近世代数与数论
近世代数的基础知识

近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。
近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。
近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。
下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。
3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。
“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。
设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。
若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。
若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。
不含任何元素的集合叫空集,空集是任何一个集合的子集。
集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。
例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。
本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。
一个集合A 的元素个数用A 表示。
当A 中有有限个元素时,称为有限集,否则称为无限集。
用∞=A 表示A 是无限集,∞<A 表示A 是有限集。
代数系统简介

代数发展简史一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。
傅鹰数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。
F. Cajori0、引言数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。
大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。
这三大类数学构成了整个数学的本体与核心。
在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。
在此简要介绍代数学的有关历史发展情况。
“代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khowārizmī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa’l muqabalah,直译应为《还原与对消的科学》.al-jabr 意为“还原”,这里指把负项移到方程另一端“还原”为正项;muqabalah 意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项.在翻译中把“al-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文译作“algebra”。
阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来.一般认为他生于花拉子模[Khwarizm,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓.另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī).祖先是花拉子模人.花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家.东部地区的总督马蒙(al-Ma’mūn,公元786—833年)曾在默夫召见过花拉子米.公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的“智慧馆”(Bayt al-Hikmah,是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一.马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世.花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣昌盛的时期.花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域.他撰写了许多重要的科学著作.在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》.1859年,我国数学家李善兰首次把“algebra”译成“代数”。
《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。
数学的三大核心领域

数学的三大核心领域之代数学范畴数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。
大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。
这三大类数学构成了整个数学的本体与核心。
在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交*学科。
本章简要介绍数学三大核心领域中十几门主要分支学科的有关历史发展情况。
1、算术算术有两种含义,一种是从中国传下来的,相当于一般所说的“数学”,如《九章算术》等。
另一种是从欧洲数学翻译过来的,源自希腊语,有“计算技术”之意。
现在一般所说的“算术”,往往指自然数的四则运算;如果是在高等数学中,则有“数论”的含义。
作为现代小学课程内容的算术,主要讲的是自然数、正分数以及它们的四则运算,并通过由计数和度量而引起的一些最简单的应用题加以巩固。
算术是数学中最古老的一个分支,它的一些结论是在长达数千年的时间里,缓慢而逐渐地建立起来的。
它们反映了在许多世纪中积累起来,并不断凝固在人们意识中的经验。
自然数是在对于对象的有限集合进行计算的过程中,产生的抽象概念。
日常生活中要求人们不仅要计算单个的对象,还要计算各种量,例如长度、重量和时间。
为了满足这些简单的量度需要,就要用到分数。
现代初等算术运算方法的发展,起源于印度,时间可能在10世纪或11世纪。
它后来被阿拉伯人采用,之后传到西欧。
15世纪,它被改造成现在的形式。
在印度算术的后面,明显地存在着我国古代的影响。
19世纪中叶,格拉斯曼第一次成功地挑选出一个基本公理体系,来定义加法与乘法运算;而算术的其它命题,可以作为逻辑的结果,从这一体系中被推导出来。
后来,皮亚诺进一步完善了格拉斯曼的体系。
算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性。
尽管它是高度抽象的,但由于它概括的原始材料是如此广泛,因此我们几乎离不开它。
代数课程思想方法介绍

若想谈论尺规作图不能问题,要把含直观因素 的尺规作图概念进行公理化(数学模型),用 代数方法解决问题.
尺规作图是从已知一些初等几何图形,一些线 段,一些点,而求出一些初等几何图形,线段, 点等.
即,已知平面上的一些点,要求尺规作出另一些 点来.
取定某线段为单位长的坐标系,平面上的点可以 用 (a,b) R R 表示。这样,尺规作图问题是:已 知一些实数 1, a1, a2,...an ,要求用尺规作图作另一 些数 b1,b2 ,...bn.
说明1,2,...,n为根,(1),(2 ),...,(n )也为根 故(1),(2 ),...,(n )是1,2,...,n的一个排列.
K中具有性质*的所有双射成一个群,K的伽罗华群(p(x)的
伽罗华群),它是 S11 的子群。
定理
p(x) 0可根式求解 相应的伽罗华群是可解群。
伽罗华理论是伽罗华21岁时提出的,论文寄给当 时一流的数学家庞加莱,他没有看懂,丢在一边。 40~50年后,才被发现.创立了群的理论,创立 了近代的代数学.
则( 0; , )就是复数域, a bi | a,b ,i2 1
0 , : (a,b) (a bi)
再扩充下去:四元数,八元数
(6) 代数数,超越数
是某有理系数多项式p(x)的根的实数称为代数数。
不是任一个有理系数多项式的根的实数称为超越数。
有理数
代数数
实数
无理数
超越数
e,都是超越数,2 2,e是超越数
{an} {bn} {an bn},
{an} {bn} {anbn}, ( 0; , )就是实数域。
(5) 复数域
定义:含有实数域 和i的最小域 ,称为复数域,
数学史话线性代数发展史简介

数学史话线性代数发展史简介数学史话—线性代数发展史简介一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。
傅鹰数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。
F. Cajori从事数学研究,发现新的定理和技巧是一回事;而以一种能使其他人也能掌握的方式来阐述这些定理和技巧则又是一回事。
学习那些伟大的数学家们的思想,使今天的学生能够看到某些论题在过去是怎样被处理的。
V. Z.卡兹数学不仅是一种方法、一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时是影响政治家和神学家的学说。
M(Kline一、了解数学史的重要意义数学是人类文明的一个重要组成部分,是一项非常重要的人类活动。
与其他文化一样,数学科学是几千年来人类智慧的结晶。
在学习数学时,我们基本是通过学习教材来认识这门学科的。
教材是将历史上的数学材料按照一定的逻辑结构和学习要求加以重组、取舍编撰而成,因此,数学教材往往舍去了许多数学概念和方法形成的实际背景、演化历程以及导致其演化的各种因素。
由于数学发展的实际情况与教材的编写体系有着许多不同,所以,对数学教材的学习,往往难以了解数学的全貌和数学思想产生的过程。
正因为如此,许多人往往把数学当成了枯燥的符号、无源的死水,学了很多却理解得很少。
数学和任何一门科学一样,有着自身发展的丰富历史,是积累性的科学。
数学的发展历史展示了人类追求理想和美好生活的力量,历史上数学家的成果、业绩和品德无不闪耀着人类思想的光辉,照亮着人类社会发展和进步的历程。
通过了解一些数学史,可以使我们了解数学科学发生、发展的规律,通过追溯数学概念、思想和方法的演变和发展过程,探究数学科学发展的规律和文化内涵,帮助我们认识数学科学与人类社会发展的互动关系以及数学概念和方法的重要意义。
二、代数学的历史发展情况数学发展到今天,已经成为科学世界中拥有一百多个主要分支学科的庞大的“共和国”。
近世代数 教案

近世代数教案教案标题:近世代数教学目标:1. 了解近世代数的概念和发展历程。
2. 掌握近世代数的基本概念和运算规则。
3. 能够应用近世代数解决实际问题。
教学内容:1. 近世代数的概念介绍a. 代数的发展历程b. 近世代数的定义和特点2. 近世代数的基本概念a. 群的定义和性质b. 环的定义和性质c. 域的定义和性质3. 近世代数的运算规则a. 群的运算规则b. 环的运算规则c. 域的运算规则4. 近世代数的应用a. 代数方程的解法b. 密码学中的应用c. 数论中的应用第一课时:1. 引入近世代数的概念和发展历程,激发学生对代数的兴趣。
2. 介绍近世代数的定义和特点,帮助学生理解其重要性和应用领域。
第二课时:1. 讲解群的定义和性质,引导学生理解群的基本概念。
2. 通过例题和练习,巩固学生对群的运算规则的理解。
第三课时:1. 介绍环的定义和性质,与学生讨论环的实际应用。
2. 给学生提供环的运算规则的例题和练习,帮助他们掌握环的运算规则。
第四课时:1. 讲解域的定义和性质,与学生分享域在密码学和数论中的应用。
2. 引导学生应用域的运算规则解决实际问题。
第五课时:1. 综合运用近世代数的概念和运算规则,讲解代数方程的解法。
2. 给学生提供代数方程的例题和练习,帮助他们熟练运用近世代数解决方程问题。
教学评估:1. 课堂练习:在每节课结束时进行小组或个人练习,检查学生对概念和运算规则的理解程度。
2. 作业:布置与课堂内容相关的作业,检验学生对近世代数的掌握情况。
3. 期末考试:设计综合性的考试题目,考察学生对近世代数的理解和应用能力。
1. 教科书:提供近世代数的相关知识和例题。
2. 计算工具:使用计算器或电脑软件辅助计算和验证结果。
3. 网络资源:引导学生查找近世代数的实际应用案例和相关研究资料。
教学延伸:1. 鼓励学生参与数学竞赛和研究项目,拓宽对近世代数的应用领域的认识。
2. 鼓励学生自主学习和探索,深入了解近世代数的发展和前沿研究。
数学的三大核心领域_GAOQS

数学的三大核心领域——代数学范畴数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。
大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。
这三大类数学构成了整个数学的本体与核心。
在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。
本章简要介绍数学三大核心领域中十几门主要分支学科的有关历史发展情况。
一、代数学范畴1、算术算术有两种含义,一种是从中国传下来的,相当于一般所说的“数学”,如《九章算术》等。
另一种是从欧洲数学翻译过来的,源自希腊语,有“计算技术”之意。
现在一般所说的“算术”,往往指自然数的四则运算;如果是在高等数学中,则有“数论”的含义。
作为现代小学课程内容的算术,主要讲的是自然数、正分数以及它们的四则运算,并通过由计数和度量而引起的一些最简单的应用题加以巩固。
算术是数学中最古老的一个分支,它的一些结论是在长达数千年的时间里,缓慢而逐渐地建立起来的。
它们反映了在许多世纪中积累起来,并不断凝固在人们意识中的经验。
自然数是在对于对象的有限集合进行计算的过程中,产生的抽象概念。
日常生活中要求人们不仅要计算单个的对象,还要计算各种量,例如长度、重量和时间。
为了满足这些简单的量度需要,就要用到分数。
现代初等算术运算方法的发展,起源于印度,时间可能在10世纪或11世纪。
它后来被阿拉伯人采用,之后传到西欧。
15世纪,它被改造成现在的形式。
在印度算术的后面,明显地存在着我国古代的影响。
19世纪中叶,格拉斯曼第一次成功地挑选出一个基本公理体系,来定义加法与乘法运算;而算术的其它命题,可以作为逻辑的结果,从这一体系中被推导出来。
后来,皮亚诺进一步完善了格拉斯曼的体系。
算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性。
尽管它是高度抽象的,但由于它概括的原始材料是如此广泛,^_^---因此我们几乎离不开它。