论
(a±b)2= a2±2ab+b2
1.项数、符号、字母及其指数
2.不能直接应用公式进行计算的式子,可能需要先添 括号变形成符合公式的要求才行 3.弄清完全平方公式和平方差公式不同(从公式结构 特点及结果两方面)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方式
示什么 或(a-b)2

a表示x, b表示1/2
(x 1)2 2
9a2b2 3ab 1

1 m2 3mn 9n2 4

a表示1
2
mБайду номын сангаас

(
1
m
3n)
2
b表示3n 2
x6 10x3 25

填空:
(1)a2+ 2ab +b2=(a+b)2 (2)a2-2ab+ b2 =(a-b) 2 (3)m2+2m+ 1 =( m+1 ) 2
现在我们把乘法公式反过来
a2 2abb2 ab2
a2 2abb2 ab2
很显然,我们可以运用以上这 个公式来分解因式了,我们把 它称为“完全平方公式”
a2 2abb2 a2 2abb2
我们把以上两个式子 叫做完全平方式
两个“项”的平方和加 上(或减去)这两“项” 的积的两倍
二、完全平方式
课前复习:1、分解因式学了哪些方法
提取公因式法:ma+mb+mc=m(a+b+c) 运用公式法: ① a2-b2=(a+b)(a-b)
练习 把下列各式分解因式
① ax4 ax2
② x4-16
解:原式=ax2(x2-1)
解:原式=(x2+4)(x2-4)
=ax2(x+1)(x-1)
=(x2 +4)(x+2)(x-2)
(4)n2-2n+ 1 =( n-1) 2
(5)x2-x+0.25=( x-0.5 ) 2 (6)4x2+4xy+( y ) 2=( 2x+y ) 2
(2)a2-2ab+ b2 = (a-b) 2
(2)a2-2·a·3+
=(a-3) 2
(2)m2-2·m·7+ (2)x2-2·x·2+
=( - ) 2 =( - ) 2
a2 2ab b2
完全平方式的特点:
1、必须是三项式(或可以看成三项的) 2、有两个同号的平方项 3、有一个乘积项(等于平方项底数的±2倍)
a2 2abb2 a2 2abb2
完全平方式的特点:
1、必须是三项式;
2、有两个“项”的平方;
3、有这两“项”积的2倍或-2倍。
首2 2首尾尾2
判别下列各式是不是 完全平方式
(2)x2-2·x·4+
=( ) 2
请补上一项,使下列多项
式成为完全平方式
1 x2 __2_x__y__ y2 2 4a2 9b2 ___1_2_a_b_ 3 x2 _4__x_y__ 4 y2
4 a2 __a_b____ 1 b2
4
5 x4 2x2 y2 ____y_4_
判断下列各式是不是完全平方式,并说说理
(2a 3b)2
(6) 16x4-8x2+1 解: 原式 (4x 2 )2 2 (4x 2 ) 112
(4x2 1)2
(2x)2 12 2
(2x 1)(2x 1)2
(2x 1)2 (2x 1)2
判断因式分解正误。
(1) -x2-2xy-y2= -(x-y)2
错。应为: -x2-2xy-y2
(m n 3)2
例题
(3) 3ax2+6axy+3ay2
解:原式 3a(x2 2xy y2 )
3a(x y)2
(4) -x2-4y2+4xy
解:原式 (x2 - 4xy 4y2 )
[x2 2 x (2y) (2y)2 ]
(x 2 y)2
请运用完全平方公式把下
列各式分解因式: 1 x2 4x 4 原式 x 22
12
例题:把下列式子分解因式
4x2+12xy+9y2
2x2 22x3y 3y2 2x 3y2
首2 2首尾 尾2 =(首±尾)2
例题
(1) x2+14x+49
解:原式 x2 2 x 7 72
(x 7) 2
(2) (m n)2 6(m n) 9 解:原式 (m n)2 2 (m n) 3 32
(x y)2
(a b)2
=-( x2+2xy+y2)
=-(x+y)2
(2)a +2ab-b 2 (x y)2
2 (a b)2
错。此多项式不是完全平方式
例题
(5) 4a2 12ab 9b2
解: 原式 (2a) 2 2 (2a ) (3b) (3b)2
(2a 3b)2
(6) 16x4-8x2+1 解: 原式 (4x 2 )2 2 (4x 2 ) 112
a表示x, b表示4
(x 4)2
a表示2y2, b表示1
(2 y2
1) 2
4 y2 12 xy 9x2
(a b)2 2(a b) 1

a表示2y, (2 y 3x)2
b表示3x

a表示(a+b), (a b 1) 2
b表示1
填一填
多项式
x2 x 1 4
是否是完全 a、b各表 表示(a+b)2
由。
(1)
4a2+2X2a+1
(2a 1)2
你会吗?
(2) x2+4x y+4y2 (x 2 y)2
(3) x2- 6x -+ 9 (x 3)2
(4) a2-2ab+ b2 (a b)2
(5) 4a2+2ab+ b2 (2a 1 b)2
! (6)
(a+b)2+2(a+b)
+1
a
2 b
1x2 2xy y2 是 2A2 2AB B2 是 3甲2 2甲乙 乙2 是 42 2 2 是
填一填
多项式
x2 8x 16
4y4 4y2 1
1 9b2
x2 1 x 1 24
x2 4x 4y2
是否是完全 平方式
是 是
否2 否

a、b各表 表示(a+b)2
示什么 或(a-b)2
2 a2 6a 9 原式 x 32
3 4a2 4a 1 原式 2a 12
4 9m2 6mn n2 原式 3m n2
5 x2 1 x
4
原式
x
1 2
2
6 4a2 12ab 9b2 原式 2a 3b2
例题
(5) 4a2 12ab 9b2
解: 原式 (2a) 2 2 (2a ) (3b) (3b)2
(有公因式,先提公因式。) (因式分解要彻底。)
课前复习:
2.除了平方差公式外,还学过了哪些公式?
(a b)2 a2 2ab b2 (a b)2 a2 2ab b2
计算下列各式
1.(m-4n)2
3.(a+b)2
2.(m-4n)2 4.(a - b)2
分解因式:
(1)m2-8mn+16n2 (2)m2+8mn+16n2 (3)a2+2ab+b2 (4)a2-2ab+b2
相关文档
最新文档