GIS地理信息系统空间数据结构
GIS的空间数据结构

GIS的空间数据结构GIS(地理信息系统)中的空间数据结构是指用来存储、组织和管理地理空间数据的方式和方法。
它们是构建GIS系统的基础,对于实现空间数据的高效查询、分析和可视化表示具有重要意义。
本文将介绍常见的空间数据结构,包括矢量数据结构、栅格数据结构和层次数据结构。
一、矢量数据结构(Vector Data Structure)是用点、线和面等几何要素来表示地理现象的空间数据结构。
常见的矢量数据结构包括点、线和面三种类型:1. 点(Point)是空间数据最基本的要素,它由一个坐标对(x, y)表示,常用于表示一个具体的地理位置或地物。
2. 线(Line)是由若干个连接起来的点所组成的线条,它可以用来表示道路、河流等线状地物。
3. 面(Polygon)是由若干个边界相连的线所围成的封闭区域,它可以用来表示国家、城市等面状地物。
矢量数据结构是一种拓扑结构,在存储空间数据时,常采用点-线-面的层次结构,以及节点、弧段和拓扑关系等数据结构来存储和组织地理空间数据。
二、栅格数据结构(Raster Data Structure)将地理空间数据划分为一系列均匀的像素或单元格,用像素值或单元格值来表示地物属性。
栅格数据结构适用于连续分布的地理现象,如温度、降雨等。
常见的栅格数据结构包括:1. 栅格图像(Raster Image)是将地理空间数据以图像的方式呈现,每个像素的灰度值或颜色代表了地物属性的强度或类型。
栅格图像可以通过数字遥感技术获取,并被广泛应用于地貌分析、图像处理等领域。
2. 数值地形模型(Digital Elevation Model,DEM)是一种栅格数据结构,用于表达地球表面的海拔高度。
DEM常用于地形分析、洪水模拟等应用中。
栅格数据结构的主要优点是简单、易于操作和处理,但由于其离散性,对于空间数据的存储和处理需求较大。
三、层次数据结构(Hierarchical Data Structure)是一种将地理空间数据按层次结构进行组织和管理的数据结构。
地理信息系统(名词解释)

1、地理信息系统(geographic information system , 即gis )——一门集计算机科学、 信息学、地理学等多门科学为一体的新兴学科, 它是在计算机软件和硬件支持下, 运用系 统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供对规划 、管理、决策和研究所需信息的空间信息系统。
2.栅格——栅格结构是最简单最直接的空间数据结构, 是指将地球表面划分为大小均匀 紧密相邻的网格阵列, 每个网格作为一个象元或象素由行、列定义, 并包含一个代码表示 该象素的属性类型或量值, 或仅仅包括指向其属性记录的指针。
因此, 栅格结构是以规则 的阵列来表示空间地物或现象分布的数据组织,组织中的每个数据表示地物或现象的非几何属性特征。
特点:属性明显, 定位隐含, 即数据直接记录属性本身, 而所在的位置则根据行列号转换为相应的坐标,即定位是根据数据在数据集中的位置得到的,在栅格结构中,点用一个栅格单元表示;线状地物用沿线走向的一组相邻栅格单元表示,每个栅格单元最 多只有两个相邻单元在线上;面或区域用记有区域属性的相邻栅格单元的集合表示,每个 栅格单元可有多于两个的相邻单元同属一个区域。
3.矢量——它假定地理空间是连续, 通过记录坐标的方式尽可能精确地表示点、线、 多边形等地理实体, 坐标空间设为连续, 允许任意位置、长度和面积的精确定义。
对于点实体, 矢量结构中只记录其在特定坐标系下的坐标和属性代码;对于线实体, 用一系列坐标对的连线表示;多边形是指边界完全闭合的空间区域,用一系列坐标对的连线表示。
4. “拓扑”(topology)一词来源于希腊文,它的原意是 “形状的研究”。
拓扑学是 几何学的一个分支,它研究在拓扑变换下能够保持不变的几何属性——拓扑属性(拓扑属 性:一个点在一个弧段的端点, 一个点在一个区域的边界上;非拓扑属性:两点之间的距离, 弧段的长度, 区域的周长、面积) 。
地理信息系统原理-空间数据模型与数据结构

面对象 Class
属性
属性
体 3-Complex
面 2-Complex
线对象 Class
属性
线 1-Complex
点对象 Class
属性
点 0-Complex
三角形 2-simplex
线段 1-simplex
节点 0-simplex
33
空间地物
复杂地物
13 类空间对象
复杂
柱状地物
体状地物
数字立体模型
部分
节点 0-simplex
X,Y,Z
31
三维对象的拓扑数据模型
体状对象
面状对象
线状对象
点状对象
1 BodyID
1 SurfaceID
1
LineID
1 PointID
N
体1
N
4
5
面
1
6
N
3 4
边
1
1
2 结点
ElementID
FaceID
EdgeID
NodeID
X
Y
Z
32
三维复杂实体的逻辑模型
体对象 Class
• 模型:
• 时间作为属性(time stamp)
• 序列快照模型( Sequent Snap shots) • 基态修正模型(Base State with Amendments) • 时空复合模型( Space - time Composite) • 时空立方体模型( Space - time Cube)
表示形成三维空间目标表示,其优点是便于显示和数据更新, 不足之 处是空间分析难以进行。 (2)体模型(Volume model)
gis一字型和t字型

gis一字型和t字型摘要:1.GIS 和一字型、T 字型的概念2.一字型和T 字型的区别3.一字型和T 字型在GIS 中的应用4.一字型和T 字型的优缺点5.总结正文:GIS(地理信息系统)是一种用于捕捉、存储、分析和管理地理空间数据的技术。
在地理信息系统中,数据通常以点、线或多边形等几何形状存储。
其中,一字型和T 字型是地理信息系统中两种常见的空间数据结构。
一字型,顾名思义,是指地理要素在空间上呈一字排列。
这种结构主要用于描述线性地理要素,例如道路、铁路、河流等。
在一字型结构中,地理要素通过一个单一的ID 进行标识,并与其他相关数据表进行关联。
T 字型则是在一字型的基础上,增加了一个与地理要素相关的属性表。
这个属性表可以包含各种描述性信息,如道路的名称、长度、宽度等。
T 字型结构通过主键和外键的设置,实现了空间数据与属性数据的分离,使得数据的维护和更新更加方便。
在GIS 中,一字型和T 字型有着广泛的应用。
它们可以用于存储、查询和分析地理空间数据,为城市规划、环境保护、资源管理等领域提供支持。
例如,在城市规划中,可以通过一字型数据结构来描述城市的道路网络,通过T 字型数据结构来存储道路的相关属性信息,从而为规划提供依据。
然而,一字型和T 字型也各有优缺点。
一字型结构简单,数据存储和查询效率较高,但无法存储属性信息。
而T 字型结构可以存储属性信息,便于数据的维护和更新,但相对复杂,数据查询效率略低。
因此,在实际应用中,需要根据具体需求选择合适的数据结构。
总之,GIS 中的一字型和T 字型数据结构在存储和处理地理空间数据方面发挥着重要作用。
GIS地理信息系统空间数据结构

网络模型表示了特殊对象之间的交互,如水或者交通 流。
要素(对象)模型
基于要素的空间模型强调了个体现象, 该现象以独立的方式或者以与其它现象之间的 关系的方式来研究。任何现象,无论大小,都 可以被确定为一个对象(Object),假设它可 以从概念上与其邻域现象相分离。一个实体必 须符合三个条件: 可被识别; 重要(与问题相关); 可被描述(有特征)。
场模型可以表示为如下的数学公式:
z : s z ( s ) 上式中,z为可度量的函数,s表示空间中的位置,因
此该式表示了从空间域(甚至包括时间坐标)到某个 值域的映射。
空间数据模型与结构—对象模型与场模型比较
对象模型和场模型的比较
现实世界
对象模型 选择实体 它在哪里 数据
场模型 选择一个位置
指图形保持连续状态下变形,但图形关系
不变的性质。
拓扑变换
(橡皮变换)
将橡皮任意拉伸,压缩,但不能扭转或折叠。
非拓扑属性(几何) 两点间距离
拓扑属性(没发生变化的属性) 一个点在一条弧段的端点
一点指向另一点的方向 一条弧是一简单弧段(自身不相交)
弧段长度、区域周长、 一个点在一个区域的边界上
面积 等
一个点在一个区域的内部/外部
(x8,y8), (x17,y17), (x16,y16),
22 (x15,y15),(x14,y14) ,(x13,y13),
21
(x12,y12), (x11,y11),(x10,y10),(x1,y1)
6
20
C
3
5
18
19
4
(x24,y24),(x25,y25),(x26,y26), (x27,y27),(x28,y28),(x29,y29),(x30,y30)
GIS地理信息系统空间数据结构解析

GIS地理信息系统空间数据结构解析GIS是地理信息系统的英文缩写,即Geographic Information System。
它是一种利用计算机和软件技术来收集、管理、分析和展示地理空间数据的工具。
GIS空间数据结构是指在地理信息系统中用来组织和存储地理空间数据的方式和方法。
GIS空间数据结构的核心是地理空间数据的表示方法。
在GIS中,地理空间数据可以分为两种类型:矢量数据和栅格数据。
矢量数据以几何实体为基本单位,通过点、线、面等几何对象来描述地理现象的空间分布。
而栅格数据以网格为基本单位,通过将地理空间划分为规则的网格单元来表示地理现象的分布。
矢量数据通常由三要素组成:空间位置、属性信息和拓扑关系。
空间位置是指地理现象在地球表面上的位置,可以用点、线、面等几何对象来表示。
属性信息是指地理现象的有关属性和属性值,例如地名、面积、人口等。
拓扑关系是指不同几何对象之间的空间关系,例如点和线之间的相交、包含等关系。
在矢量数据的存储和管理上,常用的数据结构包括点、线和多边形数据结构。
点数据结构采用坐标表示地理位置,通常使用点图层进行存储和管理。
线数据结构由多个点连接而成,可以表示河流、道路等线状地理现象。
多边形数据结构由多条线构成封闭的区域,可以表示湖泊、行政区等面状地理现象。
除了矢量数据外,栅格数据也是GIS中常用的一种数据结构。
栅格数据将地理空间划分为规则的网格单元,每个网格单元包含一个数值或类别信息。
栅格数据适用于连续变化的地理现象,例如地形高程、气候等。
在栅格数据存储和管理上,常用的数据结构包括二维数组和图像数据结构。
在GIS空间数据结构中,数据之间的空间关系是一个重要的概念。
常见的空间关系包括相交、邻接、包含等。
相交是指两个地理现象在地理空间上有交集,邻接是指两个地理现象在地理空间上相连或相邻,包含是指一个地理现象包含另一个地理现象。
GIS空间数据结构的选择取决于具体的应用需求和数据特点。
矢量数据适用于描述点、线、面等离散的地理现象,可以准确表示地理位置和拓扑关系。
GIS空间数据结构课件

椭球体与基准面之间的关系是一对多的关 系,也就是基准面是在椭球体基础上建立 的,但椭球体不能代表基准面,同样的椭 球体能定义不同的基准面,如前苏联的 Pulkovo 1942、非洲索马里的Afgooye基 准面都采用了Krassovsky椭球体,但它们 的基准面显然是不同的。
我国3个椭球体参数如下
3)对数据处理信息的说明,如量纲的转换等;
4)对数据转换方法的描述;
5)对数据库的更新《G、IS空集间数据成结构等》PP的T课件说明。
3、元数据的主要作用
1)帮助数据生产单位有效地管理和维护空间数据、 建立数据文档,并保证即使其主要工作人员离退 时,也不会失去对数据情况的了解;
2)提供有关数据生产单位数据存储、数据分类、 数据内容、数据质量、数据交换网络及数据销售 等方面的信息,便于用户查询检索地理空间数据;
《GIS空间数据结构》PPT课件
2、1980年中国国家大地坐标系,具体参数 为:
赤道半径(a)=6378140.0000000000m 极半径(b)=6356755.2881575287m 地球扁率(f)=(a-b)/a=1/298.257 1980年中国国家大地坐标系的大地原点,
设在陕西省泾阳县永乐镇,称西安原点。
《GIS空间数据结构》PPT课件
二、矢量数据的特点
➢ 可以利用拓扑数据作为工具,重建地理实体。 例如建立封闭多《G边IS空形间数据,结构实》P现PT课道件 路的选取,进行 最佳路径的计算等等。
2.3 空间数据的计算机表示
以ARC/INFO矢量数据模型的系统为例 ➢ 首先,从逻辑上将空间数据抽象为不同的专题或层 。
《GIS空间数据结构》PPT课件
其次,将一个专题层的地理要素或实体分解 为点、线或面状目标 。每个目标的数据由 定位数据、属性数据和拓扑数据组成。具 有相同的分类码的同类目标组成类型,— 类或相近的若干类构成数据层,若干数据 层构成图幅,全部数据组成数据库。
第二章GIS数据结构

第二章GIS数据结构GIS数据结构是指地理信息系统中用来存储和组织地理数据的数据模型和数据格式。
它们用于描述和管理多种类型的地理数据,包括地理位置、属性信息以及与地理实体相关的其他信息。
在GIS中,数据结构的选择对于数据的查询、分析和可视化都起着至关重要的作用。
常见的GIS数据结构主要有三种:基于栅格的数据结构、基于矢量的数据结构和基于数据库的数据结构。
基于栅格的数据结构是一种二维网格结构,将地理空间划分为一系列的像元,每个像元代表一个固定大小的地理空间单元。
栅格数据结构适用于连续变化的地理现象的表达和分析,如地形高程、气候温度等。
栅格数据结构的优点是简单易用,存储和计算效率较高。
然而,由于其固定的像元大小和离散化的特性,栅格数据结构对于精确定位和表达复杂地理对象的能力有限。
基于矢量的数据结构则是通过点、线和面等几何元素来表示地理对象。
矢量数据结构适用于离散型地理现象的表达和分析,如道路、河流等。
它可以准确地表达地理对象的形状、大小和拓扑关系,并支持各种地理操作,如缓冲区分析、叠加分析等。
矢量数据结构的缺点是数据量较大,处理效率相对较低。
此外,矢量数据在处理连续性地理现象时需要进行插值操作,可能会引入一定的误差。
基于数据库的数据结构利用数据库管理系统来存储和组织地理数据。
数据库系统提供了强大的数据管理和查询功能,可以方便地对地理数据进行存储、查询和更新。
同时,数据库系统还支持空间索引和空间查询优化等功能,提高了地理数据的访问效率。
基于数据库的数据结构可以与其他非地理数据进行关联,支持多种数据类型的存储和查询。
然而,数据库系统对硬件和软件资源有较高的需求,需要相应的数据库管理技术和系统维护工作。
综合来看,选择合适的GIS数据结构需要考虑地理数据的类型、规模和应用需求。
对于连续变化的地理现象,可以选择基于栅格的数据结构;对于离散型地理对象,可以选择基于矢量的数据结构;对于大规模地理数据和复杂的分析需求,可以选择基于数据库的数据结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)连通性:与邻接性相类似,指对弧段连接的判别,
如用于网络分析中确定路径、 街道是否相通。
连通矩阵:
重叠:-- 连通:1
不连通:0
V1 V2 V3
…
V1
-- 1 0
V2
1 -- 1
V3
0 1 --
精品
4)方向性
一条弧段的起点、终点确定了弧段的方向。用于表达 现实中的有向弧段,如城市道路单向,河流的流向等。 5)包含性:指面状实体包含了哪些线、点或面状实体。 6)区域定义:多边形由一组封闭的线来定义。 7)层次关系:相同元素之间的等级关系,武汉市有各 个区组成。 主要的拓扑关系:拓扑邻接、拓扑关联、拓扑包含。
精品
4、体、立体状实体
立体状实体用于描述三维空间中的现象与物体, 它具有长度、宽度及高度等属性,立体状实体一般具有 以下一些空间特征: ·体积,如工程开控和填充的土方量。 ·每个二维平面的面积。 ·周长。 ·内岛。 ·含有弧立块或相邻块。 ·断面图与剖面图。
精品
三、实体间空间关系
(一)空间关系类型
第三章 空间数据结构
§3-1空间实体及其描述 §3-2矢量数据结构 §3-3栅格数据结构
精品
§3-1空间实体及其描述
一、地理实体(空间实体)---GIS处理对象
1、定义: 指自然界现象和社会经济事件中不能再分割的单元,它是一个具体有概括
性,复杂性,相对意义的概念。 2、理解:
地理实体类别及实体内容的确定是从具体需要出发的,例如,在全国地 图上由于比例尺很小,武汉就是一个点,这个点不能再分割,可以把武汉 定为一个空间实体,而在大比例尺的武汉市地图上,武汉的许多房屋,街 道都要表达出来,所以武汉必须再分割,不能作为一个空间实体,应将房 屋,街道等作为研究的地理实体,由此可见,GIS中的空间实体是一个概括, 复杂,相对的概念。
线状实体包括: 线段,边界、链、弧段、 网络等。
精品
3、面状实体(多边形)
是对湖泊、岛屿、地块等一类现象的描述。 在数据库中由一封闭曲线加内点来表示。
面状实体的如下特征: 1)面积范围 2)周长 3)独立性或与其它地物相邻 如中国及其周边国家 4)内岛屿或锯齿状外形: 如岛屿的海岸线封闭所围成的区 域。 5)重叠性与非重叠性: 如学校的分区,菜市场的服务 范围等都有可能出现交叉重叠现 象,而一个城市的各个城区一般 说来不会出现重叠。
属性数据—各种 属性特征和时间
4、数据结构
矢量、栅格、 TIN(专用于地 表或特殊造型)
RDBMS属性表---采用MIS较成熟
测量方法、编码 方法、空间参考 系等
元数据
空间元数据
精品
3、空间数据类型
1)依据数据来源的 不同分为: 地图数据 地形数据 属性数据 元数据 影象数据
2)依据表示对象的不同分为:
精品
3、空间数据类型(续)
精品
三、实体的空间特征
在地图上实体维数的表示可以改变 点-
--面 线(单线河)---面(双线河),
通过地图综合。
(一)空间维数:有0,1,2,3 维之分,点、线、面、体。
(二)空间特征类型
1、点状实体 2、线状实体
3、面状实体
Hale Waihona Puke 4、体状实体精品1、点状实体 点或节点、点状实体。点:有特定位置,维数为0的物体。
精品
3、拓扑关系的表达
拓扑关系具体可由4个关系表来表示: (1) 面--链关系: 面 构成面的弧段 (2) 链--结点关系: 链 链两端的结点 (3) 结点--链关系: 结点 通过该结点的链\ (4) 链—面关系: 链 左面 右面
4、拓扑关系的意义:
对于数据处理和GIS空间分析具有重要的意义,因为: 1)拓扑关系能清楚地反映实体之间的逻辑结构关系,它比几何关 系具有更大的稳定性,不随地图投影而变化。 2)有助于空间要素的查询,利用拓扑关系可以解决许多实际问题。 如某县的邻接县,--面面相邻问题。又如供水管网系统中某段水 管破裂找关闭它的阀门,就需要查询该线(管道)与哪些点(阀 门)关联。 3)根据拓扑关系可重建地理实体。
北
a
1、 拓扑空间关系:
b
2、 顺序空间关系: (方向空间关系)
用上下左右、前后、东南西北等方向性名称来描述空间实
体的顺序关系,算法复杂,至今没有很好的解决方法。 3、 度量空间关系,主要指实体间的距离关系,远近。
1)在地理空间中两点间的距离有两种度量方法。
a、沿真实的地球表面进行,除与两点的地理坐标有关外,还
精品
2、种类
1)关联性: (不同类要素之间)结 点与弧段:如V9与L5,L6,L3 多边形与弧段:P2与L3,L5,L2 2)邻接性: (同类元素之间) 多边形之间、结点之间。 邻接矩阵 重叠:-- 邻接:1 不邻接:0
P1 P2 P3 P4 P1 -- 1 1 1 P2 1 -- 1 0 P3 1 1 -- 0 P4 1 0 0 --
与所通过路径的地形起伏有关,复杂,引入第二种。 b、沿地球旋转椭球体的距离量算。 2) 距离类别:
欧氏距离(笛卡尔坐标系)、曼哈顿(出租车)距离、时间
距离、大地测量距离(大地线)(沿地球大圆经过两个城市
中心的距离)。
(二)拓扑关系
精品
(二)拓扑关系 1、定义 2、种类 3、拓扑关系的表达 4、意义
精品
二、地理实体的描述——空间数据
以什么形式存储和处理
反映了实体的三个特征
1、描述的内容
位置、形状、尺 寸、
识别码(名称) 实体的角色、功 能、行为、实体 的衍生信息
时间
2、基本特征
空间特征:地理 位置和空间关系
属性特征—名称、 等级、类别等 时间特征
3、数据类型
几何数据(空间 数据、图形数据) 关系数据—实体 间的邻接、关联 包含等相互关系
1、定义:
指图形保持连续状态下变形,但图形关系不 变的性质。
将橡皮任意拉伸,压缩,但不能扭转或折叠。
拓扑变换 (橡皮变换)
非拓扑属性(几何) 两点间距离
一点指向另一点的方向
弧段长度、区域周长、 面积 等
拓扑属性(没发生变化的属性) 一个点在一条弧段的端点 一条弧是一简单弧段(自身不相交) 一个点在一个区域的边界上 一个点在一个区域的内部/外部 一个点在一个环的内/外部 一个面是一个简单面 一个面的连通性 面内任两点从一点 可在面的内部走向另一点
1)实体点:用来代表一个实体。 2)注记点:用于定位注记。 3)内点:用于负载多边形的属性, 存在于多边形内。 4)角点、节点Vertex: 表示线段和弧段上的连接点。
精品
2、线状实体
具有相同属性的点的轨迹,线或折线,由一系列的有序坐 标表示,并有如下特性:
1)实体长度: 从起点到终点的总长 2)弯曲度: 用于表示像道路拐弯时 弯曲的程度。 3)方向性: 如:水流方向,上游— 下游, 公路,单、双向 之分。