高考复习专题:追及相遇问题

合集下载

专题:追及和相遇问题

专题:追及和相遇问题

专题:追及和相遇问题一.相遇问题(1)相向运动的物体,当各自发生的位移大小之和等于初始时刻两物体的距离时及相遇。

例1. 一辆轿车违章超车,以108 km/h 的速度驶入左侧逆行车道时,猛然发现正前方80 m 处一辆卡车正以72 km/h 的速度迎面驶来,两车司机同时刹车,刹车时加速度大小都是10 m/s 2。

两司机的反应时间(即司机从发现险情到实施刹车所经历的时间)都是Δt,试问Δt 为何值,才能保证两车不相撞。

(2)同向运动的物体追及即相遇二.常见追及问题的种类: 1.速度小者追速度大者类型 图象说明匀加速追匀速①V1〉V2时,后面物体与前面物体间距离增大; ②V1=V2时,后面物体与前面物体间距离达到最大。

最大距离为x 0+Δx ③V1<V2以后,后面物体与前面物体间距离减小; ④能追及且只能相遇一次,相遇时有X 后=X 前+X0共同点:速度相等时二者间有最大距离匀速追匀减速匀加速追匀减速说明:①表中的Δx 是开始追及以后,前面物体因速度大而比后面物体多运动的位移; ②x 0是开始追及以前两物体之间的距离;2.速度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当V1=V2时刻: ①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇 共同点:速度相等时二者间有最小距离匀速追匀加速匀减速追匀加速总结论:速度相等是能否追上,两者间有最大距离,最小距离的临界条件: 说明:①表中的Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ②x 0是开始追及以前两物体之间的距离; ③t 2-t 0=t 0-t 1;④v 1是前面物体的速度,v 2是后面物体的速度.例2:一辆值勤的警车停在公路边,当警员发现从他旁边以10m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5s后警车发动起来,并以2.5m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90km/h以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)警车发动后要多长时间才能追上货车?例3.汽车前方S=120m有一自行车正以6m/s的速度匀速前进,汽车以18m/s的速度追赶自行车,若两车在同一条公路不同车道上作同方向的直线运动,求:(1)经多长时间,两车第一次相遇?(2)若汽车追上自行车后立即刹车,汽车刹车过程中的加速度大小为2m/s2,则再经多长时间两车第二次相遇?例4.一辆长途客车正在以v=16 m/s的速度匀速行驶,突然,司机看见车的正前方s=36 m处有一只小狗(如图甲),司机立即采取制动措施.从司机看见小狗到长途客车开始做匀减速直线运动的时间间隔Δt=0.5 s.若从司机看见小狗开始计时(t=0),在4.5s末速度减为0。

2024届高考物理微专题:追及相遇问题

2024届高考物理微专题:追及相遇问题

微专题6追及相遇问题1.(1)“慢追快”型:v 后=v 前时,Δx 最大.追匀减速运动的机车时,注意要判断追上时前车是否已停下.(2)“快追慢”型:v 后=v 前时,Δx 最小,若此时追上是“恰好不相撞”;若此时还没追上就追不上了;若此之前追上则是撞上.2.在已知出发点的前提下,可由v -t 图像面积判断相距最远、最近及相遇等情况.3.基本解题思路是:利用速度相等找位移关系.1.甲、乙两物体(均可视为质点)从同一出发点沿水平面朝同一方向运动,两物体运动的v -t 图像如图所示,下列说法正确的是()A .甲、乙两物体同时出发B .在t =4s 时甲、乙两物体相遇C .前4s 内两物体的平均速度相同D .相遇前甲、乙最远距离为6m 答案D解析从v -t 图像中可看出乙物体比甲物体延迟3s 出发,选项A 错误;t =4s 时,由v -t图像可知,甲、乙两车速度相等,甲的位移为x 甲=4×42m =8m ,乙的位移为x 乙=1×42m=2m ,可知两车未相遇,选项B 错误;因为前4s 内两物体的位移不同,所以两物体的平均速度不同,选项C 错误;在t =4s 前相同时刻甲的速度比乙的速度大,在达到相同速度前它们之间的距离在变大,甲、乙的速度相等时二者距离最远,由速度—时间图线与横轴围成的面积表示位移大小可求得相遇前甲、乙最远距离为x 甲-x 乙=6m ,选项D 正确.2.(多选)(2023·山西大学附属中学模拟)无线蓝牙耳机可以在一定距离内与手机等设备实现无线连接.为了得到某款无线蓝牙耳机在运动时的最大连接距离,甲和乙两位同学做实验如下:乙佩戴无线蓝牙耳机,甲携带手机检测,二人间隔17.5m 且之间无障碍,某时刻起甲追乙的v -t 图像如图所示.发现手机在3s 末开始检测到蓝牙耳机信号,则下列判断正确的是()A .4s 时甲、乙相距最近为8mB .4s 时甲、乙相距最近为9.5mC .手机与蓝牙耳机连接上的时间为3sD .最远连接距离为10m 答案BD解析根据题图可知,4s 时甲、乙速度相等,此时相距最近,4s 内则有x 甲-x 乙=v 甲t -v 乙t2=4×4m -4×42m =8m ,初始位置乙在甲前方17.5m ,故此时相距9.5m ,选项A 错误,B 正确;由题图可知乙的加速度为a 乙=Δv 乙Δt =44m/s 2=1m/s 2,在3s 内则有x 甲′-x 乙′=v 甲t ′-12a 乙t ′2=4×3m -12×1×32m =7.5m ,则有最远连接距离为Δx =17.5m -7.5m =10m ,选项D 正确;根据图像的对称性可知,3s 内与5s 内甲、乙相距的距离相等,即5s 末手机与蓝牙耳机信号断开,连接上的时间为2s ,选项C 错误.3.(2023·山东日照市模拟)甲、乙两个质点沿着同一直线运动,其中质点甲做匀速直线运动,质点乙做初速度为零的匀加速直线运动,它们的位置x 随时间t 的变化规律如图所示.已知t 0时刻,甲的位置为x 0,且此时两图线的斜率相同,下列判断正确的是()A .乙的加速度大小为x 02t 02B .t 0时刻,两质点之间的距离为32x 0C .3t 0时刻,两质点之间的距离为32x 0D .两质点相遇时,乙的速度大小为2x 0t 0答案B解析由题意可知,甲的速度大小为v 甲=x0t 0,t 0时刻甲、乙图线的斜率相同,即此时乙的速度大小也为x 0t 0,根据运动学公式则有x 0t 0=at 0,可得乙的加速度大小为a =x0t 02,故A 错误;0~t 0的时间内,乙的位移为x 乙=12at 02=x 02,故两质点之间的距离为Δx =x 0-12x 0+x 0=32x 0,故B正确;0~3t 0时间内,甲的位移为x 甲=3x 0,乙的位移为x 乙′=92x 0,两质点之间的距离为Δx ′=|3x 0-92x 0+x 0|=12x 0,故C 错误;设两质点经过时间t 相遇,则有12at 2=x 0+v 甲t ,解得t =(3+1)t 0(另一解不符合实际,舍去),故相遇时,乙的速度大小为v 乙=at = 3+1 x 0t 0,故D 错误.4.如图所示,可视为质点的A 、B 两物体相距x =7m 时,A 在水平拉力和摩擦力作用下,正以v A =4m/s 的速度向右匀速运动,而物体B 此时正在摩擦力作用下以初速度v B =10m/s 向右匀减速运动,加速度a =-2m/s 2,则A 追上B 所经历的时间是()A .7sB .8sC .9sD .10s答案B解析由题意知,t =5s 时,物体B 的速度减为零,位移大小x B =v B t +12at 2=25m ,此时A的位移x A =v A t =20m ,A 、B 两物体相距Δx =x +x B -x A =7m +25m -20m =12m ,再经过Δt =Δxv A=3s ,A 追上B ,所以A 追上B 所经历的时间是5s +3s =8s ,选项B 正确.5.(多选)甲、乙两个物体从同一地点出发,在同一直线上做匀变速直线运动,它们的速度时间图像如图所示,则()A .甲、乙两物体运动方向相同B .t =4s 时,甲、乙两物体相遇C .在相遇前,甲、乙两物体的最远距离为18mD .在相遇前,甲、乙两物体的最远距离为20m 答案AD解析由题图可知,两物体的速度均沿正方向,故运动方向相同,A 正确;由题图可知,t=4s 时,甲、乙两物体的速度相同,4s 之前乙物体的速度比甲物体的速度大,两物体相距越来越远,4s 后甲物体的速度大于乙物体的速度,两物体相距越来越近,故t =4s 时两物体相距最远,最远距离Δx =x 乙-x 甲=12×(15-5)×4m =20m ,B 、C 错误,D 正确.6.冬季浓雾天气频繁出现.某日早晨浓雾天气中道路能见度只有30m ,且路面湿滑.一辆小汽车以15m/s 的速度由南向北行驶,某时刻,司机突然发现正前方浓雾中有一辆卡车正以3m/s 的速度同向匀速行驶,于是鸣笛示警同时紧急刹车,但路面湿滑,只能以2m/s 2的加速度减速行驶,卡车于2s 后以2m/s 2的加速度加速行驶.以下说法正确的是()A .因两车采取了必要的加、减速措施,所以两车不会追尾B .虽然两车采取了加、减速措施,但加速度过小,两车仍会追尾C .在卡车开始加速时,两车仅相距9mD .两车距离最近时只有12m 答案A解析设小汽车匀速行驶的速度为v 1,减速时的加速度大小为a 1;卡车匀速行驶时的速度为v 2,加速运动时的加速度大小为a 2,后车刹车后经过时间t 两者共速,则有v 1-a 1t =v 2+a 2(t-2s),解得t =4s ,在时间t 内小汽车的位移为x 1=v 1t -12a 1t 2=44m ,卡车加速行驶的时间为t ′=t -2s =2s ,在时间t 内,卡车的位移为x 2=v 2t +12a 2t ′2=16m ,因x 2+30m >x 1,故两车不会追尾,此时两车相距最近,距离为Δx =x 2+30m -x 1=2m ,故A 正确,B 、D 错误.在卡车开始加速时,两车相距Δx ′=(30+3×2)m -(15×2-12×2×22)m =10m ,故C错误.7.现有一辆摩托车由静止开始先以2.5m/s 2的加速度做匀加速运动,后以最大行驶速度25m/s 匀速行驶,追赶前方以15m/s 的速度同向匀速行驶的卡车.已知摩托车开始运动时与卡车的距离为200m ,则:(1)追上卡车前二者相隔的最大距离是多少;(2)摩托车经过多长时间才能追上卡车.答案(1)245m(2)32.5s解析(1)由题意得摩托车匀加速运动最长时间t 1=v ma=10s此过程的位移x 1=v m 22a=125m<x 0=200m所以摩托车在达到最大速度之前没有追上卡车.在追上卡车前当二者速度(设为v )相等时相距最远,设从开始经过t 2时间速度相等,最大间距为x m ,则v =at 2解得t 2=va=6s最大间距x m =(x 0+v t 2)-12at 22=245m.(2)设从开始经过t 时间摩托车追上卡车,则有v m 22a+v m (t -t 1)=x 0+v t 解得t =32.5s.8.在一条平直的公路上,一货车以30m/s 的速率匀速行驶时,司机突然发现前方40m 处有一自行车以5m/s 的速率同道、同方向匀速行驶.司机立即开始制动.(这段公路很窄,无法靠边让道)(1)若货车刹车后以大小为5m/s 2的加速度做匀减速运动.通过计算分析骑自行车的人是否有危险?若无危险,求两车相距最近时的距离;若有危险,求出从货车发现自行车开始到撞上自行车的时间.(2)若货车司机发现自行车时,自行车也恰好发现货车,自行车立即做匀加速直线运动(不计反应时间),加速度大小为2m/s 2(两车均视为质点).货车也立即刹车做匀减速直线运动(不计反应时间),为避免碰撞,问:货车加速度至少多大才能避免相撞(结果保留两位有效数字).答案(1)2s(2)5.8m/s 2解析(1)当货车和自行车共速时,两者距离最近,则v 0-at =v ,解得t =5s此时货车的位移x 1=v 0+v 2t =87.5m自行车的位移x 2=v t =25m 因x 1>x 2+Δx可知货车已经和自行车相撞;由位移关系,设经过时间t ′两车相撞,则v 0t ′-12at ′2=Δx +v t ′解得t ′=2s(t ′=8s 舍去)(2)两车恰不相撞时,两者共速,则v 0-a ′t ″=v +a 1t ″,v 0t ″-12a ′t ″2=Δx +v t ″+12a 1t ″2,解得a ′=5.8m/s 2.。

专题课:追及相遇问题

专题课:追及相遇问题
此时的汽车速度汽 ′ = ′ = 10 m/s(1分)
例2 火车甲以 1 = 288 km/h 的速度沿直轨道匀速行驶,司机突然发现前方
>
m
<
>
/m
<
同一轨道上相距 = 0.5 km 处的火车乙正沿同一方向以 2 = 144 km/h 的速度
>
m
<
>
/m
<
>
m
<
>
/m
<
做匀速运动,司机立即以大小为 的加速度紧急刹车,要使甲、乙不相撞,
例1 (10分)在十字路口,一辆汽车以 0.5 m/s 的加速度从停车线处启动做匀加
2
>
m
<
>
/m
<
速直线运动,此时恰好有一辆自行车以 5 m/s 的速度匀速驶过停车线与汽车同
>
m
<
方向行驶,则:
>
/m
<
(1) 汽车追上自行车前,经过多久它们相距最远?最远距离是多少?
[答案] 10 s 25 m
2
2
即 > 1.6 m/s 时,甲、乙不会相撞.
方法二:数学分析法
设甲减速 时间后,甲、乙相撞,则有 1 = 2 + ,即
1 −
1
2

2
2
= 2 +
整理得 − 2 1 − 2 + 2 = 0
若甲、乙不相撞,则以上方程无解,即判别式应满足
= 4 1 − 2
>
m
<
>
/m
<

高一物理专题:追及与相遇问题

高一物理专题:追及与相遇问题

专题追及与相遇问题一、追及问题1、追及与相遇的实质两物体能否在同一时刻到达同一位置。

2、两大关系:时间关系、位移关系。

3、巧用一个条件:两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

4、三种常见情形种:⑴初速度比较小(包括为零)的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上。

a、追上前,当两者速度相等时有最大距离;b、当两者位移相等时,即后者追上前者。

⑵匀减速运动的物体追赶同向的匀速运动的物体时,存在一个能否追上的问题。

判断方法是:假定速度相等,从位置关系判断。

解决问题时要注意二者是否同时出发,是否从同一地点出发。

a、当两者速度相等时,若追者位移仍小于被追者,则永远追不上,此时两者间有最小距离;b、若两者速度相等时,两者的位移也相等,则恰能追上,也是两者避免碰撞的临界条件;c、若两者速度相等时,追者位移大于被追者,说明在两者速度相等前就已经追上;在计算追上的时间时,设其位移相等来计算,计算的结果为两个值,这两个值都有意义。

即两者位移相等时,追者速度仍大于被追者的速度,被追者还有一次追上追者的机会,其间速度相等时两者间距离有一个较大值。

⑶匀速运动的物体甲追赶同向匀加速运动的物体乙,情形跟⑵类似。

匀速运动的物体甲追赶同向匀减速运动的物体乙,情形跟⑴类似;被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。

5、解追及与相遇问题的思路(1)根据对两物体的运动过程分析,画出物体运动示意图(2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中(3)由运动示意图找出两物体位移间的关联方程(4)联立方程求解6、注意:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。

两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。

2025年高考物理总复习专题03 刹车陷阱 追及相遇(附答案解析)

2025年高考物理总复习专题03 刹车陷阱  追及相遇(附答案解析)

第1页(共21页)专题03刹车陷阱
追及相遇模型归纳
1.两种匀减速直线运动的比较两种运动
运动特点求解方法刹车类
问题
匀减速到速度为零后停止运动,加速度a 突然消失求解时要注意确定实际运动时间(刹车陷阱)双向可逆
类问题如沿光滑固定斜面上滑的小球,到最高点后仍能以原加速度匀加速下滑,全过程加速度大小、方向均不变求解时可分过程列式,也可对全过程列式,但必须注意x 、v 、a 等矢
量的正负号及物理意义2.追及相遇问题的两种典型情况
(1)速度小者追速度大者
类型
图像说明匀加速追匀速①0~t 0时段,后面物体与前面物体间
距离不断增大
②t =t 0时,两物体相距最远,为x 0+
Δx (x 0为两物体初始距离)
③t >t 0时,后面物体追及前面物体的过
程中,两物体间距离不断减小④能追上且只能相遇一次
匀速追匀减速匀加速追匀减速
(2)速度大者追速度小者
类型图像说明。

高一物理专题复习:追及相遇问题

高一物理专题复习:追及相遇问题

专题:追及相遇问题现实生活中经常会发生追及(如警察抓匪徒)、相遇或避免碰撞(如两车在同一直线上相向或同向运动时)的问题.我们现在就利用物理学知识探究警察能否抓住匪徒、两车能否相遇或避免相撞.一、追及相遇问题1.追及相遇问题的本质两物体在同一直线上追及、相遇或避免碰撞问题中的本质是:两物体能否同时到达空间某位置。

因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系而解出。

2.解题关键抓住一个条件、两个关系。

(1)一个条件: 速度相等时临界条件,两物体是相距最远还是最近或是恰好追上。

(2)两个关系:时间关系(特别注意运动时间是否相等;同时出发或一先一后); 位移关系 (特别注意是同一地点出发,或是一前一后)。

3.解题思路①在解决追及相遇类问题时,要紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式,另外还要注意最后对解的讨论分析.②分析追及、相遇类问题时,要注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,往往对应一个临界状态,满足相应的临界条件.③解题思路和方法二、常见题型1、A 匀加速追B 匀速:(同时同地出发)①一定能追上;②B A v v =时相距最远,最远距离为x S ∆=;③只相遇一次。

V-t 图像分析【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 m s B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 二次函数极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1)m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s .A 、B 间距离的最大值数值上等于ΔO υA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析. (2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)二次函数极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解.2.匀速直线运动的A 追赶同方向匀加速直线运动的B假设匀速运动的物体A 追赶同方向前方相距0x 匀加速直线运动的物体B 存在一个能否追上的问题,判断依据:(1)当B A v v =时,如果0x S S B A <-,则追不上,此时两者之间距离最小,最小距离为A B S S x S -+=0min ,0x x <∆(2) 当B A v v =时,如果0x S S B A =-,此时恰好追上,相遇一次,为临界条件。

高中物理追击、追及和相遇问题

高中物理追击、追及和相遇问题

高中物理追击、追及和相遇问题一、追击问题追和被追的两物体的速度相等(同向运动)是能追上、追不上,两者距离有极值的临界条件:1、做匀减速直线运动的物体追赶同向做匀速直线运动的物体.(1)两物体的速度相等时,追赶者仍然没有追上被追者,则永远追不上,这种情况下当两者的速度相等时,它们间的距离最小.(2)两物体的速度相等时,如它们处在空间的同一位置,则追赶者追上被追者,但两者不会有第二次相遇的机会.(3)若追赶者追上被追者时,其速度大于被追者的速度,则被追者还可以再追上追赶者,两者速度相等时,它们间的距离最大.2、初速度为零的匀加速直线运动追赶同向做匀速直线运动的物体.(1)追上前,两者的速度相等时,两者间距离最大.(2)后者与前者的位移大小之差等于它们初始位置间的距离时,后者追上前者.二、相遇问题1、同向运动的两物体追及即相遇.2、相向运动的物体,当各自发生位移大小之和等于开始时两物体间的距离时即相遇.例1、两辆车同时同地同向做直线运动,甲以4m/s的速度做匀速运动,乙由静止开始以2m/s2的加速度做匀加速直线运动. 求:(1)它们经过多长时间相遇?相遇处离原出发地多远?(2)相遇前两物体何时距离最大?最大距离多少?解析:(1)经过t时间两物体相遇,位移为s,根据各自的运动规律列出方程:代入数据可得t=4s,s=16m.(2)甲乙经过时间t'它们之间的距离最大,则从上面分析可知应该满足条件为:,,解得:此时它们之间最大距离为什么当时,两车间的距离最大?这是因为在以前,两车间距离逐渐变大,当以后,,它们间的距离逐渐变小,因此当时,它们间的距离最大.例2、羚羊从静止开始奔跑,经过50m的距离能加速到最大速度为25m/s,并能保持一段较长的时间;猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这一速度4.0s. 设猎豹距羚羊x时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,则:(1)猎豹要在减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追到羚羊,x值应在什么范围?解析:解决这类题目,关键是要读懂题目,比如:猎豹在减速前一共用了多长时间,减速前的运动是何种运动等等.(1)由下图可知,猎豹要在减速前追到羚羊:对猎豹:,对羚羊同理可得:,即;当x≤55m时,猎豹能在减速前追上羚羊(2)猎豹要在其加速阶段追到羚羊,则:对猎豹:对羚羊:则:即:当x≤31.9m时,猎豹能在加速阶段追上羚羊.。

专题 追及与相遇问题

专题   追及与相遇问题

专题追及与相遇问题一、知识概要【追及问题的分析思路】(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的运动情景图,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件,例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.二、典型例题【例1】一辆汽车在十字路口等候绿灯,当绿灯亮时,汽车以3m/s²的加速度开始行使,恰在这时,一辆自行车以6m/s的速度匀速驶来并赶过汽车,试求,(1)汽车何时追上自行车?(2)追上时,汽车的速度为多少?(3)追上之前何时两车相距最远?(4)最远距离多少?[例2]、在平直公路上,一辆摩托车从静止出发追赶正前方100m处正以v0=10m/s的速度速度前进的卡车,若摩托车的最大速度为20m/s,现要摩托车在2min内追上上卡车,求摩托车的加速度为多大?[例3]、某人骑自行车以4m/s的速度匀速前进,某时刻在他前面7m处以10m/s的速度同向行驶的汽车开始关闭发动机,而以2m/s2的加速度减速前进,求:①自行车未追上前,两车的最远距离;②自行车需要多长时间才能追上汽车.[例4]、羚羊从静止开始奔跑,经过50m 距离能加速到最大速度25m/s并能维持一段较长的时间,猎豹从静止开始奔跑,经过60m距离能加速到最大速度30m/s,以后只能维持这个速度4s,设猎豹距离羚羊xm时开始攻击,羚羊则在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑。

求:(1)猎豹要在其最大速度减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追上羚羊,x值应在什么范围?三、【形成性检测】1A 、一辆值勤的警车停在公路边,当警员发现从他旁边以10 m/s 的速度匀速行驶的货车严重超载时,决定前去追赶.经过5.5 s 后警车发动起来,并以2.5 m/s 2的加速度做匀加速运动,但警车的行驶速度必须控制在90 km/h 以内.问:(1) 警车在追赶货车的过程中,两车间的最大距离是多少?(2) 警车发动后要多长时间才能追上货车?2A .甲、乙两汽车沿同一平直公路同向匀速运动,速度均为16 m/s.在前面的甲车紧急刹车,加速度为 a 1=3 m/s 2,乙车由于司机的反应时间为0.5 s 而晚刹车,已知乙的加速度为a 2=4 m/s 2,为了确保乙车不与甲车相撞,原来至少应保持多大的车距?3B.甲、乙两车在公路上沿同一方向做直线运动,它们的v-t 图象如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v/ms-1
20
A
10
B
a tan 20 10 0.5 o
t0
t/s
20
则当a≥0.5m/s2时不相撞
物体的v-t图像的斜率表示加 速度,面积表示位移。
2019年高考复习专题:追及相遇问题(共20张 PPT)
1 2
2019年高考复习专题:追及相遇问题(共20张 PPT)
专题 追及相遇问题
追及相遇问题的概述:
当两个物体在同一条直线上运动时,由于两物体的运 动情况不同,所以两物体之间的距离会不断发生变化, 两物体间距离越来越大或越来越小,这时就会涉及追 及、相遇或避免碰撞等问题。
1. 追及相遇问题的实质
研究的两物体能否在相同的时刻到达相同的空 间位置的问题。
由A、B
位移关系:v1t
1 2
at 2
v2t
x0
a (v1 v2 )2 (20 10)2 m / s2 0.5m / s2
2x0
2 100
则当a≥0.5m/s2时不相撞
2019年高考复习专题:追及相遇问题(共20张 PPT)
2019年高考复习专题:追及相遇问题(共20张 PPT)
解2:(图像法)
两物体“恰相撞”或“恰不相撞”的
临界条件:两物体在同一位置时, 速度恰相同
若后面的速度大于前面的速度,则相撞。
2019年高考复习专题:追及相遇问题(共20张 PPT)
2019年高考复习专题:追及相遇问题(共20张 PPT)
解1:(公式法x、v、t)
两车恰不相撞的条件是两车速度相同时相遇。
由A、B 速度关系: v1 at v2
②若A恰好追上B,则相遇一次,
也是避免相撞、刚好追上的临界条件;
③若A已超越B,则A、B相遇两次, 且之后当两者速度相等时,两者间有最大 距离。
2019年高考复习专题:追及相遇问题(共20张 PPT)
例2. A火车以v1=20m/s速度匀速行驶,司机 发现前方同轨道上相距100m处有另一列火车B 正以v2=10m/s速度匀速行驶,A车立即做加速度 大小为a的匀减速直线运动。要使两车不相撞, a应满足什么条件?
2019年高考复习专题:追及相遇问题(共20张 PPT)
解题思路和方法:
(1)在解决追及、相遇类问题时,要紧抓“一图三式”,即:过程 示意图, 时间关系式、速度关系式和位移关系式,最后还要 注意对结果的讨论分析.
(2)分析追及、相遇类问题时,要注意抓住题目中的关键字眼,充 分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多” 、“至少”等,往往对应一个临界状态,满足相应的临界条件.
2019年高考复习专题:追及相遇问题(共20张 PPT)
高考回顾
2019年高考复习专题:追及相遇问题(共20张 PPT)
2019年高考复习专题:追及相遇问题(共20张 PPT)
A.在t=1 s时,甲车在乙车后 B.在t=0时,甲车在乙车前7.5 m C.两车另一次并排行驶的时刻是t=2 s D.甲、乙车两次并排行驶的位置之间 沿公路方向的距离为40 m
2019年高考复习专题:追及相遇问题(共20张 PPT)
例题讲解
2019年高考复习专题:追及相遇问题(共20张 PPT)
3.
两种典型情况
(2)速度大者追速度小者(如匀减速追匀速)
a
v1> v2
A
v1
B
v2
当vA=vB时
2019年高考复习专题:追及相遇问题(共20张 PPT)
①若A没追上B,则A、B永不相遇, 此时两者间有最小距离;
2019年高考复习专题:追及相遇问题(共20张 PPT)
2019年高考复习专题:追及相遇问题(共20张 PPT)
2.一个条件,两个关系 一个条件:两者速度相等 两者速度相等。它往往是物体间能否
追上、追不上或(两者)距离最大、最小的 临界条件
两个关系:时间关系和位移关系
2019年高考复习专题:追及相遇问题(共20张 PPT)
2019年高考复习专题:追及相遇问题(共20张 PPT)
2019年高考复习专题:追及相遇问题(共20张 PPT)
3.
两种典型情况
(1)速度小者追速度大者(如:初速度为零的 匀加速追匀速)
A
a
v1=0
B
v2
①一定能追上; ②追上前,当 vA=vB 时,A、B距离最大;
2019年高考复习专题:追及相遇问题(共20张 PPT)
2019年高考复习专题:追及相遇问题(共20张 PPT)
例1.
一辆汽车在十字路口等候绿灯,当绿灯亮时
汽车以3m/s2的加速度开始由静止加速行驶,恰在这
时一辆自行车以6m/s的速度匀速驶来,从后边超过
汽车。试求:汽车从路口开动后,在追上自行车之
前经过多长时间两车相距最远?此时距离是多少?
方法一:(公式法x、v、t)
2019年高考复习专题:追及相遇问题(共20张 PPT) 2019年高考复习专题:追及相遇问题(共20张 PPT)
2019年高考复习专题:追及相遇问题(共20张 PPT)
对于物理量的认识
v=v0+at。
2019年高考复习专题:追及相遇问题(共20张 PPT)
2019年高考复习专题:追及相遇问题(共20张 PPT) 2019年高考复习专题:追及相遇问题(共20张 PPT)
当汽车的速度与自行车的
x汽
速度相等时,两车之间的
距离最大。设经时间t两
△x
车之间的距离最大。则
x自
v汽 at v自
t v自 6 s 2s a3
xm
x自
x汽
v自t
1 2
at 2
6
2m
1 2
3 22 m
6m
2019年高考复习专题:追及相遇问题(共20张 PPT)
2019年高考复习专题:追及相遇问题(共20张 PPT)
在同一个v-t图中画出A车和B车的速度—时间图像图线, 根据图像面积的物理意义,两车位移之差等于图中梯 形的面积与矩形面积的差,当t=t0时梯形与矩形的面积 之差最大,为图中阴影部分三角形的面积.根据题意,阴 影部分三角形的面积不能超过100 m .
1 2
(20 10)t0
100
t0 20 s
方法二:(图像法)
两车之间的距离则等于图中矩形的面积与三角形
面积的差,不难看出,当t=t0时矩形与三角形的面 积之差最大。
v-t图像的斜率表示物体的加 速度
v/ms-1
汽车
当t60t=2tsa时n两 车 的3 距离最t0大为2图s 中阴6o影三α角形t0 的m
2019年高考复习专题:追及相遇问题(共20张 PPT)
相关文档
最新文档