高一数学函数周期性测试题
高中数学_函数的周期性练习题含答案

高中数学 函数的周期性练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 定义在R 上的偶函数f(x)满足f(1−x)=f(1+x),f(0)=2,则f(10)=( ) A.−4 B.−2 C.2 D.42. 若f(x)是R 上周期为3的偶函数,且当0<x ≤32时,f(x)=log 4x ,则f(−132)=( ) A.−2 B.2 C.−12D.123. 已知函数f (x )满足f (1+x )=f (1−x ),且f (−x )=f (x ),当1≤x ≤2时,f (x )=2x −1,则f (2021)的值为( ) A.2 B.1 C.0 D.−14. 已知函数f(x)满足f(1+x)+f(1−x)=0,且f(−x)=f(x),当1≤x ≤2时,f(x)=2x −1,求f(2017)=( ) A.−1 B.0 C.1 D.25. 定义在R 上的偶函数f(x)满足f(1+x)=f(1−x),当x ∈[0, 1]时,f(x)=−x +1,设函数g(x)=e −|x−1|(−1<x <3),则f(x)与g(x)的图象所有交点的横坐标之和为( ) A.3 B.4 C.5 D.66. 已知函数y =f (x )对任意x ∈R 都有f (x +2)=f (−x )且f (4−x )+f (x )=0成立,若f (0)=1,则f (2019)+f (2020)+f (2021)的值为( ) A.1 B.2 C.0 D.−27. 定义在R 上的偶函数f (x )满足f (1−x )=f (1+x ),当x ∈(−1,0]时,f (x )=tan πx 3,则f (194)=( )A.−1B.−2C.0D.18. 已知f (x )是R 上的偶函数且满足f (x +3)=−f (x ),若f (1)>7,f (2021)=4+3a ,则实数a 的取值范围为( ) A.(0,+∞)B.(1,+∞)C.(−∞,0)D.(−∞,1)9. 已知函数f (x )满足:对任意x ∈R ,f (−x )=−f (x ),f (2−x )=f (2+x ),且在区间[0,2]上,f (x )=x 22+cos x −1 ,m =f(√3),n =f (7),t =f (10),则( )A.m <n <tB.n <m <tC.m <t <nD.n <t <m10. 定义在R 上的偶函数f (x )满足f (2−x )=f (2+x ),且当x ∈[0,2]时,f (x )={e x −1,0≤x ≤1,x 2−4x +4,1<x ≤2. 若关于x 的不等式m|x|≤f (x )的整数解有且仅有9个,则实数m 的取值范围为( ) A.(e−17,e−15] B.[e−17,e−15] C.(e−19,e−17] D.[e−19,e−17]11. 定义在R 上的函数f (x )满足f (x )=f (x +5),当x ∈[−2,0)时,f (x )=−(x +2)2,当x ∈[0,3)时,f (x )=x ,则f (1)+f (2)+⋯+f (2021)=( ) A.809 B.811 C.1011 D.101312. 设f(x)是周期为4的奇函数,当0≤x ≤1时,f(x)=x ⋅(1+x),则f(−92)=________.13. 已知f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=−f (x ),则f (2016)=________.14. 已知函数f(x)的定义域为R ,且f(x)=−f(x +2),若当x ∈[0, 2)时,f(x)=3x ,则f(2019)=________15. 已知定义在R 上的函数f (x ),对任意实数x 均有f (x +4)=−f (x )+2√2,若函数f (x −2)的图象关于直线x =2对称,则f (2018)=________.16. 已知函数f (x )为R 上的奇函数,且f (−x )=f (2+x ),当x ∈[0,1]时,f (x )=2x +a 2x,则f (101)+f (105)的值为________.17. 定义在R 上的函数f (x )满足f (x +6)=f (x ).当x ∈[−3,3)时,f (x )={−(x +2)2,−3≤x <−1,x,−1≤x <3,则f (4)=________;f (1)+f (2)+f (3)+⋯+f (2016)+f (2017)=________.18. 定义在R上的奇函数f(x)满足f(x+2)=f(−x),当x∈[−1,0]时,f(x)=x2+2x,则f(2021)=________.19. 已知函数f(x)满足f(2−x)=f(2+x),当x≤2时,f(x)=−x2+kx+2.(1)求f(x)的解析式;(2)求f(x)在[2,4]上的最大值..20. 已知定义在R上的奇函数f(x)有最小正周期4,且x∈(0, 2)时,f(x)=e xx(1)求f(x)在[−2, 2]上的解析式;(2)若|f(x)|≥λ对任意x∈R恒成立,求实数λ的取值范围.21. 已知函数f(x)在R上满足f(2−x)=f(2+x),f(7−x)=f(7+x)且在闭区间[0,7]上,只有f(1)=f(3)=0.试判断函数y=f(x)的奇偶性;试求方程f(x)=0在闭区间[−2011,2011]上根的个数,并证明你的结论.22. 设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=−f(x).当x∈[0,2]时,f(x)=2x−x2.求证:f(x)是周期函数;当x∈[2,4]时,求f(x)的解析式;计算f(0)+f(1)+f(2)+⋯+f(2013).23. 已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0, 1)时,f(x)=2x.4x+1(1)证明f(x)在(0, 1)上为减函数;(2)求函数f(x)在[−1, 1]上的解析式;(3)当λ取何值时,方程f(x)=λ在R上有实数解.参考答案与试题解析高中数学 函数的周期性练习题含答案一、 选择题 (本题共计 11 小题 ,每题 3 分 ,共计33分 ) 1.【答案】 C【考点】 函数的求值函数奇偶性的性质 函数的周期性【解析】根据题意,分析可得f(x)是周期为2的周期函数,则有f(10)=f(0),即可得答案. 【解答】解:根据题意,函数f(x)满足f(1−x)=f(1+x), 又由f(x)为偶函数,则有f(−x)=f(x), 即f(x −1)=f(1−x)=f(1+x), 所以f(x)=f(2+x),则函数f(x)是周期为2的周期函数, 故f(10)=f(0)=2. 故选C . 2.【答案】 C【考点】 函数的周期性 偶函数 【解析】根据题意,由函数的奇偶性与周期性可得f(−132)=f(−12)=f(12),结合函数的解析式分析可得答案. 【解答】解:由题意得f(x)是R 上周期为3的偶函数, 则f(−132)=f(−12)=f(12).因为当0<x ≤32时,f(x)=log 4x ,所以f(12)=log 412=−12, 所以f(−132)=−12. 故选C .3. 【答案】 B【考点】函数的周期性函数的求值【解析】由已知得f(1+x)=−f(1−x)=−f(x−1).从而得到|f(x+4)=f(x),再由当1≤x≤2时,f(x)=2x−1,能求出f(2021)的值.【解答】解:∵f(1+x)=f(1−x),且f(−x)=f(x),则f[1+(1+x)]=f[1−(1+x)],即f(2+x)=f(−x)=f(x).∵ f(x)是以2为周期的周期函数,当1≤x≤2时,f(x)=2x−1∴f(2021)=f(2×1010+1)=f(1)=21−1=1.故选B.4.【答案】C【考点】函数的周期性函数的求值【解析】由已知得f(1+x)=−f(1−x)=−f(x−1),从而得到f(x+4)=f(x),再由当1≤x≤2时,f(x)=2x−1,能求出f(2017)的值.【解答】解:∵f(1+x)+f(1−x)=0,且f(−x)=f(x),∴f(1+x)=−f(1−x)=−f(x−1).令x−1=t,得f(t+2)=−f(t),∴f(x+4)=−f(x+2)=f(x),∴f(x)以4为周期的周期函数.∵当1≤x≤2时,f(x)=2x−1,∴f(2017)=f(4×504+1)=f(1)=21−1=1.故选C.5.【答案】B【考点】函数的周期性函数奇偶性的性质【解析】此题暂无解析【解答】解:因为f(1+x)=f(1−x),且f(x)为定义在R上的偶函数,所以有f(1+x)=f(1−x)=f(x−1),即f(x+2)=f(x),函数f(x)为周期为2的偶函数,且关于x=1对称.又因为g(x)=e−|x−1|(−1<x<3)关于x=1对称,所以f(x)与g(x)的图象一共有四个交点,交点的横坐标之和为2+2=4.故选B.6.【答案】A【考点】函数的求值函数的周期性【解析】由题意,根据f(x+2)=f(−x)以及f(4−x)=−f(x)可推导y=f(x)是周期为4的周期函数,可得f(2019)=f(3),f(2021)=f(1),代入f(4−x)=−f(x)可计算结果,又f(2020)=f(0)=0,代入计算即可.【解答】解:已知f(x+2)=f(−x),则f(2−x)=f(x).又f(4−x)=−f(x),可得f(4−x)+f(2−x)=0,所以f(x+2)=−f(x),即f(x+4)=f[(x+2)+2]=−f(x+2)=f(x),可得函数y=f(x)是周期为4的周期函数,则f(2019)=f(3),f(2020)=f(0),f(2021)=f(1).因为f(4−x)+f(x)=0,所以f(4−1)+f(1)=0,即f(3)+f(1)=0,可得f(2019)+f(2020)+f(2021)=0+1=1.故选A.7.【答案】A【考点】函数奇偶性的性质函数的周期性函数的求值【解析】此题暂无解析【解答】解:根据题意,函数f(x)满足f(1−x)=f(1+x),则f(−x)=f(2+x),又由f(x)为偶函数,则有f(−x)=f(x),则f(x+2)=f(x),函数f(x)是周期为2的偶函数,故f(194)=f(34)=f(−34)=tan[π3×(−34)]=−1.故选A.8.【答案】B函数奇偶性的性质函数的周期性【解析】【解答】解:因为f(x+3)=−f(x),所以f(x+6)=−f(x+3)=f(x),所以f(x)是周期为6的周期函数,所以f(2021)=f(6×337−1)=f(−1)=f(1).因为f(1)>7,所以f(2021)=4+3a>7,解得a>1.故选B.9.【答案】B【考点】函数的周期性利用导数研究函数的单调性奇偶性与单调性的综合【解析】由f(−x)=−f(x),f(2−x)=f(2+x)判断出该函数的奇偶性及对称性、周期性.再将自变量转变到同一周期内利用单调性进行比大小.【解答】解:∵f(−x)=−f(x),f(2−x)=f(2+x),∴f(x)为奇函数,∴f[2−(x+2)]=f(2+x+2),即f(−x)=f(x+4)=−f(x),∴f(x+8)=−f(x+4)=f(x),即f(x)的最小正周期为8,∴f(7)=f(8−1)=f(−1)=−f(1),f(10)=f(8+2)=f(2),当x∈[0,2]时,f(x)=x 22+cos x−1,f′(x)=x−sin x,f′′(x)=1−cos x≥0,∴f′(x)=x−sin x为单调递增函数,f′(x)≥f′(0)=0,∴f(x)=x22+cos x−1为单调递增函数,即当x∈[0,2]时,f(x)≥f(0)=0,∴−f(1)<0,0<f(1)<f(√3)<f(2),∴f(7)<f(√3)<f(10),即n<m<t.故选B.10.C【考点】 函数的周期性 函数奇偶性的性质 分段函数的应用根的存在性及根的个数判断【解析】本题考查函数的图象与性质及不等式与函数的结合. 【解答】解:∵ f (−x )=f (x ),f (2−x )=f (2+x ),∴ f(2+x)=f(−x −2)=f(−x +2),∴ f (x +4)=f (x ),即f (x )是以4为周期的函数,作出函数f (x )的图象如图所示.令g (x )=m|x|,将g (x )的图象绕坐标原点旋转可得 {7m ≤e −1,9m >e −1,即{m ≤e−17,m >e−19 则实数m 的取值范围为(e−19,e−17].故选C . 11.【答案】 A【考点】 函数的周期性 函数的求值【解析】【解答】解:由f (x )=f (x +5)可知f (x )周期为5, 因为当x ∈[−2,0)时,f (x )=−(x +2)2; 当x ∈[0,3)时,f (x )=x ,所以f (−2)+f (−1)+f (0)+f (1)+f (2)=2. 又因为f (x )周期为5,所以f (x )+f (x +1)+f (x +2)+f (x +3)+f (x +4)=2, 因此f (1)+f (2)+⋯+f (2021)=f (1)+[f (2)+f (3)+f (4)+f (5)+f (6)]+⋯+f (2021) =f (1)+2×404 =809. 故选A .二、 填空题 (本题共计 7 小题 ,每题 3 分 ,共计21分 ) 12.−34【考点】 函数的周期性 函数奇偶性的性质 函数的求值 【解析】由奇函数的性质可得,f(−92)=−f(92),由周期性可得f(92)=f(92−4)=f(12),进而得解. 【解答】解:由题意可得,f(−92)=−f(92)=−f(92−4)=−f(12)=−12×(1+12)=−12×32=−34. 故答案为:−34. 13.【答案】 0【考点】 函数的求值 函数的周期性 函数奇偶性的性质【解析】由f (x +2)=−f (x )可得f (x )是周期为4的函数,把f (2016)转化成f (0))求解即可. 【解答】解:对任意实数x ,恒有f (x +2)=−f (x ),则f(x +4)=f(x +2+2)=−f(x +2)=f(x), 所以f (x )是周期为4的函数, 所以f (2016)=f (0),又f (x )是定义在R 上的奇函数, 所以f (0)=0, 所以f (2016)=0. 故答案为:0. 14.【答案】 −3【考点】 求函数的值 函数的周期性 函数的求值【解析】推导出f(x+4)=−f(x+2)=f(x),当x∈[0, 2)时,f(x)=3x,从而f(2019)=f(3)=−f(1),由此能求出结果.【解答】∵函数f(x)的定义域为R,且f(x)=−f(x+2),∴f(x+4)=−f(x+2)=f(x),当x∈[0, 2)时,f(x)=3x,∴f(2019)=f(3)=−f(1)=−(3)故答案为:−(3)15.【答案】√2【考点】函数奇偶性的性质函数的周期性【解析】由已知条件推导出f(−x)=f(x),故f(x)为偶函数.由f(x+4)=−f(x)+2√2,得f(x+4+4)=−f(x+4)+2√2=f(x),所以f(x)是周期为8的偶函数,所以f(2018)=f(2+252×8)=f(2),由此能求出结果.【解答】解:由函数f(x−2)的图象关于直线x=2对称可知,函数f(x)的图象关于y轴对称,故f(x)为偶函数.由f(x+4)=−f(x)+2√2,得f(x+4+4)=−f(x+4)+2√2=f(x),所以f(x)是周期为8的偶函数,所以f(2018)=f(2+252×8)=f(2),又f(2)=−f(−2)+2√2,f(−2)=f(2),所以f(2)=√2.故答案为:√2.16.【答案】3【考点】函数奇偶性的性质函数的周期性函数的求值【解析】暂无【解答】解:因为f(x)为R上的奇函数,所以f(0)=1+a=0,所以a=−1,(0≤x≤1),所以f(x)=2x−12x.则f(1)=32又因为f (x )为奇函数,所以f (−x )=f (2+x )=−f (x ),则f (x +4)=f (x ),所以f (x )的周期为4,所以f (101)+f (105)=2f (1)=32×2=3. 故答案为:3.17.【答案】0,337【考点】函数的求值函数的周期性【解析】先由f (x +6)=f (x )判断周期为6,直接计算f (4);然后计算2017=6×36+1,把f (1)+f (2)+f (3)+⋯+f (2016)+f (2017)转化为=336×[f (1)+f (2)+f (3)+⋯+f (6)]+f (2017) ,即可求解.【解答】解:因为f (x +6)=f (x ),所以函数f (x )的周期为6的周期函数,当x ∈[−3,3)时,f (x )={−(x +2)2,−3≤x <−1,x,x −1≤x <3,所以f (4)=f (−2)=−(−2+2)2=0,因为2017=6×336+1,f (1)=1,f (2)=2,f (3)=f (−3)=−(−3+2)2=−1, f (4)=0,f (5)=f (−1)=−1,f (6)=f (0)=0,所以f (1)+f (2)+f (3)+⋯+f (2016)+f (2017)=336×[f (1)+f (2)+f (3)+⋯+f (6)]+f (2017)=36×(1+2−1+0−1+0)+1=337.故答案为:0;337.18.【答案】1【考点】函数奇偶性的性质函数的周期性【解析】无【解答】解:因为f (x )是奇函数,所以f (x +2)=f (−x )=−f (x ),所以f (x +4)=f(x +2+2)=−f(x +2)=f (x ),所以f (x )的周期为4.所以f (x +4)=f (x ),故f (x )是以4为周期的周期函数,则f (2021)=f (4×505+1)=f (1)=−f (−1)=−[(−1)2−2]=1.故答案为:1.三、 解答题 (本题共计 5 小题 ,每题 10 分 ,共计50分 )19.【答案】解:(1)因为f (2−x )=f (2+x ),所以f (x )=f (4−x ),当x >2时,4−x <2,则f (x )=f (4−x )=−(4−x )2+k (4−x )+2=−x 2+(8−k )x +4k −14,故f (x )的解析式为f (x )={−x 2+kx +2, x ≤2,−x 2+(8−k )x +4k −14,x >2.(2)当x ∈[2,4]时,f (x )=−x 2+(8−k )x +4k −14=−(x −8−k 2)2+k 2+84. 当8−k 2≥4,即k ≤0时,f (x )在[2,4]上单调递增,则f (x )max =f (4)=2;当8−k 2≤2,即k ≥4时,f (x )在[2,4]上单调递减,则f (x )max =f (2)=2k −2;当2<8−k 2<4,即0<k <4时,f (x )max =f (8−k 2)=k 2+84. 综上所述,f (x )max ={ 2,k ≤0,k 2+84,0<k <4,2k −2,k ≥4.【考点】函数的周期性二次函数在闭区间上的最值分段函数的应用函数解析式的求解及常用方法【解析】【解答】解:(1)因为f (2−x )=f (2+x ),所以f (x )=f (4−x ),当x >2时,4−x <2,则f (x )=f (4−x )=−(4−x )2+k (4−x )+2=−x 2+(8−k )x +4k −14,故f (x )的解析式为f (x )={−x 2+kx +2, x ≤2,−x 2+(8−k )x +4k −14,x >2.(2)当x ∈[2,4]时,f (x )=−x 2+(8−k )x +4k −14=−(x −8−k 2)2+k 2+84. 当8−k 2≥4,即k ≤0时,f (x )在[2,4]上单调递增,则f(x)max=f(4)=2;当8−k2≤2,即k≥4时,f(x)在[2,4]上单调递减,则f(x)max=f(2)=2k−2;当2<8−k2<4,即0<k<4时,f(x)max=f(8−k2)=k2+84.综上所述,f(x)max={2,k≤0,k2+84,0<k<4,2k−2,k≥4.20.【答案】解:(1)当x∈(−2, 0)时,−x∈(0, 2),∴f(−x)=e−x−x =−1xe x,又f(x)为奇函数,∴f(−x)=−f(x),∴f(x)=1xe x.当x=0时,由f(−0)=−f(0)可知,f(0)=0. 又∵ f(x+4)=f(x),∴f(−2)=f(−2+4)=f(2),即−f(2)=f(2),∴ f(2)=0,∴f(−2)=f(2)=0.综上,f(x)={1xe x (−2<x<0), 0(x=0,±2), e xx(0<x<2).(2)|f(x)|≥λ对任意x∈R恒成立,等价于|f(x)|min≥λ.∵f(x)的最小正周期为4,∴只需求x∈[−2, 2]时的|f(x)|min,由(1)可知,x∈[−2, 2]时,|f(x)|min=0,此时,x=0或±2,∴λ≤0.【考点】函数恒成立问题函数的周期性奇函数【解析】(1)由f(x)是x∈R上的奇函数,得f(0)=0.再由最小正周期为4,得到②和f(−2)的值.然后求(−2, 0)上的解析式,通过在(−2, 0)上取变量,转化到(0, 2)上,即可得到结论.(2)|f(x)|≥λ等价于|f(x)|min≥λ,由f(x)的最小正周期为4得,问题转化为求x∈[−2, 2]时的|f(x)|min,由(1)易求;【解答】解:(1)当x∈(−2, 0)时,−x∈(0, 2),∴f(−x)=e−x−x =−1xe x,又f(x)为奇函数,∴f(−x)=−f(x),∴f(x)=1xe x.当x=0时,由f(−0)=−f(0)可知,f(0)=0. 又∵ f(x+4)=f(x),∴f(−2)=f(−2+4)=f(2),即−f(2)=f(2),∴ f(2)=0,∴f(−2)=f(2)=0.综上,f(x)={1xe x (−2<x<0), 0(x=0,±2), e xx(0<x<2).(2)|f(x)|≥λ对任意x∈R恒成立,等价于|f(x)|min≥λ.∵f(x)的最小正周期为4,∴只需求x∈[−2, 2]时的|f(x)|min,由(1)可知,x∈[−2, 2]时,|f(x)|min=0,此时,x=0或±2,∴λ≤0.21.【答案】函数f(x)既不是奇函数也不是偶函数.∵f(x)=f[2+(x−2)]=f[2−(x−2)]=f(4−x),f(x)=f[7+(x−7)]=f(7−(x−7))=f(14−x),∴f(14−x)=f(4−x),即f[10+(4−x)]=f(4−x),∴f(x+10)=f(x),即函数f(x)的周期为10.又∵f(1)=f(3)=0,∴f(1)=f(1+10n)=0(n∈Z),f(3)=f(3+10n)=0(n∈Z),即x=1+10n和x=3+10n(n∈Z)均是方程f(x)=0的根.由−2011≤1+10n≤2011及n∈Z可得n=0,±1,±2,±3,⋯,±201,共403个;由−2011≤3+10n≤2011及n∈Z可得n=0,±1,±2,±3,⋯,±200,−201,共402个;所以方程f(x)=0在闭区间[−2011,2011]上的根共有805个.【考点】函数的周期性抽象函数及其应用函数的图象与图象变化【解析】此题暂无解析【解答】若y=f(x)为偶函数,则f(−x)=f(2−(x+2))=f(2+(x+2))=f(4+x)=f(x),∴f(7)=f(3)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0矛盾;因此f(x)不是偶函数.若y=f(x)为奇函数,则f(0)=f(−0)=−f(0),∴f(0)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0矛盾;因此f(x)不是奇函数.综上可知:函数f(x)既不是奇函数也不是偶函数.略22.【答案】证明∵f(x+2)=−f(x),∴f(x+4)=−f(x+2)=f(x).∴f(x)是周期为4的周期函数.f(x)=x2−6x+8,x∈[2,4].1【考点】函数的周期性奇偶性与单调性的综合【解析】此题暂无解析【解答】思维启迪:只需证明f(x+T)=f(x),即可说明f(x)是周期函数;探究提高判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.解∵x∈[2,4],∴−x∈[−4,−2],∴4−x∈[0,2],∴f(4−x)=2(4−x)−(4−x)2=−x2+6x−8,又f(4−x)=f(−x)=−f(x),∴−f(x)=−x2+6x−8,即f(x)=x2−6x+8,x∈[2,4].思维启迪:由f(x)在[0,2]上的解析式求得f(x)在[−2,0]上的解析式,进而求f(x)在[2,4]上的解析式;探究提高判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.解∵f(0)=0,f(2)=0,f(1)=1,f(3)=−1.又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=⋯=f(2008)+f(2009)+f(2010)+f(2011)=0.∴f(0)+f(1)+f(2)+⋯+f(2013)=f(0)+f(1)=1.思维启迪:由周期性求和.探究提高判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.23.【答案】证明:设x1,x2∈(0,1)x1<x2,=(4x1+1)(4x2+1)⋯∵0<x1<x2<1,∴2x2>2x1,2x1+x2>1∴f(x1)−f(x2)>0,即f(x1)>f(x2),∴f(x)在(0, 1)上为减函数.若x∈(−1, 0),∴−x∈(0, 1),∴f(−x)=2−x4−x+1,又∵f(x)为奇函数,∴f(−x)=2−x4−x+1=−f(x),∴f(x)=−2−x4−x+1⋯又∵f(−1)=f(1),且f(−1)=−f(1),∴f(1)=f(−1)=0∴f(x)={2x4x+1,x∈(0,1) 0,x=0x=±1−2x4x+1,x∈(−1,0)⋯若x∈(0, 1),∴f(x)=2x4x+1=12x+12x又∵2x+12x ∈(2,52),∴f(x)∈(25,12 ),若x∈(−1, 0),∴f(x)=−2x4x+1=−12x+12x,∴f(x)∈(−12,−25),∴λ的取值范围是{λ|λ=0,−12<λ<−25,25<λ<12}.…12分【考点】函数的周期性函数奇偶性的性质与判断【解析】(1)利用函数单调性的定义证明.(2)利用函数的周期性和奇偶性求对应的解析式.(3)利用函数的性质求函数f(x)的值域即可.【解答】证明:设x1,x2∈(0,1)x1<x2,=(4x1+1)(4x2+1)⋯∵0<x1<x2<1,∴2x2>2x1,2x1+x2>1∴f(x1)−f(x2)>0,即f(x1)>f(x2),∴f(x)在(0, 1)上为减函数.若x∈(−1, 0),∴−x∈(0, 1),∴f(−x)=2−x4−x+1,又∵f(x)为奇函数,∴f(−x)=2−x4−x+1=−f(x),∴f(x)=−2−x4−x+1⋯又∵f(−1)=f(1),且f(−1)=−f(1),∴f(1)=f(−1)=0∴f(x)={2x4x+1,x∈(0,1) 0,x=0x=±1−2x4x+1,x∈(−1,0)⋯若x∈(0, 1),∴f(x)=2x4x+1=12x+12x又∵2x+12x ∈(2,52),∴f(x)∈(25,12 ),若x∈(−1, 0),∴f(x)=−2x4x+1=−12x+12x,∴f(x)∈(−12,−25),∴λ的取值范围是{λ|λ=0,−12<λ<−25,25<λ<12}.…12分。
高一数学复习考点题型专题讲解13 函数的周期性与对称性

高一数学复习考点题型专题讲解 第13讲 函数的周期性与对称性一、单选题1.已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =( )A .3B .3-C .255D .255-【答案】B【分析】根据题意可知()f x 是周期函数,根据周期以及奇函数即可求解.【解析】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B2.已知()f x 是R 上的奇函数,且(2)(),(1)3f x f x f -==,则(2022)(2023)f f +=( ) A .3- B .1- C .1 D .2【答案】A【分析】由题意求得函数()f x 是周期为4的周期函数,得到()()()()2022202321f f f f +=+-,结合()()11f x f x -+=+,得到()()20f f =,进而求得()()1,0f f -的值,即可求解.【解析】由题意,函数()f x 为R 上的奇函数,可得()(2)()f x f x f x +=-=-,所以()()4f x f x +=,所以()f x 是周期为4的周期函数,所以()()()()2022202321f f f f +=+-,因为()()11f x f x -+=+,令1x =,得()()20f f =,因为()f x 为R 上的奇函数,所以()()()00,113f f f =-=-=-,所以()()20222023033f f +=-=-.故选:A.3.已知定义在R 上的偶函数()f x 满足()()110f x f x -++=,若()03f =,则()()20222023f f +=( )A .0B .3-C .3D .6【答案】B【分析】根据题意, 分析可得函数()f x 是周期为4的周期函数, 由此可得()()()2022203f f f ==-=-,()()()202331f f f ==-,用赋值法求出()1f 的值, 由此计算即可得答案.【解析】根据题意, 函数()f x 满足()()110f x f x -++=, 则()()20f x f x -++=,又由()f x 为偶函数,则有()()2f x f x +=-,则有()()()42f x f x f x +=-+=,即函数()f x 是周期为4的周期函数,()()110f x f x -++=,令0x =可得()10f =.()()()2022203f f f ==-=-,()()()2023310f f f ==-=,所以()()202220233f f +=-故选:B4.已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++-=,()1f x +为偶函数,()11f =,则()2023f =( )A .1B .-1C .2D .-3【答案】B【分析】根据对称性可得函数具有周期性,根据周期可将()()()2023311f f f ==-=-.【解析】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2f x f x -=,又由()()40f x f x ++-=,得()()4f x f x +=--,所以()()()846f x f x f x +=---=-+,所以()()2f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==-=-. 故选:B .5.若定义在R 上的奇函数()f x 满足()()2f x f x -=,在区间()0,1上,有()()()12120x x f x f x ⎡⎤-->⎣⎦,则下列说法正确的是( )A .函数()f x 的图象关于点()1,0成中心对称B .函数()f x 的图象关于直线2x =成轴对称C .在区间()2,3上,()f x 为减函数D .7223f f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭【答案】C【分析】对于A :根据题意结合奇函数可得()()40f x f x -+=,结合对称中心结论()()2f m x f x n b -++=,则()f x 关于,2m n b +⎛⎫ ⎪⎝⎭成中心对称理解判断;对于B :根据对称轴的结论:()()f m x f x n -=+,则()f x 关于2m n x +=成轴对称,结合题意理解判断;对于C :根据题意可得:()f x 在()0,1内单调递增,结合轴对称性质:对称区间单调性相反理解判断;对于D :整理可得()()4f x f x +=,则()f x 的周期为4,结合单调性整理分析.【解析】()()()()()42222f x f x f x f x f x ⎡⎤-=--=-=--=-⎣⎦,即()()40f x f x -+=,故()f x 关于()2,0成中心对称,A 不正确;∵()()2f x f x -=,则()f x 关于1x =成轴对称,B 错误;根据题意可得:()f x 在()0,1内单调递增∵()f x 关于1x =成轴对称,(2,0)中心对称,则()f x 在()2,3内单调递减;C 正确; 又∵()()()22f x f x f x =-=--,则()()2f x f x +=-∴()()()42f x f x f x +=-+=,可知()f x 的周期为4 则712,D 223f f f ⎛⎫⎛⎫⎛⎫-=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭错误 故选:C .6.已知图象开口向上的二次函数()f x ,对任意x ∈R ,都满足3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,若()f x 在区间(),21a a -上单调递减,则实数a 的取值范围为( )A .5,4⎛⎤-∞ ⎥⎝⎦B .51,4⎛⎤ ⎥⎝⎦C .3,2⎡⎫-+∞⎪⎢⎣⎭D .(],2-∞ 【答案】B【分析】根据题意,可知函数的对称性,并明确其对称轴,根据二次函数的图象性质,可得答案.【解析】由3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,得函数()f x 图象的对称轴是直线32x =, 又二次函数()f x 图象开口向上,若()f x 在区间(),21a a -上单调递减, 则321221a a a ⎧-≤⎪⎨⎪<-⎩,解得514a <≤.故选:B.7.已知定义域为R 的函数()f x 的图象关于点()1,0成中心对称,且当1≥x 时,()2f x x mx n =++,若()17f -=-,则3m n +=( )A .7B .2C .2-D .12-【答案】C【分析】由已知结合函数对称性可求出()3f ,进而求得结果.【解析】解:因为定义域为R 的函数()f x 的图象关于点()1,0成中心对称,且当1≥x 时,()2f x x mx n =++, 若()17f -=-,则()()317f f =--=.故()23337f m n =++=,即32m n +=-.故选:C.8.已知函数()f x 是定义在R 上的奇函数,当0x <时,()22f x x =-+.若对任意的[]1,2x ∈-,()()f x a f x +>成立,则实数a 的取值范围是( )A .()0,2B .()()0,2,6-∞C .()2,0-D .()()2,06,-+∞【答案】D【分析】利用奇函数求得()f x 的解析式,画出其函数图象的草图,由不等式在闭区间上恒成立,结合()f x 的对称性,有在12x -≤≤中,420x a --<<或42a x >-恒成立,进而求a 的范围.【解析】由题设知:,20()4,2x x f x x x --≤<⎧=⎨+<-⎩,又()f x 是定义在R 上的奇函数,即(0)0f =, ∴当02x <≤时,20x -≤-<,即()()f x x x -=--=,而()()f x f x x =--=-;当2x >时,2x -<-,即()()44f x x x -=-+=-,而()()4f x f x x =--=-;∴综上,有4,2(),224,2x x f x x x x x ->⎧⎪=--≤≤⎨⎪+<-⎩,可得如下函数图象,∴对任意的[]1,2x ∈-有()()f x a f x +>成立,即在12x -≤≤中,24x a x a x +<-⎧⎨+>--⎩或22x a x a x -≤+≤⎧⎨+<⎩或24x a x a x +>⎧⎨+>-⎩恒成立, ∴420x a --<<或42a x >-恒成立,即有20a -<<或6a >.故选:D.【点睛】关键点点睛:由已知求得()f x 的解析式并画出函数图象草图,由不等式恒成立,结合函数的对称性列不等式组,求参数范围.二、多选题9.设函数()f x 定义域为R ,()1f x -为奇函数,()1f x +为偶函数,当()1,1x ∈-时,()21f x x =-+,则下列结论错误的是( )A .7324f ⎛⎫=- ⎪⎝⎭B .()7f x +为奇函数C .()f x 在()6,8上为减函数D .()f x 的一个周期为8【答案】ABD【分析】由(1)(1)f x f x --=--、(1)(1)-+=+f x f x 可推出()f x 的周期为8,利用对称性、周期性求72f ⎛⎫ ⎪⎝⎭、判断()7f x +奇偶性及()7,8x ∈时()f x 的单调性,即可得答案. 【解析】由题设,(1)(1)f x f x --=--,则()f x 关于(1,0)-对称,所以[(1)1](11)f x f x ---=---,即()(2)f x f x -=--,则[(2)](22)f x f x --=---,即(2)(4)f x f x -=--,由(1)(1)-+=+f x f x ,则()f x 关于1x =对称,所以[(1)1](11)f x f x --+=-+,即(2)()f x f x -=,综上,()(4)f x f x =--,则(4)(44)(8)f x f x f x -=---=--,故()(8)f x f x =-,即()(8)f x f x =+易知()f x 的周期为8,D 正确;773113(2)()(1)(1)()22222412f f f f f f ⎛⎫=-=-=--=--=--=- ⎪⎝⎭,A 正确; 由(1)(7)f x f x -=+,而()1f x -为奇函数,故()7f x +为奇函数,B 正确;由()1,0x ∈-时()21f x x =-+递增,则()7,8x ∈时()f x 递增,显然C 错误.故选:ABD10.已知函数()f x 是奇函数,()1f x +是偶函数,并且当(]()0,1,12x f x x ∈=-,则下列结论正确的是( )A .()f x 在()3,2--上为减函数B .()f x 在13,22⎛⎫ ⎪⎝⎭上()0f x < C .()f x 在[]1,2上为增函数D .()f x 关于3x =对称【答案】BD【分析】由已知可得()f x 的图象关于()0,0中心对称,且关于1x =轴对称,周期为4,则可依次判断每个选项正误.【解析】因为()f x 是奇函数,()1f x +是偶函数,所以()()f x f x -=-,(1)(1)f x f x +=-+,所以(4)(31)(31)(2)(2)f x f x f x f x f x +=++=--+=--=-+,又(2)(11)(11)()()f x f x f x f x f x +=++=--+=-=-,所以(4)()f x f x +=,所以函数()f x 的周期为4,其图象关于1x =轴对称,当(]0,1x ∈时,()12f x x =-,则函数()f x 在()0,1x ∈上递减,根据对称性可得()f x 在()1,2x ∈单调递增,再结合周期性可得()f x 在()3,2--上为增函数,故A 错误,因为当(]0,1x ∈时,()12f x x =-,()f x 在1,12x ⎛⎤∈ ⎥⎝⎦小于0,根据对称性可得()f x 在13,22x ⎛⎫∈ ⎪⎝⎭小于0,故B 正确; ()f x 的图象关于1x =轴对称,所以13202f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()()200f f ==, 所以()f x 不可能在[]1,2上为增函数,故C 错误;因为()()f x f x -=-,(1)(1)f x f x +=-+,所以(1)(1)(1)(1)f x f x f x f x --=-+=--+=-+所以()f x 的图象关于1x =-轴对称,因为()f x 的周期为4,所以()f x 关于3x =对称,故D 正确.故选:BD.11.已知函数()[]f x x x =-,其中[]x 表示不大于x 的最大整数,如:[]0.20=,[]1.22-=-,则( )A .()f x 是增函数B .()f x 是周期函数C .()2f x 的值域为[)0,1D .()2f x 是偶函数【答案】BC【分析】利用特殊值法可判断AD 选项;利用函数周期性的定义可判断B 选项;利用题中的定义求出函数()2f x 的值域,可判断C 选项.【解析】对于A 选项,因为()[]1110f =-=,()[]2220f =-=,所以,函数()f x 不是增函数,A 错;对于B 选项,对任意的x ∈R ,存在Z k ∈,使得1k x k ≤<+,则[]=x k ,所以,112k x k +≤+<+,则[][]111x k x +=+=+,所以,()[][]()[]()11111f x x x x x x x f x +=+-+=+-+=-=,故函数()f x 为周期函数,且周期为1,B 对;对于C 选项,对任意的x ∈R ,存在Z k ∈,使得21k x k ≤<+,则[]2x k =,所以,()[][)22220,1f x x x x k =-=-∈,C 对;对于D 选项,令()()2g x f x =,该函数的定义域为R ,因为()()[]0.40.80.80.80.8g f ==-=,()()[]0.40.80.80.80.810.2g f -=-=---=-+=,所以,()()0.40.4g g ≠-,故函数()2f x 不是偶函数,D 错.故选:BC.12.已知定义在R 上的函数()f x 满足()()0f x f x +-=,()(6)0f x f x ++=,且对任意的12,[3]0x x ∈-,,当12x x ≠时,都有11221221()()()()x f x x f x x f x x f x +<+,则以下判断正确的是( )A .函数()f x 是偶函数B .函数()f x 在[96]--,上单调递增 C .x =2是函数(1)f x +的对称轴D .函数()f x 的最小正周期是12【答案】BCD【分析】根据函数的奇偶性的定义判断A;由()(6)0f x f x ++=结合函数的奇偶性可推得(6)()f x f x +=-以及(12)()f x f x +=,从而判断函数的对称轴和周期,判断C,D ;根据函数的对称性和单调性以及周期性可判断B;【解析】因为定义在R 上的函数()f x 满足()()0f x f x +-=,即()()f x f x -=-, 故函数()f x 是奇函数,故A 错误;因为()(6)0f x f x ++=,故(6)()f x f x +=-,而()()f x f x -=-,所以(6)()f x f x +=-,即()f x 的图象关于3x =对称,则x =2是函数(1)f x +的对称轴,故C 正确;因为(6)()f x f x +=-,所以(12)(6)()f x f x f x +=-+=,故12是函数()f x 的周期;对任意的12,[3]0x x ∈-,,当12x x ≠时,都有11221221()()()()x f x x f x x f x x f x +<+, 即1212()[()()]0x x f x f x -⋅-<,故3[]0x ∈-,时,()f x 单调递减,又因为()f x 为奇函数,所以]3[0x ∈,时,()f x 单调递减, 又因为()f x 的图象关于3x =对称,故6[3,]x ∈时,()f x 单调递增,因为12是函数()f x 的周期,故函数()f x 在[9,6]-- 单调性与[3,6]x ∈时的单调性相同, 故函数()f x 在[9,6]--上单调递增,故B 正确,作出函数()f x 的大致图象如图示:结合图象可得知12是函数()f x 的最小正周期,D 正确;故选:BCD【点睛】本题考查了函数的奇偶性单调性以及对称性和周期性的判断,综合性强,推理复杂,要能熟练地应用相应概念进行相应的推理,解答的关键是函数单调性对称性以及奇偶性周期性的综合应用.三、填空题13.对x ∀∈R ,函数()f x 都有()()20f x f x +-=,则()f x =___________.(答案不唯一,写出一个即可)【答案】sin x π(答案不唯一)【分析】由已知关系式可知()f x 关于点()1,0对称,由此可得函数解析式.【解析】()()20f x f x +-=,()f x ∴图象关于点()1,0对称,则()sin f x x π=.故答案为:sin x π(答案不唯一).14.已知函数()f x 的定义域为R ,对任意x 都有()()22f x f x +=-,且()()f x f x -=,下列结论正确的是____.(填序号)①()f x 的图像关于直线2x =对称;②()f x 的图像关于点()20,对称;③()f x 的最小正周期为4;④()4y f x =+为偶函数.【答案】①③④【分析】由()()22f x f x +=-可得()f x 的图像关于直线2x =对称,然后结合()f x 为偶函数可判断出答案.【解析】因为()()22f x f x +=-,所以()f x 的图像关于直线2x =对称,故①正确,②错误; 因为函数f (x )的图像关于直线2x =对称,所以()()4f x f x -=+,又()()f x f x -=,所以()()4f x f x +=,所以4T =,故③正确;因为4T =且()f x 为偶函数,所以()4y f x =+为偶函数,故④正确.故答案为:①③④15.已知函数()|1|||f x x x t =++-的图像关于2x =对称,则t 的值是_______【答案】5【分析】函数()f x 的图像关于2x =对称,则()()4f x f x =-,代入即可求解.【解析】又因为函数()|1|||f x x x t =++-的图像关于2x =对称,所以()()4f x f x =-,则|1||||5||4|x x t x x t ++-=-+--所以5t =故答案为:516.已知定义在R 上的奇函数()f x 满足()()22f x f x -++=,当[]1,0x ∈-时,()22f x x x =+,若()0f x x b --≥对一切R x ∈恒成立,则实数b 的最大值为______.【答案】14-##0.25-【分析】根据题设条件可得()f x 的图象关于()1,1呈中心对称,再根据奇偶性求出()f x 在[]0,1上的解析式,即可画出函数的图象,结合图象可求实数b 的最大值.【解析】解:因为()()22f x f x -++=,故()f x 的图象关于()1,1呈中心对称,因为当[]1,0x ∈-时,()22f x x x =+,当[0,1]x ∈时,()()22()22f x f x x x x x =--=-=+--,故()f x 的图象如图所示:结合图象可得:只需当[1,0]x ∈-时,2()2f x x x x b =+≥+即可, 即21124b x ⎛⎫+- ⎪⎝⎭≤,故14b ≤-, 故答案为:14-.四、解答题17.已知()f x 是定义在R 上的函数,满足()()()121f x f x f x -+=+.(1)若132f ⎛⎫-= ⎪⎝⎭,求72f ⎛⎫ ⎪⎝⎭; (2)求证:()f x 的周期为4;(3)当[)0,2x ∈时,()3f x x =,求()f x 在[)2,0x ∈-时的解析式.【答案】(1)3(2)证明见解析(3)()3537x f x x +=-+ 【分析】(1)先求出32f ⎛⎫ ⎪⎝⎭,然后再求72f ⎛⎫ ⎪⎝⎭即可; (2)利用函数周期性的定义,即可证明;(3)根据[)2,0x ∈-以及题设条件,先求出()()232f x x +=+,再根据()()()121f x f x f x -+=+,即可解出()f x 在[)2,0x ∈-时的解析式.(1) ∵1131122122212f f f f ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=-+==- ⎪ ⎪⎛⎫⎝⎭⎝⎭+- ⎪⎝⎭, ∴317322332212f f f f ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+== ⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭. (2)∵对任意的x ∈R ,满足()()()121f x f x f x -+=+ ∴()()()()()()()()()1112142211211f x f x f x f x f x f x f x f x f x ---+++=++===-++++,∴函数()f x 是以4为周期的周期函数.(3)设[)2,0x ∈-,则[)20,2x +∈,∵当[)0,2x ∈时,()3f x x =,∴当[)20,2x +∈时,()()232f x x +=+,又∵()()()121f x f x f x -+=+, ∴()()()1321f x x f x -+=+ ∴()3537x f x x +=-+. 18.定义域为R 的函数()f x 满足:对任意实数x ,y ,均有()()()2f x y f x f y +=++,且()22f =,当1x >时,()0f x >.(1)求()0f ,()1f -的值;(2)证明:当1x <时,()0f x <.【答案】(1)()02f =-,()14f -=-(2)证明见解析【分析】(1)利用赋值法求解(2)当1x <时,21x ->,则()20f x ->,再结合已知求解.(1)(1)令0x y ==,则()()()0002f f f =++,解得()02f =-.令1x y ==,则()()()2112f f f =++,解得()10f =,令1x =,1y =-,则()()()0112f f f =+-+,解得()14f -=-.(2)(2)当1x <时,21x ->,则()20f x ->.因为()()()()22222f f x x f x f x =-+=-++=,所以()()20f x f x =--<.19.设()f x 是定义在R 上的奇函数,且对任意实数x ,恒有(2)()f x f x +=-.当[0x ∈,2]时,2()2f x x x =-.(1)求证:()f x 是周期函数;(2)当[2x ∈,4]时,求()f x 的解析式;(3)计算(0)(1)(2)(2008)f f f f ++++的值.【答案】(1)证明见解析;(2)2()68f x x x =-+;(3)1.【分析】(1)根据函数周期的定义进行证明即可;(2)根据奇函数的性质,结合函数的周期性进行求解即可;(3)根据函数的周期性进行求解即可.【解析】(1)证明:(2)()f x f x +=-,(4)(2)()f x f x f x ∴+=-+=.()f x ∴是周期为4的周期函数.(2)当[2x ∈-,0]时,[0x -∈,2],由已知得22()2()()2f x x x x x -=---=--,又()f x 是奇函数,2()()2f x f x x x ∴-=-=--,2()2f x x x ∴=+.又当[2x ∈,4]时,4[2x -∈-,0],2(4)(4)2(4)f x x x ∴-=-+-.又()f x 是周期为4的周期函数,22()(4)(4)2(4)68f x f x x x x x ∴=-=-+-=-+.从而求得[2x ∈,4]时,2()68f x x x =-+.(3)(0)0f =,f (2)0=,f (1)1=,f (3)1=-.又()f x 是周期为4的周期函数,(0)f f ∴+(1)f +(2)f +(3)f =(4)f +(5)f +(6)f +(7)(2f =⋯=008)(2f +009)(2f +010)(2f +011)(2f =012)(2f +013)(2f +014)(2f +015)0=.而(2016)(2017)(2008)(0)(1)(2)1f f f f f f ++=++=,所以(0)(1)(2)(2008)1f f f f ++++=.20.已知二次函数()()220f x ax x c a =++≠的图象与y 轴交于点()0,1,且满足()()22f x f x -+=--()x R ∈.(1)求()f x 的解析式,并求()f x 在[]3,0-上的最大值;(2)若()f x 在()1,t -+∞上为增函数,求实数t 的取值范围.【答案】(1)()21212f x x x =++;()max 1f x =;(2)1t ≥-.【分析】根据二次函数()()220f x ax x c a =++≠的图象与y 轴交于点()0,1,求得c ,根据()()22f x f x -+=--,得函数关于2x =-对称,即可求得a ,从而可得函数得解析式,再根据二次函数得性质即可的解;(2)根据二次函数得单调性即可的解.【解析】解:(1)因为二次函数为()()220f x ax x c a =++≠的图象与y 轴交于点()0,1,故1c =,又因为函数()f x 满足()()()22f x f x x R -=-∈+-,所以函数关于2x =-对称,即222x a =-=-,所以12a =, 故二次函数的解析式为:()21212f x x x =++由()f x 在[]3,2--单调递减,在[]2,0-单调递增,又()()13,012f f -=-=,所以()()max 01f x f ==;(2)因为函数在()1,t -+∞上为增函数,且函数图象的对称轴为2x =-,即二次函数()f x 在()2,-+∞上递增,所以12t -≥-,故1t ≥-.21.设函数()f x 是定义在R 上的偶函数,且(1)(1)f x f x +=-对任意的x ∈R 恒成立,且当[0,1]x ∈时,2()f x x =. (1)求证:()f x 是以2为周期的函数(不需要证明2是()f x 的最小正周期); (2)对于整数k ,当[21,21]x k k ∈-+时,求函数()f x 的解析式.【答案】(1)证明见解析;(2)2()(2),[21,21]()f x x k x k k k Z =-∈-+∈.【分析】(1)通过证明(2)()f x f x +=成立得解;(2)先求解[1,1]x ∈-时,2()f x x =,再通过周期为2得(2)()f x k f x -=可求解当[21,21]x k k ∈-+时函数()f x 的解析式【解析】解:(1)因为()(2)[(1)1]11()()f x f x f x f x f x ⎡⎤+=++=-+=-=⎣⎦, 所以:()f x 是以2为周期的函数;(2)∵当[0,1]x ∈时,2()f x x =,函数()f x 是定义在R 上的偶函数∴当[1,0]x ∈-时,2()f x x =,∴[1,1]x ∈-时,2()f x x =,∵()f x 是以2为周期的函数,即(2)()f x k f x -=,()k ∈Z设[21,21]x k k ∈-+,则2[1,1]x k -∈-,2(2)(2)f x k x k ∴-=-,即2()(2),[21,21]()f x x k x k k k Z =-∈-+∈.22.已知函数2()21f x x ax =--,且(2)(2)f x f x +=-.(1)求函数()y f x =的解析式;(2)若()()g x f x mx =+在[1,1]-上时单调函数,求实数m 的取值范围.【答案】(1)2()41y f x x x ==--.(2)[6,)(,2]+∞-∞【分析】(1)利用函数的对称性和二次函数的性质进行求解即可;(2)根据二次函数的性质,结合分类讨论法进行求解即可.(1)解:因为(2)(2)f x f x +=-,所以函数()y f x =的对称轴为:2x =,函数2()21f x x ax =--的对称轴为:x a =,所以有2a =,即2()41y f x x x ==--.(2)解:2()()(4)1g x f x mx x m x =+=+--, 该函数的对称轴为:42m x -=-, 当412m -≤-时,函数在[1,1]-上单调递减,解得 2m ≤; 当412m --≤-时,函数在[1,1]-上单调递增,解得6m ≥, 综上所述:实数m 的取值范围为[6,)(,2]+∞-∞.23.我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象关于点(,)P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.(1)求证:点(1,2)-是函数32()3f x x x =+图象的对称中心;(2)已知函数32()3f x x x =+,求(2021)(2020)(2019)(2018)f f f f -+-++的值.【答案】(1)证明见解析;(2)8.【分析】(1)令()(1)2g x f x =--,利用单调性的定义证明()g x 是奇函数即可;(2)根据条件可得()()0g x g x +-=,即(1)(1)4f x f x -+--=,将数字直接代入计算即可.(1)证明:因为32()3f x x x =+,令()(1)2g x f x =--,所以32()(1)3(1)2g x x x =-+--3223(331)3(21)23x x x x x x x =-+-+-+-=-即3()3g x x x =-,33()()3()3()g x x x x x g x -=---=-+=-所以()g x 是奇函数.由题意,点(1,2)-是函数32()3f x x x =+图象的对称中心.(2)由(1)知函数32()3f x x x =+的图像的对称中心为(1,2)-,所以()()(1)2(1)20g x g x f x f x +-=--+---=,所以(1)(1)4f x f x -+--=,所以(2021)(2019)=(2020)(2018)=4f f f f -+-+,所以(2021)(2020)(2019)(2018)=8f f f f -+-++.24.设函数()()R y f x x =∈.(1)若对任意实数a ,b 有()()()f a b f a f b +=+成立,且当0x >时,()0f x >; ①判断函数的增减性,并证明;②解不等式:()()2560f t f t ++<;(2)证明:“()()R y f x x =∈图象关于直线x a =对称”的充要条件是“任意给定的R x ∈,()2()f a x f x -=”.【答案】(1)①函数()y f x =为R 上增函数,证明见解析;②{|51}t t -<<-(2)证明见解析【分析】(1)①利用赋值法和单调性的定义进行证明,②先利用赋值法得到()00=f ,再利用单调性和()()()f a b f a f b +=+进行变形求解;(2)结合函数的性质,从充分性、必要性两方面进行证明.(1)解:①函数()y f x =为R 上增函数,证明如下:由()()()f a b f a f b +=+,得()()()f a b f a f b +-=,对于12,R x x ∈,且12x x >,则120x x ->,则()()()12120f x f x f x x -=->,所以当12x x >时,有()()12f x f x >,所以函数()y f x =为R 上增函数.②由①得:()()2560f t f t ++<可化为2[(5)6]0f t t ++<,取0b =,得()()()0f a f a f =+,解得()00=f ,又因为函数()y f x =为R 上增函数,所以2(5)60t t ++<,解得51t -<<-即()()2560f t f t ++<的解集为{|51}t t -<<-.(2)证明:因为()y f x =图象关于直线x a =对称,所以()()f a x f a x =-+,令a x t -=,则x a t =-,2a x a t +=-,所以()(2)f t f a t =-,即()(2)f x f a x =-成立;若()(2)f x f a x =+,令x a t =-,则2a x a t -=+,即()()f a t f a t -=+,即()()f a x f a x =-+成立,即()y f x =图象关于直线x a =对称;所以“()()R y f x x =∈图象关于直线x a =对称”的充要条件是“任意给定的R x ∈,()2()f a x f x -=”.25.已知函数()21f x x =-+. (1)利用函数单调性定义证明()21f x x =-+在区间()1,-+∞上的单调性; (2)请利用(1)的结论,说出()21f x x =-+在区间(),1-∞-上的单调性(不用证明); (3)利用本题中(1)(2)得到的结论,求函数()21f x x =-+在区间()5,2--上的值域. 【答案】(1)证明见解析(2)()21f x x =-+在区间(),1-∞-上单调递增 (3)1,22⎛⎫ ⎪⎝⎭ 【分析】(1)根据函数单调性的定义证明即可;(2)根据函数图象的变换,结合函数的对称性与单调性求解即可;(3)根据函数的单调性,结合函数的值域求解即可.(1)设1x ,2x 是区间()1,-+∞上的任意两个实数,且12x x <,则()()()()()()()()212112121212211222111111x x x x f x f x x x x x x x +---⎛⎫-=---=-=- ⎪++++++⎝⎭ 由121x x -<<,得210x x ->,()()12120x x ++> 所以()()120f x f x -<,即()()12f x f x <.故()21f x x =-+在区间()1,-+∞上单调递增. (2)()21f x x =-+由反比例函数()2f x x=-向左平移得到 所以()21f x x =-+图像关于点()1,0-对称 由(1)知()21f x x =-+在区间()1,-+∞上单调递增 所以()21f x x =-+在区间(),1-∞-上单调递增. (3) 因为()()5,2,1--⊆-∞-,由(1)(2)知()21f x x =-+在区间()5,2--上单调递增 所以()()max 22f x f =-=,()()min 152f x f =-=.即()21f x x =-+在区间()5,2x ∈--上的值域为1,22⎛⎫ ⎪⎝⎭.。
高中数学函数的周期性与常考题(附经典例题与解析)

函数的周期性与常考题【知识点分析】:函数的周期性设函数y=f(x),x∈D,如果存在非零常数T,使得对任意x∈D,都有f(x+T)=f(x),则称函数f(x)为周期函数,T为函数f(x)的一个周期.(D为定义域)1. 型的周期为T。
定义:对x取定义域内的每一个值时,都有,则为周期函数,T叫函数的周期。
【相似题练习】1.定义在R上的函数f(x)满足:f(x+6)=f(x),当﹣3≤x<﹣1时,f(x)=﹣(x+2)2;当﹣1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2019)=()A.336B.337C.338D.3391.已知定义在R上的函数y=f(x)对于任意的x都满足f(x+2)=f(x).当﹣1≤x<1时,f(x)=x3.若函数g(x)=f(x)﹣log a|x|至少有6个零点,则a的取值范围是.1.已知f(x)是定义在R上的函数,且对任意实数x有f(x+4)=﹣f(x)+2,若函数y=f(x﹣1)的图象关于直线x=1对称,则f(2014)=()A.﹣2+2B.2+2C.2D.【知识点分析】:2. 型的周期为。
证明:。
特别得:f(x-a)=f(x+a)型,的周期为2a。
【相似题练习】2.已知偶函数y=f(x)满足条件f(x+1)=f(x﹣1),且当x∈[﹣1,0]时,f(x)=3x+,则f(5)的值等于.1.已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当时,,则f(2019)=()A.﹣2B.﹣1C.0D.2【知识点分析】:3. 型的周期为2a。
证明:【相似题练习】1.已知定义在R上的函数f(x﹣1)的对称中心为(1,0),且f(x+2)=﹣f(x),当x∈(0,1]时,f(x)=2x﹣1,则f(x)在闭区间[﹣2014,2014]上的零点个数为.1.设函数f(x)是定义在R上的奇函数,满足f(x+1)=﹣f(x﹣1),若f(﹣1)>1,f(5)=a2﹣2a﹣4,则实数a的取值范围是()A.(﹣1,3)B.(﹣∞,﹣1)∪(3,+∞)C.(﹣3,1)D.(﹣∞,﹣3)∪(1,+∞)1.已知函数f(x)对任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x﹣1)的图象关于点(1,0)对称,且f (4)=4,则f(2012)=()A.0B.﹣4C.﹣8D.﹣161.已知定义在R上的函数f(x)的图象关于点(﹣,0)成中心对称图形,且满足,f(﹣1)=1,f(0)=﹣2,则f(1)+f(2)+…+f(2015)的值为()A.1B.2C.﹣1D.﹣2【知识点分析】:4. 型的周期为2a。
高一数学函数周期性测试题

(2)奇函数 f (x)的图象对于原点对称,偶函数 g(x)的图象对于 y 轴对称。
(3)奇 +奇=奇, 奇- 奇=奇 , 偶+偶 =偶 , 偶- 偶=偶. 奇+偶无定章。
奇* 偶=奇 , 偶* 偶=偶 , 奇* 奇=偶;在公共定义域内,两奇函数之积(商)为偶函数,两个偶函数之积(商)也为偶函数;一奇一偶函数之积(商)为奇函数(取商时分母不为零)。
1) 函数 y=f(x),x∈R,若f(x+a)=f(x-a),则函数的周期为2)函数 y=f(x),x∈ R,若f(x+a)=-f(x),则函数的周期为3)函数y=f(x),x∈ R,若f (x a)1,则函数的周期为f (x)(1)若 f ( x8)(2)若 f ( x4)(3)若偶函数 y f (x),则 f ( x)的周期为 _______;f ( x),则 f (x)的周期为 _______;f (x)知足 f ( x 2a) f ( x),则 f ( x)的周期为 _______;(4)若奇函数 y f (x)知足 f ( x 2a) f ( x),则 f ( x)的周期为 _______;(5)若函数 f ( x)知足 f ( x) ? f ( x 2)6,则 f ( x)的周期为(1)若 f ( x)的周期为 4, f (1) 3,则f (13)____;(2)若 f ( x)是周期为 4的奇函数,且 f (1) 3,则f (11) ___;4.已知 f (x)在R上是奇函数,且知足 f (x 4) f (x),当x时,f ( x) x2,则f (7)() (0,2)B. 3 D.15. 对随意实数 x, 以下函数为奇函数的是()=2x-3=-3x2=ln 5x=-|x|cos x9. 已知 f(x )=ax2+bx 是定义在那么 a+b 的值是[a-1,2a] 上的偶函数(),A. B. C. D.f(x) 为奇函数,且 f(x) 的周期为 3,f (2)=1,则 f (10)等于 ( )2. 若函数 f (x )是定义在 R 上的偶函数,在( - ∞, 0]上是减函数,且 f(2)=0 ,则使得 f(x)<0 的取值范围 是 ( ) A.(- ∞,2) B.(2,+ ∞) C.(- ∞,-2) ∪(2,+ ∞) D.(-2,2)3.(2009 ·陕西文, 10) 定义在 R 上的偶函数 f(x) ,对随意 x 1,x 2∈[ 0,+ ∞)(x 1≠x 2 ) ,有 则 ( ) (3)<f(-2)<f(1) (1)<f(-2)<f(3) (-2)<f(1)<f(3) (3)<f(1)<f(-2)4. (2009·辽宁理, 9)已知偶函数 f(x) 在区间[ 0, + ∞)上单一递加,则知足 的 x 的取值范围是 ( )A.( 1 , 2 )B.3 3C. (1, 2)D.2 31 2 [ , )3 31 2[ , )5. 定义在 R 上的偶函数 f(x) 知足 f (x+1)=-f (x ), 且在[ -1 , 0]上是增函数,给出以下对于 f (x )的判断: ①f ( x )是周期函数;② f ( x )对于直线 x=1 对称;③f ( x )在[ 0,1]上是增函数; ④f ( x )在[ 1,2]上是减函数; ⑤f ( 2)=f (0),此中正确的序号是 __________. 6. 设函数 f ( x)( x 1)( x a)为奇函数,则 a= .x分析2则函数 g(x)=(x+1)(x+a)=x+(a+1)x+a即 x 2+(a+1)x+a=(-x) 2+(a+1)(-x)+a∴- ( a+1)x=0 对 x 恒建立,∴a+1=0,即 a=-1.。
高一数学函数周期性和对称性复习练习题

函数周期性和对称性高一数学一•定义:若T为非零常数,对于定义域内的任一x,使f(x T) f(x)恒成立则f(x)叫做周期函数,T叫做这个函数的一个周期。
二•重要结论1、f x f x a,则y f x是以T a为周期的周期函数;2、若函数y=f(x)满足f(x+a)=-f(x) (a>0),则f(x)为周期函数且2a是它的一个周期。
3、若函数f x a f x a,贝U f x是以T 2a为周期的周期函数14、y=f(x)满足f(x+a) = (a>0),则f(x)为周期函数且2a是它的一个周期。
f x15、若函数y=f(x)满足f(x+a) = (a>0),则f(x)为周期函数且2a是它的一个周期。
f x6、f (x a) 1一3,则fx是以T 2a为周期的周期函数.1 f(x)7、f(x a)1一L(x),则f x是以T 4a为周期的周期函数•1 f(x)8、若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2 ( b-a)是它的一个周期。
9、函数y f(x) x R的图象关于两点 A a, y0、B b, y0 a b都对称,则函数 f (x)是以2 b a为周期的周期函数;10、函数y f(x) x R的图象关于A a, y。
和直线x b a b都对称,则函数f(x)是以4 b a为周期的周期函数;11、若偶函数y=f(x)的图像关于直线x=a对称,贝U f(x)为周期函数且2 a是它的一个周期。
12、若奇函数y=f(x)的图像关于直线x=a对称,则f(x)为周期函数且4 a是它的一个周期。
13、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)( a>0),则f(x)为周期函数,6a是它的一个周期。
14、若奇函数y=f(x)满足f(x+T)=f(x) (x € R, 0),则f(-)=0.2函数的轴对称:a b定理1 :如果函数y f x满足fax f b x,则函数y f x的图象关于直线x 对2 称•推论1:如果函数y f x满足fax fax,则函数y f x的图象关于直线x a对称•推论2:如果函数y f x满足f x f x ,则函数y f x的图象关于直线x 0 (y轴)对称. 特别地,推论2就是偶函数的定义和性质.它是上述定理1的简化.一、函数的点对称:定理2:如果函数y f x满足fax fax 2b,则函数y f x的图象关于点a,b对称. 推论3:如果函数y f x满足fax fax 0,则函数y f x的图象关于点a,0对称.推论4 :如果函数y f x满足f x f x 0,则函数y f x的图象关于原点0,0对称.特别地,推论4就是奇函数的定义和性质.它是上述定理2的简化.二、函数周期性的性质:定理若函数f x在R上满足f (a x)fax,且f(b x) f b x (其中a b),则函数3:y f x以2 a b为周期.定理4:若函数f x在R上满足f(a x) f a x,且f(b x) f b x (其中 a b),则函数y f x以2 a b为周期.定理5:若函数f x在R上满足f(a x)fax,且f(b x) f b x (其中a b),则函数y fx以4a b为周期.以上几类情形具有一定的迷惑性,但读者若能区分是考查单一函数还是两个函数,同时分析条件特征必能拨开迷雾,马到成功.下面以例题来分析.例1.已知定义为R的函数f x满足f x f x 4,且函数f x在区间2, 上单调递增.如果x-i 2 x2,且x-i x2 4,则f % f x2的值().A.恒小于0 B .恒大于0 C .可能为0 D .可正可负.分析:f x f x 4形似周期函数f x f x 4,但事实上不是,不过我们可以取特殊值代入,通过适当描点作出它的图象来了解其性质.或者,先用x 2代替x,使f x f x 4变形为f 2 x f x 2 .它的特征就是推论 3.因此图象关于点2,0对称.f x在区间2, 上单调递增,在区间,2上也单调递增.我们可以把该函数想象成是奇函数向右平移了两个单位.(如图)2 X2 4 x-,且函数在2, 上单调递增,所以f x2 f 4 X!,又由f x f x 4 ,有 f (4 x 1) f x 1 4 f x 1 4 4 f x 1 ,[3,4] 上是增函数f x 1 f x 2 f x 1 f 4 x 1 f x 1 f x 10.选 A.当然,如果已经作出大致图象后,用特殊值代人也可猜想出答案为A.练1:在R 上定义的函数f (x)是偶函数,且f(x) f (2 x).若f (x)在区间[1,2]上是减函数,则f(x)()A. 在区间[2, 1]上是增函数,在区间[3,4]上是减函数B. 在区间[2, 1]上是增函数,在区间[3,4]上是减函数上是减函数,在区间C.在区间[2, 1][3, 4]上是增函数分析:由f(x) f(2 x)可知f(x)图象关于x 1对称,即推论1的应用.又因为f(x)为偶函数图象关于 x 0对称,可得到f(x)为周期函数且最小正周期为 2,结合f (x)在区间[1,2]上是减函数,可得如右 f(x)草图.故选B例2 •已知函数y f x 的图象关于直线 x 2和x 4都对称,且当0x1时,f X x .在闭区间T,T 上的根的个数记为n ,贝U n 可能为(: )A.0B.1C.3D.5分析:f(T)f( T) 0 ,f( T )f (T ) f( ~T)f (T ),2 222•- f( 匸)f(T ) 0 ,则n 可能为5 ?练2.定义在R 上的函数f(x)既是奇函数,又是周期函数, 2 2D.在区间[2, 1]上是减函数,在区间T 是它的一个正周期•若将方程f(x)求f 19.5的值.分析:由推论1可知, y f x 的图象关于直线 2对称,即f 2 x同样, 满足f 4 x ,现由上述的定理 X 是以4为周期的函数.f 19.5 f 4 4 3.5 f 3.5 0.5 0.5, 同时还知f X 是偶函数,所以0.5 f 0.5 0.5. 例3. f f 398 x f 2158 x f 3214 x ,则f f 999 中最多有()个不同的值. A.165 B.177 C.183 D.199分析:由已知f x f 398 f 2158 x f 3214 x f x 1056f x 1760 f x 704352 . 又有 f x f 398 x2158 x f 3214 x 1056f 2158 1056 xf 1102 x f 1102 x1056f 46 x ,于是f (x)有周期352,于是f o ,f 1 , L ,f 999能在 ,f 351中找到. 又f (x)的图像关于直线x 23对称,故这些值可以在23 , f 24 丄,f 351中找到.又f(x)的图像关于直线x 199对称,故这些值可以在 f 23 , f 24 ,L , f 199 中找到.共有177个.选B. 练3 :已知 1 x1 3x ,x ,…, 则 f 2004 2 分析:由f ,可令 x=f (x )知 f , x 1 3x ,f 2 x3x 13x 1 f(x)为迭代周期函数,故 f 3n x 2004 f x, f 2004练4:函数f (x)在R 上有定义,且满足 f(x)是偶函数,且f 0 2005, g x x 1是奇函数,则f 2005的值为函数的定义域为[—1 , 0 ) U ( 0 , 1 ]故f ( x ) 是奇函数4、抽象函数奇偶性的判定与证明例4•已知函数f (x)对一切x, y R ,都有f (x y) f (x) f (y),(1)求证: f (x)是奇函数;(2)若f( 3) a ,用a 表示f(12)解:(1)显然f(x)的定义域是R ,它关于原点对称•在 f(x y) f (x) f (y)中,令 yx ,得 f(0) f(x) f( x),令 x y 0,得 f (0)f(0) f (0) ,「.f(0)0 ,••• f (x) f ( x) 0,即 f( x) f (x),••• f (x)是奇函数.f y fy 2,即有f :x f x 20,令 a nf x ,则 a n a n 2 0 ,其中 a 。
高一数学函数的周期性

[单选,A4型题,A3/A4型题]患儿男,7岁。幼时生长发育正常,3岁上幼儿园,现上一年级,成绩好,只是和老师同学关系不佳。有时在课堂上大声指出老师的口误,并要求老师向同学们道歉,害得老师很尴尬;同学们也不愿跟他玩,原因是他总要按自己的玩法来玩,并且要求别人也按他的做。有 [多选]左房室瓣口血流频谱的影响因素包括()。A.性别B.年龄C.心率D.呼吸E.前负荷 [单选]关于降钙素对骨骼的叙述是正确的A.灭活骨细胞膜的腺苷酸环化酶B.促进由骨骼游离钙离子C.促进由骨骼游离磷离子D.阻滞由骨骼游离钙离子E.阻滞由骨骼游离镁离子 [单选]部件类型区分号在零件编码系统中代表纵向布置部件的符号是()。A.VB.PC.L [单选,A2型题,A1/A2型题]关于前白蛋白叙述错误的是().A.营养不良敏感指标B.运载蛋白C.组织修补材料D.肝炎发病早期,浓度下降晚于其他血清蛋白E.运载维生素A [问答题,案例分析题]南淮公司为上市公司,有关股份支付资料如下。(1)2×11年12月31日经董事会批准,南淮公司实施股权激励计划,其主要内容如下:公司向其100名管理人员每人授予10万份股票期权,这些人员从2×12年1月1日起必须在该公司连续服务3年,服务期满时才能以每股3元购买 [单选]SET协议规范不涉及的对象主要是:()A.消费者B.收单银行C.认证中心DTS [单选]“计算机集成制造系统”英文简写是()。A.CADB.CAMCIMSD.ERP [单选,A1型题]产褥期是指胎盘娩出至产后()A.2周B.4周C.6周D.8周E.12周 [单选]下列有关【3Darray】命令的叙述错误的是()。A.此命令可以将模型在三维空间中成矩形阵列,还可以将模型以指定的轴成环形阵列B.在三维矩形阵列中,行、列、层分别沿着当前UCS的X、Y、Z方向C.当行、列、层等间距为正值时,将沿相应坐标轴正方向生成阵列D.当行、列、层等间距 [单选]近视度数较高者常伴有多种眼底病变,但不包括()A.视网膜周边部骨细胞样色素沉着B.黄斑出血C.玻璃体后脱离D.豹纹状眼底E.视网膜下新生血管膜 [多选]根据《立法法》的规定,下列哪些机关有权制定规章?()A.广州市政府B.教育部C.国家工商行政管理总局D.国家信访局 [问答题,简答题]写出机械效率的定义式,并分析影响机械效率的因素。 [单选,A2型题,A1/A2型题]选择氢原子核作为人体磁共振成像的原子核的理由是()A.1H是人体中最多的原子核B.1H约占人体中总原子核数的2/3以上C.1H的磁化率在人体磁性原子核中是最高的D.以上都是E.以上都不是 [单选,A2型题,A1/A2型题]滤过除菌常用的滤板孔径是()A.0.22~0.45μmB.0.50~0.75μmC.0.80~0.95μmD.1~5μmE.5~10μm [单选]关于发育性髋关节脱位的说法,正确的是()A.治疗时间对预后无影响B.治疗越早,效果越佳C.病理改变对治疗效果影响不大D.早期诊断不明,可以半年后再复查E.患儿呈醉酒步态 [单选]《中华人民共和国担保法》自何时起实施?()A、1995年6月30日B、1995年10月1日C、1996年6月30日D、1996年10月1日 [单选,A2型题,A1/A2型题]卵圆孔位于()A.额骨B.颞骨C.蝶骨D.筛骨E.枕骨 [单选]根据支付结算制度的规定,下列存款账户中,不可以用于办理现金支取的是()。A.证券交易结算资金专用存款账户B.临时存款账户C.基本存款账户D.异地从事临时经营活动的单位开立的账户 [单选]目前整流装置比较理想的新产品中,符合发展方向的装置是()。A.氧化铜整流装置B.硒整流装置C.锗整流装置D.硅整流装置 [问答题,简答题]中国电信转型新阶段的战略目标是什么? [单选]队列研究()A.只能计算比值比来估计相对危险度B.不能计算相对危险度C.不能计算特异危险度D.既可计算相对危险度,又可计算特异危险度E.既不能计算特异危险度,也不能计算相对危险度 [填空题]SAN干燥系统尾气通过()分离夹带的粉尘后经过()洗涤再排放到大气。 [单选,A2型题,A1/A2型题]前列腺癌治疗的疗效()A.根治术最好B.外照射最好C.组织间照射最好D.根治术,外照射及组织间照射疗效一样E.根治术加外照射最好 [单选,A2型题,A1/A2型题]()是医务人员进行自我道德评价的方式。A.名誉B.动机C.良心D.效果 [单选]在设置竞赛项目以及奖励办法的原则中,设置奖励的面要()A、宽B、窄C、无所谓D、其他 [填空题]()是科技职业道德的核心内容,是科技工作者进行科技活动的出发点和归宿。 [配伍题,B1型题]不全流产</br>不孕症了解卵巢功能</br>证实或排除子宫内膜癌</br>A.月经来潮前或来潮6~12h内刮宫B.分段诊断性刮宫C.月经周期第5天刮宫D.先用抗生素控制感染再刮宫E.急诊刮宫 [单选]张女士,29岁,于3年前经阴道自然分娩一健康男婴,现进行妇科查体,其子宫颈正常,则形状应该是()。A.圆形B.横椭圆形C.横裂状D.纵椭圆形E.梯形 [填空题]氧化铝水合物在无机酸和碱性溶液中,溶解性最好的是(),溶解性最差的是()。 [单选]下列哪种反应不属于光致化学作用()A.光致分解B.光致氧化C.光致聚合D.光致化合E.光致敏化 [单选]对肝右叶门脉血管的描述,哪一项错误A.门脉右前、后叶支可清晰显示B.门脉右支与胆囊长轴或垂直关系C.门脉右干、右前叶支与右后叶下段支构成"Y"形结构D.门脉右前叶支与胆囊长轴构成平行关系E.门脉右干及前后叶支构成"Y"形结构 [问答题,简答题]简述厂址选择的一般原则及厂址方案比较的方法。 [单选]患儿女,3个月,近期出现呕吐、腹泻、湿疹,伴有表情呆滞,血清苯丙氨酸60mg/L,诊断为苯丙酮尿症。目前有效治疗方法是低苯丙氨酸饮食。对于该患儿最大苯丙氨酸推荐摄取量为()A.70mg·kg-1·d-1B.50mg·kg-1·d-1C.30mg·kg-1·d-1D [单选]航空器可否飞入空中危险区或临时空中危险区:()。A.不行B.可以,但必须得到相关部门的批准C.可以,但必须在规定时限以外 [单选]所有地面电台覆盖整个调度区间的可靠概率在地形复杂地区应不小于()A.90%B.95%C.99% [单选]已将寻常性鱼鳞病的基因定位于()A.1q21B.1p22.3C.2q33-q35D.Xq25-1q32 [单选]关于类风湿结节的特点错误的是()。A.直径数毫米至数厘米B.质硬C.有压痛D.常出现在关节伸侧受压部位的皮下组织E.对称性 [单选]20世纪70年代中期以来,认知心理学家们开展了大量的关于儿童元认知的元认知知识、元认知体验、元认知监控这3种元认知成分的特征培养的研究,发现(),并认为这是导致年幼儿童不能很好地完成认知任务的重要原因。A.年幼儿童在元认知的这3种成分上都明显不如年长儿童B.年幼儿童 [名词解释]保藏
高一数学函数的周期性

[问答题,简答题]加氢气密的基本要求有哪些? [单选]采用乘数原理进行投资宏观效应分析时,投资乘数与()成正比。A.收入增量B.投资增量C.消费增量D.边际储蓄倾向 [单选]硝石不宜与下列哪些药物混放()。A.朴硝B.青盐C.硇砂D.雄黄、硫黄E.蒲黄 [单选,A1型题]治疗亚硝酸盐引起的高铁血红蛋白血症的药物有()A.解磷定B.阿托品C.纳洛酮D.亚甲蓝E.以上都错 [单选]手工焊接常用的助焊剂是()。A、松香B、无机助焊剂C、有机助焊剂D、阻焊剂 [单选,A2型题,A1/A2型题]患者男性,58岁,银屑病4年,加重3天,查体见四肢伸侧及背部雨滴状红斑丘疹,色鲜红,有皮屑,抓破出现同样皮损,瘙痒较著,予PUVA治疗的叙述中正确的是()A.可予PUVA全身治疗或PUVC的局部治疗B.可在服用8-MOP后2小时UVA全身照射C.PUVA法取得成功的关键是 [名词解释]称重传感器 [单选]根据勘察设计合同中的法定质量标准,工程设计修改必须由()负责完成。A.建设单位B.施工单位C.原设计单位D.新设计单位 [单选,案例分析题]男,21岁,发现右阴囊内鸡蛋大小肿块半年,不痛,平卧不消失。扪之囊性感,透光试验(+)。首选的治疗为()A.热敷B.穿弹力内裤C.手术治疗D.理疗E.阴囊托起 [单选]由焊条偏心过大而产生的偏吹,通常采用()的方法。A、更换工件B、外加磁场C、采取防风措施D、调整焊条角度 [单选,A2型题,A1/A2型题]轨道半径最小的壳层是()A.K层B.L层C.M层D.N层E.O层 [单选]成煤过程经过了()阶段A、泥炭化阶段、煤化阶段B、隔绝空气阶段、地壳运动阶段C、褐煤阶段、烟煤阶段、无烟煤阶段 [单选,A4型题,A3/A4型题]患儿男,5岁。1岁会叫爸妈会走路,3岁上幼儿园,4岁会背不少唐诗,会自己穿衣服,自己刷牙。近一年来无明显诱因以前会做的事情
高一数学函数的周期性

彩票中奖神器软件
[单选,A1型题]出现宫缩乏力,行人工破膜加速产程进展适用于()A.头先露,已衔接,宫口开3cmB.臀位,宫口开大3cm以上C.横位,宫口开大3cmD.胎头浮,跨耻征(+)E.头先露,宫口开1cm,胎心率170次/分 [名词解释]服务器 [单选]某船用发电柴油机组运转中油门一定稳定工作,若船舶耗电量增加,则该机组的运转工况变化是()。A.转速自动降低稳定工作B.增大循环供油量后转速稍有下降稳定工作C.增大循环供油量后转速稍有上升稳定工作D.转速自动降低至停车 [单选]目前,应用最为广泛的LAN标准是基于()的以太网标准A.IEEE802.5B.IEEE802.2C.IEEE802.3D.IEEE802.1 [判断题]泵站内轴流泵的电机应采用保护接零,剩水泵的电机应采用保护接地。A.正确B.错误 [判断题]各种定期储蓄存款的到期日,以对年、对月、对日为准。如遇到期日为该月没有的日期,以月底为到期日。A.正确B.错误 [单选]下列有关规章制定的立项与起草的说法哪项是正确的?()A.有规章制定权的地方政府的下级政府认为需要制定地方政府规章的,有权向其报请立项B.规章拟确立的主要制度和解决的主要问题是年度规章制订工作计划必须包含的内容C.起草规章听取意见的,应当采取书面方式D.起草单位对 [单选]某企业从事汽车修理修配业务,则该企业适合的成本计算方法是A.品种法B.分批法C.逐步结转分步法D.平行结转分步法 [单选,A2型题,A1/A2型题]小儿出生时血红蛋白量正常约为()A.90~110g/LB.110~130g/LC.130~150g/LD.150~220g/LE.230~260g/L [问答题,简答题]野外作业遇雷雨时,作业人员应遵守那些规定? [单选]患者男,45岁,阵发性心房颤动,服用胺碘酮仍频繁发作,发作时症状明显,患者维持窦性心律的进一步治疗应选择()A.导管消融B.换用索他洛尔C.外科开胸手术D.增加胺碘酮剂量E.换用普罗帕酮 [问答题,简答题]内燃机的进、排气门为什么要早开迟关? [单选]思科IOS命令ipnatinsidesourcestatic10.1.1.5172.35.16.5的作用是什么()。A.为所有外部nat创建一个全局的地址池B.为内部的静态地址创建动态的地址池C.为所有内部本地pat创建了动态源地址转换D.为内部本地地址和内部全局地址创建一对一的映射关系E.映射一个内部源地址到一 [单选,A1型题]下列哪项不符合视乳头水肿()。A.常见于颅内压增高的患者B.眼底检查可见视乳头充血,边缘模糊C.眼底检查有时可见视乳头周边出血D.早期即可出现视力减退E.晚期可继发视神经萎缩 [单选]劳动争议的内容是以()为标的的。A.当事人责任B.劳动义务C.劳动权利义务D.当事人责任义务 [单选,A1型题]既可用于肝气郁滞之胁肋作痛,又可用于食积不化的药物是()A.陈皮B.青皮C.柴胡D.香附E.川楝子 [单选]某设备供应商,不按设备采购合同的约定交付设备,设备供应商应承担()。A.侵权责任B.刑事责任C.违约责任D.行政责任 [单选]左室后壁在M型超声上的表现是()。A.左室后壁与室间隔呈同向运动B.左室后壁运动幅度大于室间隔C.舒张期左室后壁向前运动,室间隔向后运动D.左室后壁因受膈肌影响,运动幅度小于室间隔E.左室后壁舒张期与二尖瓣前叶呈同向运动 [多选]关节镜手术的适应证有()。A.诊断不明的单或多关节炎B.骨关节炎C.类风湿关节炎D.晶体性滑膜炎E.其他关节炎:化脓性关节炎、结核、滑膜软骨瘤、色素绒毛结节性滑膜炎等 [判断题]金融机构不得为身份不明的客户提供服务或者与其进行交易,不得为客户开立匿名账户或者假名账户。A.正确B.错误 [填空题]按照普拉提的课程形式,可以分为垫上课程和()。 [单选]疑腹内脏器损伤,下列处理哪项错误()A.诊断性腹腔穿刺B超检查C.避免活动D.定时观察生命体征E.给流质饮食 [单选]红色看起来觉得温暖,蓝色看起来觉得清凉是感觉的()现象A.适应B.后象C.对比D.联觉 [单选]根据《建设工程委托合同监理合同(示范文本)》(GF—2000—0210),监理人发现工程设计不符合国家规定的质量标准时,正确的做法是()。A.书面报告委托人并要求设计人改正B.指令施工单位征求设计人的修改意见C.及时向设计人报告问题的具体情况D.口头联系设计人并书面报告委 [单选,A2型题,A1/A2型题]下列哪项是错误的()A.HbA--α2β2B.HbA2--ζ2γ2C.HbGower2--α2ε2D.HbF--α2γ2E.HbBart--γ4 [判断题]储蓄是指个人将属于其所有的人民币或者外币存入储蓄机构,储蓄机构开具存折或者存单作为凭证,个人凭存折或者存单可以支取存款本金和利息,储蓄机构依照规定支付存款本金和利息的活动。A.正确B.错误 [单选]病原体均能被如下因素清除,但不包括()A.自身免疫性抗体B.人工注射的特异性IgGC.来自母体的特异性IgGD.通过预防接种产生的抗体E.同一病原体感染后产生的抗体 [单选,A2型题]某医师是注册登记的妇产科医师。应一朋友请求,在该医师家中为其做了人工流产手术。该医师可能受到的行政处罚不包括()A.罚款B.没收药品C.吊销执业证书D.赔偿患者损失E.没收违法所得 [单选]“气营两燔”指下列哪项为宜:().A.气分证未解又出现营分证B.营分证透出气分C.气分证转变营分证D.营分证欲从气分而解 [单选]重复电刺激前,通常停用抗胆碱酯酶药()A.2~4小时B.4~8小时C.8~12小时D.12~18小时E.无要求 [名词解释]药动学 [单选]脑膜炎双球菌是()A.严格需氧的革兰阳性双球菌B.严格需氧的革兰阴性双球菌C.厌氧的革兰阴性双球菌D.厌氧的革兰阳性双球菌E.革兰阴性双球菌,兼性厌氧菌 [填空题]网站的最大特点是它总是不断变化的,网站的不断更新才具有生命力。对于三种类型网站而言,更新的重要性通常为()>()>()。 [单选]围绝经期妇女,阴道不规则流血。妇科检查:子宫不大,无压痛,双侧附件无明显异常。首先考虑()。A.子宫黏膜下肌瘤B.子宫内膜息肉C.有排卵性功血D.无排卵性功血E.子宫内膜炎 [单选]在利润表上,利润总额减去()后,得出净利润。A.管理费用B.增值税C.营业外支出D.所得税费用 [单选]骨质疏松的病理基础是()A.骨有机成分减少,钙盐增加B.骨有机成分增加,钙盐减少C.骨有机成分正常,钙盐增加D.骨有机成分正常,钙盐减少E.骨有机成分和钙盐均减少 [单选,A1型题]下列各项中,不属于母儿血型不合的诊断要点的是()。A.血型、抗体效价测定B超检查C.胎盘功能检查D.羊水检查E.依据病史及症状 [多选]单纯随机抽样的特点是()。A.要求每隔一定数量单位抽一个样本B.样本代表性较差C.每个抽样单位有同等的机会被抽中D.方法简便易行E.不适于抽样范围及工作量大的研究 [单选]配送中心的业务活动以()发出的订货信息作为驱动源。A.生产订单B.客户订单C.采购订单D.内部订单 [单选]期货市场()的功能,为生产经营者实现锁定成本提供了良好的途径。A.价格发现B.规避风险C.资源配置D.投机
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)奇函数f (x )的图象关于原点对称,偶函数g (x )的图象关于y 轴对称。
(3)奇+奇=奇, 奇-奇=奇, 偶+偶=偶 ,偶-偶=偶.奇+偶无定则。
奇*偶=奇 ,偶*偶=偶 ,奇*奇=偶;
在公共定义域内,两奇函数之积(商)为偶函数,两个偶函数之积(商)也为偶函数;一奇一偶函数之积(商)为奇函数(取商时分母不为零)。
1)函数y=f(x),x ∈R,若f(x+a)=f(x-a),则函数的周期为
2)函数y=f(x),x ∈R,若f(x+a)=-f(x),则函数的周期为
3)函数y=f(x),x ∈R,若)
(1)(x f a x f ±=+,则函数的周期为 的周期为
则满足)若函数(的周期为则满足)若奇函数(的周期为则满足)若偶函数(的周期为则)若(的周期为则)若()(,
6)2()()(5_______;
)(),
()2()(4_______;
)(),
()2()(3_______;
)(),()4(2_______;
)(),()8(1x f x f x f x f x f x f a x f x f y x f x f a x f x f y x f x f x f x f x f x f =+•-=+=-=+=-=+=+
___;)11(,3)1(4)(2____;)13(,3)1(,4)(1====f f x f f f x f 则的奇函数,且是周期为)若(则的周期为)若(
1.1.3.3.)(
)7(,2)()2,0(),()4()(.4--=+=∈=+D C B A f x x f x x f x f R x f 则时,当上是奇函数,且满足在已知
5.对任意实数x,下列函数为奇函数的是 ( )
=2x-3 =-3x 2
=ln 5x =-|x|cos x
9.已知f(x )=ax2+bx 是定义在[a-1,2a]上的偶函数,
那么a+b 的值是 ( )
A. B. C. D.
f(x)为奇函数,且f(x)的周期为3,f (2)=1,则
f (10)等于 ( )
2.若函数f (x )是定义在R 上的偶函数,在(-∞,0] 上是减函数,且f(2)=0,则使得f(x)<0的取值范围
是 ( )
A.(-∞,2)
B.(2,+∞)
C.(-∞,-2)∪(2,+∞)
D.(-2,2)
3.(2009·陕西文,10)定义在R 上的偶函数f(x),对
任意x 1,x 2∈[0,+∞)(x 1≠x 2),有
则 ( )
(3)<f(-2)<f(1) (1)<f(-2)<f(3) (-2)<f(1)<f(3)
(3)<f(1)<f(-2)
4.(2009·辽宁理,9)已知偶函数f(x)在区间[0,
+∞)上单调递增,则满足 的x 的取
值范围是 ( ) A. )32,31( B. )3
2,31[
C. )32,21(
D. )32,21[
5.定义在R 上的偶函数f(x)满足f (x+1)=-f (x ),且在 [-1,0]上是增函数,给出下列关于f (x )的判断: ①f (x )是周期函数;
②f (x )关于直线x=1对称;
③f (x )在[0,1]上是增函数;
④f (x )在[1,2]上是减函数;
⑤f (2)=f (0),
其中正确的序号是__________.
6.设函数 x a x x x f ))(1()(++=为奇函数,则a= . 解析
则函数g(x)=(x+1)(x+a)=x 2+(a+1)x+a
应为偶函数,则g(-x)=g(x)恒成立.
即x 2+(a+1)x+a=(-x)2+(a+1)(-x)+a
∴-(a+1)x=0对x 恒成立,
∴a+1=0,即a=-1.。