2 实数的运算与大小比较中考试题
2019中考数学专题练习-实数的大小比较(含解析)

2019中考数学专题练习-实数的大小比较(含解析)一、单选题1.下列四个数中,最大的一个数是()A.2B.C.0D. -22.如果,那么、、之间的大小关系是()。
A. B. C.D.3.在-100,0,,1这四个数中,最大的数是()A.-100B.0C.D.14.下列各数中,最小的是().A. -5B.C.3D.05.下列各数中,最小的数是()A.3﹣2B.C.1-D.6.下列各数中比0小的数是( )A. B. C. D.7.数﹣1,,0,2中最大的数是()A.﹣1B.C.0D.28.在实数3,﹣3,﹣,中最小的数是()A.3B.﹣3C.D.﹣9.比较下列各数的大小,结果正确的是()A. B. C.D.10.下列四个数中最大的数是()A.2.5B.C.D.11.在实数0,1,﹣,﹣1中,最大的数是()A.0B.1C.﹣D. -112.三个实数﹣,﹣2,﹣之间的大小关系是()A.﹣>﹣>﹣2B.﹣>﹣2>﹣C.﹣2>﹣>﹣D.﹣<﹣2<﹣13.下列四个实数最小的是()A.﹣B.﹣C.0D.﹣114.在,,,这四个实数中,最大的是()A. B. C. D.0二、填空题15.比较大小:-________-16.小于π的自然数有________个.17.比较大小:﹣________﹣1(填“>”、“=”或“<”)18.比较大小:________ ﹣3(填“>”、“=”或“<”)19.估算比较大小:(填“>”、“<”或“=” )________20.比较大小:________2(填“>”或“<”或“=”)21.比较大小:________.22.将实数,π,0,﹣6由小到大用“<”号连起来,可表示为________.三、解答题23.规定一种新的运算a△b=ab﹣a+1,如3△4=3×4﹣3+1,请比较与的大小.24.如图,长方形ABCD的面积为300cm2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm2的圆(π取3),请通过计算说明理由.四、综合题25.比较大小(填“>”,“<”,或“=”号)(1)π________3.14(2)﹣________﹣(3)﹣(+5)________﹣|+5|26.比较下列各组数大小:(1)________12(2)﹣________﹣1.27.比较大小:(1)3 ________2(2)﹣________﹣.答案解析部分一、单选题1.下列四个数中,最大的一个数是()A.2B.C.0D. -2【答案】A【考点】实数大小的比较【解析】【解答】解:△0和负数比正数都小而1<<2△最大的数是2故答案为:A【分析】根据正数都大于0和负数,因此只需比较2和的大小即可。
专题2实数-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期)

2021年中考数学真题分项汇编【全国通用】(第02期)专题2实数姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·广东中考真题)下列实数中,最大的数是( )A .πB C .2- D .3 【答案】A【分析】直接根据实数的大小比较法则比较数的大小即可.【详解】解: 3.14π≈ 1.414≈,22-=,23π<-<<,故选:A .【点睛】本题考查了实数的大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(2021·广东中考真题)若0a +=,则ab =( )A B .92 C .D .9【答案】B【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【详解】∴0a ≥0,且0a +=∴0a =0==即0a =,且320a b -=∴a =b =∴92ab == 故选:B .【点睛】 本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.3.(2021·广东中考真题)设6的整数部分为a ,小数部分为b ,则(2a b +的值是( )A .6B .C .12D .【答案】A【分析】a 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∴34<<,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯+=+=-=. 故选:A .【点睛】本题考查了二次根式的运算,正确确定6的整数部分a 与小数部分b 的值是解题关键.4.(2021·湖南)实数a ,b 在数轴上的位置如图所示,则下列式子正确的是( )A .a b >B .||||a b >C .0ab >D .0a b +> 【答案】B由数轴易得21,01a b -<<-<<,然后问题可求解.【详解】解:由数轴可得:21,01a b -<<-<<, ∴,,0,0a b a b ab a b <><+<,∴正确的是B 选项;故选B .【点睛】本题主要考查数轴、绝对值的意义及实数的运算,熟练掌握数轴、绝对值的意义及实数的运算是解题的关键.5.(2021·12,0,1-中,最小的数是( )A .1-B .0C .12D 【答案】A【分析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小.【详解】12,0,1-中,12为正数大于0,1-为负数小于0, ∴最小的数是:1-.故选:A .【点睛】本题考查了实数比较大小,解题的关键是:根据正数大于0,0大于负数,两个负数,绝对值大的反而小,可以直接判断出来.6.(2021·黑龙江绥化市·中考真题)下列运算正确的是( )A .()257a a =B .448x x x ⋅=C 3=±D =【答案】B根据幂的乘方,同底数幂的乘法,算术平方根,以及实数的运算法则逐一判断.【详解】A 、(a 5)2=a 10,故A 错,B 、x 4∴x 4=x 8,故B 正确,C 3=,故C 错,D -3-D 错, 故选:B【点睛】本题考查了算术平方根,实数的运算,同底数幂的乘法,以及幂的乘方,熟悉并灵活运用以上性质是解题的关键.7.(2021·黑龙江绥化市·中考真题)定义一种新的运算:如果0a ≠.则有2||a b a ab b -=++-▲,那么1()22-▲的值是( ) A .3-B .5C .34-D .32【答案】B【分析】根据题意列出算式,求解即可【详解】 2||a b a ab b -=++-▲2111()2=()()2|2|222-∴--+-⨯+-▲ 412=-+=5.故选B .【点睛】本题考查了新定义运算、负指数幂的运算,绝对值的计算,解决本题的关键是牢记公式与定义,本题虽属于基础题,但其计算中容易出现符号错误,因此应加强符号运算意识,提高运算能力与技巧等.8.(2021·湖南永州市·中考真题)定义:若10x N =,则10log x N =,x 称为以10为底的N 的对数,简记为lg N ,其满足运算法则:lg lg lg()(0,0)M N M N M N +=⋅>>.例如:因为210100=,所以2lg100=,亦即lg1002=;lg4lg3lg12+=.根据上述定义和运算法则,计算2(lg2)lg2lg5lg5+⋅+的结果为( )A .5B .2C .1D .0【答案】C【分析】根据新运算的定义和法则进行计算即可得.【详解】解:原式lg 2(lg 2lg5)lg5⋅++=, lg 2lg10lg5=⋅+,lg 2lg5=+,lg10=,1=,故选:C .【点睛】本题考查了新定义下的实数运算,掌握理解新运算的定义和法则是解题关键.9.(2021·广西柳州市·中考真题)在实数3,12,0,2-中,最大的数为( ) A .3B .12C .0D .2- 【答案】A【分析】根据正数大于零,负数小于零,正数大于一切负数,两个负数比较大小,绝对值大的反而小,两个正数比较大小,绝对值大数就大,据此判断即可.【详解】根据有理数的比较大小方法,可得: 12032 ,因此最大的数是:3,故选:A .【点睛】本题考查了实数的比较大小,解答此题的关键在于明确:正数>0>负数.10.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于( ) A .23- B .13 C .12- D .23【答案】D【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值. 【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅, 会发现是以:213,,32-,循环出现的规律, 202136732=⨯+,2021223a a ∴==, 故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.11.(2021·青海中考真题)已知a ,b 是等腰三角形的两边长,且a ,b满足()223130a b +-=,则此等腰三角形的周长为( ).A .8B .6或8C .7D .7或8【答案】D【分析】先根据非负数的性质列式求出a 、b 的值,再分a 的值是腰长与底边两种情况讨论求解.【详解】解:()223130a b +-=,∴23+5023130a b a b -⎧⎨+-⎩== 解得23a b ⎧⎨⎩==,∴2是腰长时,三角形的三边分别为2、2、3,能组成三角形,周长=2+2+3=7;∴2是底边时,三角形的三边分别为2、3、3,能组成三角形,周长=2+3+3=8,所以该等腰三角形的周长为7或8.故选:D .【点睛】本题考查了等腰三角形的性质,绝对值与算术平方根的非负性,根据几个非负数的和等于0,则每一个算式都等于0求出a 、b 的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断. 12.(2021·北京中考真题)实数,a b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .2a >-B .a b >C .0a b +>D .0b a -<【答案】B【分析】 由数轴及题意可得32,01a b -<<-<<,依此可排除选项.【详解】解:由数轴及题意可得:32,01a b -<<-<<, ∴,0,0a b a b b a >+<->,∴只有B 选项正确,故选B .【点睛】本题主要考查实数的运算及数轴,熟练掌握实数的运算及数轴是解题的关键.13.(2021·湖北宜昌市·中考真题)在六张卡片上分别写有6,227-,3.1415,π,0机抽取一张,卡片上的数为无理数的概率是( )A .23B .12C .13D .16【答案】C【分析】首先根据无理数定义确定哪些是无理数,再根据概率的公式计算即可.【详解】解:在6,227-,3.1415,π,0π2个, ∴从中随机抽取一张,卡片上的数为无理数的概率是2163=, 故选:C .【点睛】此题考查概率的计算公式,正确掌握无理数的定义会判断无理数是解题的关键.14.(2021·江苏南京市·中考真题)一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是( )A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为奇数时,2的n 次方根随n 的增大而增大 【答案】C【分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【详解】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意; B.5232=,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设x y ==则155153232,28,x y ====1515,x y ∴> 且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点睛】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.15.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p 的值为( )A .100B .121C .144D .169【答案】B【分析】 分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∴第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.16.(2021·湖北中考真题)下列实数中是无理数的是( )A .3.14B C D .17【答案】C【分析】根据算术平方根、无理数的定义即可得.【详解】A 、3.14是有限小数,属于有理数,此项不符题意;B 3=,是有理数,此项不符题意;CD 、17是分数,属于有理数,此项不符题意; 故选:C .【点睛】本题考查了算术平方根、无理数,熟记定义是解题关键.17.(2021·四川达州市·1在数轴上的对应点可能是( )A .A 点B .B 点C .C 点D .D 点 【答案】D【分析】1的近似值,再判定它位于哪两个整数之间即可找出其对应点.【详解】解: 1.414≈,1 2.414≈,∴它表示的点应位于2和3之间,所以对应点是点D ,故选:D .【点睛】1的整数部分,本题较基础,考查了学生的基本功.18.(2021·黑龙江齐齐哈尔市·中考真题)下列计算正确的是( )A .4=±B .()2234636m n m n =C .24833a a a ⋅=D .33xy x y -=【答案】A【分析】 根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【详解】A 、4=±,正确,故该选项符合题意;B 、()2234639m n m n =,错误,故该选项不合题意;C 、24633a a a ⋅=,错误,故该选项不合题意;D 、3xy 与3x 不是同类项,不能合并,故该选项不合题意;故选:A .【点睛】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.19.(2021·黑龙江齐齐哈尔市·中考真题)五张不透明的卡片,正面分别写有实数1-1155.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A .15B .25C .35D .45【答案】B【分析】通过有理数和无理数的概念判断,然后利用概率计算公式计算即可.【详解】有理数有:1-,1155.06006000600006……; 则取到的卡片正面的数是无理数的概率是25, 故选:B .【点睛】本题主要考查了有理数、无理数的概念和简单概率计算,先判断后计算概率即可.20.(2021·黑龙江大庆市·中考真题)在π,12,3-,47这四个数中,整数是( ) A .πB .12C .3-D .47 【答案】C【分析】根据整数分为正整数、0、负整数,由此即可求解.【详解】解:选项A :π是无理数,不符合题意;选项B :12是分数,不符合题意; 选项C :3-是负整数,符合题意;选项D :47是分数,不符合题意; 故选:C .【点睛】本题考查了有理数的定义,熟练掌握整数分为正整数、0、负整数是解决本题的关键.二、填空题21.(2021·湖北随州市·()012021π+-=______.【分析】的符号,再根据绝对值的定义及零指数幂的意义即可完成.【详解】()01202111π+-=+=【点睛】本题考查了算术平方根据的估值,绝对值的意义,零指数幂的意义等知识,关键是掌握绝对值的意义和零指数幂的意义,并能对算术平方根正确估值.22.(2021·福建中考真题)写出一个无理数x ,使得14x <<,则x 可以是_________(只要写出一个满足条件的x 即可)【答案】,1.010010001π⋅⋅⋅等)【分析】从无理数的三种形式:∴开方开不尽的数,∴无限不循环小数,∴含有π的数,【详解】根据无理数的定义写一个无理数,满足14x <<即可;所以可以写:∴∴无限不循环小数,1.010010001……,∴含有π的数,2π等.只要写出一个满足条件的x 即可.,1.010010001π……等)【点睛】本题考查了无理数的定义,解答本题的关键掌握无理数的三种形式:∴开方开不尽的数,∴无限不循环小数,∴含有π的数.23.(2021·湖南永州市·中考真题)在220,,0.101001,7π-中无理数的个数是_______个. 【答案】1【分析】根据无理数的概念结合有理数的概念逐一进行判断即可.【详解】解:0整数,是有理数;227是分数,是有理数;0.101001-是有限小数,是有理数;π是无限不循环小数,是有理数,所以无理数有1个.故答案为:1【点睛】本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行:初中范围内学习的无理数主要有三类:∴含π的一部分数,如2,3ππ等;∴开方开不尽的数,∴虽有规律但是无限不循环的数,如0.1010010001…,等.24.(2021·黑龙江大庆市·=________ 【答案】4【分析】先算4(2)-,再开根即可.【详解】4=故答案是:4.【点睛】本题考查了求一个数的4次方和对一个实数开根号,解题的关键是:掌握相关的运算法则.25.(2021·四川广元市·中考真题)如图,实数m 在数轴上所对应的点分别为A ,B ,C ,点B 关于原点O 的对称点为D .若m 为整数,则m 的值为________.【答案】-3【分析】先求出D 点表示的数,再得到m 的取值范围,最后在范围内找整数解即可.【详解】解:∴点B 关于原点O 的对称点为D ,点B∴点D 表示的数为∴A 点表示C 点位于A 、D 两点之间,∴m <<∴m 为整数,∴3m =-;故答案为:3-.【点睛】本题考查了数轴上点的特征,涉及到相反数的性质、对无理数进行估值、确定不等式组的整数解等问题,解决本题的关键是牢记相关概念和性质,本题蕴含了数形结合的思想方法.26.(2021·四川达州市·中考真题)已知a ,b 满足等式2690a a ++=,则20212020a b =___________. 【答案】-3【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解.【详解】解:由2690a a ++=,变形得()230a +=, ∴130,03a b +=-=, ∴13,3a b =-=, ∴()()()()20202020202020212020202120201113=33=33=3333a b ⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:-3【点睛】 本题考查了完全平方公式,平方、算术平方根的非负性,同底数幂的乘法、积的乘方的逆用等知识,根据题意求出a 、b 的值,熟知同底数幂的乘法、积的乘方是解题关键.27.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++的和,即可计算1001011011992222++++的和.【详解】 由题意规律可得:2399100222222++++=-. ∴1002=m∴23991000222222=2m m +++++==, ∴22991001012222222+++++=-,∴10123991002222222=++++++12=2m m m m =+=.102239910010122222222+=++++++224=2m m m m m =++=.1032399100101102222222222=++++++++3248=2m m m m m m =+++=. ……∴1999922m =.故10010110110199992222222m m m ++++=+++. 令012992222S ++++=①12310022222S ++++=② ∴-∴,得10021S -=∴10010110110199992222222m m m ++++=+++=100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.28.(2021·湖南怀化市·中考真题)比较大小:2 __________12(填写“>”或“<”或“=”). 【答案】>【分析】直接用122-,结果大于0,则2大;结果小于0,则12大. 【详解】解:11=0222->, 12>, 故答案为:>.【点睛】本题主要考查实数的大小比较,常用的比较大小的方法有作差法、作商法、平方法等,正确理解和记忆方法背后的知识点是解题关键.29.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______. 【答案】12016-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可. 【详解】11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021 =2020+1﹣12016﹣2021 =12016-. 故答案为:12016-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算. 30.(2021·湖北随州市·中考真题)2021年5月7日,《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家,他是第一个将圆周率π精确到小数点后第七位的人,他给出π的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc (即有bd x a c <<,其中a ,b ,c ,d 为正整数),则b d a c++是x 的更为精确的近似值.例如:已知15722507π<<,则利用一次“调日法”后可得到π的一个更为精确的近似分数为:1572217950757+=+;由于179 3.140457π≈<,再由17922577π<<,可以再次使用“调日法”得到π的更为精确的近似分数……现已知7352<<,则使用两次“调日法”______. 【答案】1712【分析】根据“调日法”的定义,第一次结果为:107,所以71057<,根据第二次“调日法”进行计算即可.【详解】解:∴7352< ∴第一次“调日法”,结果为:7+310=5+27∴10 1.42867≈>∴71057<< ∴第二次“调日法”,结果为:7+1017=5+712故答案为:1712【点睛】 本题考查无理数的估算,根据定义,严格按照例题步骤解题是重点.三、解答题31.(2021·广西贺州市·()01230π-+--︒.【答案】π【分析】根据算术平方根的定义、零指数幂的意义、绝对值的意义、特殊角的三角函数值、实数的运算等知识即可完成本题的计算.【详解】原式212π=++--π=【点睛】本题考查了算术平方根的定义、零指数幂的意义、绝对值的意义、特殊角的三角函数值、实数的运算等知识,关键是熟练掌握这些知识.32.(2021·黑龙江大庆市·()222sin 451+︒-- 【答案】1【分析】直接利用去绝对值符号、特殊角度的三角函数值、负整数的平方运算计算出结果即可.【详解】()222sin 451+︒--221=- 1=故答案是:1.【点睛】本题考查了去绝对值符号、特殊角度的三角函数值、负整数的平方运算法则,解题的关键是:掌握相关的运算法则.33.(2021·江苏盐城市·中考真题)计算:1011)3-⎛⎫+- ⎪⎝⎭【答案】2.【分析】根据负整数指数幂、0指数幂的运算法则及算术平方根的定义计算即可得答案.【详解】1011)3-⎛⎫+- ⎪⎝⎭312=+-2=.【点睛】本题考查实数的运算,熟练掌握负整数指数幂、0指数幂的运算法则及算术平方根的定义是解题关键. 34.(2021·山东济宁市·21cos 45-+︒-32- 【分析】 先运用绝对值、特殊角的三角函数值、负整数次幂以及平方根的知识化简,然后再计算即可.【详解】21cos 45-+︒-1122+-+32-. 【点睛】本题主要考查了绝对值、特殊角的三角函数值、负整数次幂、平方根等知识点,灵活应用相关知识成为解答本题的关键.35.(2021·湖南张家界市·中考真题)计算:2021(1)22cos60-+--︒【分析】 先运用乘方、绝对值、特殊角的三角函数值以及平方根的性质化简,然后计算即可.【详解】解:2021(1)22cos60-+-︒+11222=-+-⨯+=【点睛】本题主要考查了乘方、绝对值、特殊角的三角函数值、平方根的性质等知识点,灵活运用相关知识成为解答本题的关键.36.(2021·河南中考真题)(1)计算:013(3--; (2)化简:21221x x x -⎫⎛-÷ ⎪⎝⎭. 【答案】(1)1;(2)2x . 【分析】(1)实数的计算,根据实数的运算法则求解即可;(2)分式的化简,根据分式的运算法则计算求解.【详解】(1)013(3--- 11133=-+ 1=.(2)21221x x x -⎫⎛-÷ ⎪⎝⎭212(1)x x x x -=⨯- 2x =. 【点睛】本题考查了实数的混合运算,负指数幂,二次根式的化简,零次幂的计算,分式的化简等知识,牢记公式与定义,熟练分解因式是解题的关键.37.(2021·广西玉林市·()()01416sin 30π--+--°.【答案】1【分析】先算算术平方根,零指数幂,负整数指数幂以及特殊角三角函数值,再算加减法,即可求解.【详解】解:原式=141162+--⨯=1【点睛】本题主要考查实数的混合运算,掌握算术平方根,零指数幂,负整数指数幂以及特殊角三角函数值,是解题的关键.38.(2021·江苏宿迁市·中考真题)计算:()0π1-+4sin45°【答案】1【分析】结合实数的运算法则即可求解.【详解】解:原式=14112+⨯=+=. 【点睛】本题考察非0底数的0次幂等于1、二次根式的化简、特殊三角函数值等知识点,属于基础题型,难度不大.解题的关键是掌握实数的运算法则.39.(2021·浙江衢州市·01()|3|2cos 602--+︒.【答案】2.【分析】由特殊的三角函数值得到1cos602︒=,由零指数幂公式算出01()=12,最后算出结果即可. 【详解】 解:原式13+13222=【点睛】本题考查了实数的混合运算,关键注意零指数幂的运算和特殊的三角函数值.40.(2021·1133-⎛⎫- ⎪⎝⎭.【分析】先化简二次根式,绝对值,负整式指数幂,然后计算即可得答案.【详解】 1133-⎛⎫- ⎪⎝⎭(33=-33==【点睛】本小题考查二次根式的化简、绝对值的意义、负指数幂等基础知识,熟练掌握运算法则是解题关键.。
2013-2014中考数学专题复习学生版第二讲 实数的运算

第二讲实数的运算【重点考点例析】考点一:实数的大小比较。
A.6个B.5个C.4个D.3个点评:本题主要考查了无理数的估算和数轴,根据数轴的特点,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.对应训练1.(2013•内江)下列四个实数中,绝对值最小的数是()A.-5 B.C.1 D.4考点二:估算无理数的大小A.1与2之间B.2与3之间C.3与4之间D.4与5之间点评:此题主要考查了根式的计算和估算无理数的大小,解题需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.对应训练考点三:有关绝对值的运算例3 (2013•咸宁)在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为-671.点评:本题考查了数轴、绝对值以及两点间的距离.根据已知条件得到a<0<b是解题的关键.对应训练.考点四:实数的混合运算。
点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负零指数幂、负指数幂、特殊角的三角函数值、绝对值等考点的运算.对应训练考点五:实数中的规律探索。
例5 (2013•永州)我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i2)2=(-1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4)n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值为()A.0 B.1 C.-1 D.i点评:本题考查了实数的运算,解答本题的关键是计算出前面几个数的值,发现规律,求出一个循环内的和再计算,有一定难度.对应训练【聚焦山东中考】A.- B.- C.-2 D.-1A.5B.-5C.6D.-63.(2013•日照)计算-22+3的结果是()A.7 B.5 C.-1 D.-5 4.(2013•聊城)(-2)3的相反数是()A.-6 B.8 C.- 16D.165.(2013•菏泽)如果a的倒数是-1,那么a2013等于()A.1 B.-1 C.2013 D.-2013 【备考真题过关】一、选择题1.(2013•广州)比0大的数是()A.-1 B.-12C.0 D.12.(2013•重庆)在-2,0,1,-4这四个数中,最大的数是()A.-4 B.-2 C.0 D.1 3.(2013•天津)计算(-3)+(-9)的结果等于()A.12 B.-12 C.6 D.-6 4.(2013•河北)气温由-1℃上升2℃后是()A.-1℃B.1℃C.2℃D.3℃5.(2013•自贡)与-3的差为0的数是()A.3 B.-3 C.13D.-136.(2013•温州)计算:(-2)×3的结果是()A.-6 B.-1 C.1 D.6 7.(2013•厦门)下列计算正确的是()A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=1 8.(2013•南京)计算:12-7×(-4)+8÷(-2)的结果是()A.-1 B.1 C.D.710.(2013•南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④二、填空题...20.(2013•天河区一模)我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:(101)2=1×22+0×21+1×20=4+0+1=5;(1011)2=1×23+0×22+1×21+1×20=11按此方式,将二进制(1101)2换算成十进制数的结果是13.三、解答题。
2014年中考复习第2讲 实数的运算及大小比较

3
a,b, c, d 按由小到大的顺序排列正确的是( A. c< a< d< b C. a< c< d< b
0
A )
B. b<d<a< c D. b< c<a<d
2
解析:∵ a= 2 = 1, b= (- 3) = 9, c= - 9< 0, 1 -1 d= ( ) = 2, ∴ c< a< d< b.故选 A. 2
B
)
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
2.-2 ×(-2) +2 的结果是( B A.18 C.0 B.-30 D.34
3
2
)
解析: - 23×(- 2)2+ 2=- 8×4+ 2=- 32+ 2= -30,故选 B.
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
3. 下列计算正确的是 ( A. - 27= 3 1 -1 C. ( ) =- 2 2 3
考点训练
宇轩图书
解析:根据题意,得 m=- 2+2,∴m-1=- 2 + 2- 1=- 2 + 1< 0, m+ 6=- 2 + 2+ 6=- 2 + 8≠0.∴|m-1|+ (m+6) =1-m+1=2-m=2-(- 2 +2)=2+ 2-2= 2.故选 C.
考点一 实数的大小比较 例 1 (2013· 湛江)下列各数中,最小的数是( ) 1 A.1 B. 2 C.0 D.-1 1 【点拨】∵-1<0< <1,∴最小的数是-1. 2 故选 D. 【答案】 D
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点二 实数非负性的应用 例2 (2013· 永州)已知(x-y+3)2+ 2x+y=0, ) C.1 D.5
2021年春人教版河北省数学中考《实数的运算及大小比较》专题复习(Word版附答案)

实数的运算及大小比较一、中考题回顾1.(2016·河北中考)点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论:甲:b -a <0; 乙:a +b >0;丙:|a |<|b |; 丁:b a >0.其中正确的是( )A .甲乙B .丙丁C .甲丙D .乙丁2.(2017·河北中考)对于实数p ,q ,我们用符号最小{p ,q }表示p ,q 两数中较小的数,如最小{1,2}=1.因此,最小{-2 ,-3 }= ;若最小{(x -1)2,x 2}=1,则x = .3.(2017·河北中考)下列运算结果为正数的是( )A .(-3)2B .-3÷2C .0×(-2 017)D .2-34.(2016·河北中考)计算:-(-1)=( )A .±1B .-2C .-1D .15.(2015·河北中考)计算:3-2×(-1)=( )A .5B .1C .-1D .66.(2017·河北中考)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4+4-4 =6B .4+40+40=6C .4+34+4 =6D .4-1÷4 +4=67.(2013·河北中考)下列运算中,正确的是( )A .9 =±3B .3-8 =2C .(-2)0=0D .2-1=128.(2016·河北中考)8的立方根为 .9.(2019·河北中考)有个填写运算符号的游戏:在“1 2 6 9”中的每个 内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2-6-9;(2)若1÷2×6 9=-6,请推算 内的符号;(3)在“1 2 6-9”的 内填入符号后,使计算所得数最小,直接写出这个最小数.10.(2018·河北中考)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和;发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.11.(2017·河北中考)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示.设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p 又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.12.(河北中考)利用运算律有时能进行简便计算.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×11845 +999×⎝ ⎛⎭⎪⎫-15 -999×1835 .二、考点解析实数的运算【例1】(1)4的平方根是 ; (2)3-27 的绝对值是 ;(3)|-9|的平方根是 .【例2】(2020·石家庄市模拟)计算: 181+3-27 +(-2)2 +(-1)2 020. 1.(2020·衡阳中考)下列各式中正确的是( )A .-|-2|=2B .4 =±2C .39 =3D .30=12.(2020·邢台市模拟)若4是数a 的平方根.则a = .3.(2020·河北中考样题)若正数m 的平方根为x +1和x -3,则m = .4.计算:|2 -1|+2sin 45°-8 +tan 260°.实数的大小比较【例3】(2020·遵化市模拟)下列实数中最大的是()A.32B.|-5|C.15D.π5.(2020·石家庄市模拟)在-3,-1,1,3四个数中,比2大的数是() A.-3 B.-1C.1 D.3,6.(2020·邢台市一模)若a表示正整数,且15.1<a<332,则a的值是()A.3 B.4 C.15 D.167.(2020·枣庄中考)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0C.a+b>0 D.1-a>1与数轴有关的运算【例4】(2020·唐山市一模)如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数是0;②b+d=0;③e=-2;④a+b+c+d+e=0.正确的有()A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确8.(2020·邯郸丛台区一模)如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a,c满足|a+3|+(c-5)2=0.(1)a =________,b =________,c =________;(2)若将数轴折叠,使得点A 与点C 重合,则点B 与数________表示的点重合;(3)点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t s 过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________;(用含t 的代数式表示)(4)请问:3BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.实数的运算及大小比较一、中考题回顾1.(2016·河北中考)点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论:甲:b -a <0; 乙:a +b >0;丙:|a |<|b |; 丁:b a >0.其中正确的是(C )A .甲乙B .丙丁C .甲丙D .乙丁2.(2017·河北中考)对于实数p,q,我们用符号最小{p,q}表示p,q两数中较小的数,如最小{1,2}=1.因此,最小{-2,-3}=-3;若最小{(x-1)2,x2}=1,则x=-1或2.3.(2017·河北中考)下列运算结果为正数的是(A)A.(-3)2B.-3÷2C.0×(-2 017) D.2-34.(2016·河北中考)计算:-(-1)=(D)A.±1 B.-2 C.-1 D.15.(2015·河北中考)计算:3-2×(-1)=(A)A.5 B.1 C.-1 D.66.(2017·河北中考)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是(D)A.4+4-4=6B.4+40+40=6C .4+34+4 =6D .4-1÷4 +4=67.(2013·河北中考)下列运算中,正确的是(D )A .9 =±3B .3-8 =2C .(-2)0=0D .2-1=128.(2016·河北中考)8的立方根为2.9.(2019·河北中考)有个填写运算符号的游戏:在“1 2 6 9”中的每个 内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2-6-9;(2)若1÷2×6 9=-6,请推算 内的符号;(3)在“1 2 6-9”的 内填入符号后,使计算所得数最小,直接写出这个最小数.解:(1)原式=3-6-9=-12;(2)∵1÷2×6=3,∴3 9=-6. ∴ 内的符号是“-”;(3)-20.10.(2018·河北中考)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试 (1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和;发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.解:尝试(1)-5-2+1+9=3;(2)由题意,得-5-2+1+9=-2+1+9+x.解得x=-5;应用与(2)同理,得第6个到第8个台阶上的数依次是-2,1,9,可见台阶上的数从下到上按-5,-2,1,9四个数依次循环排列.∵31=7×4+3,∴前31个台阶上数的和为7×3+(-5-2+1)=15;发现4k-1.11.(2017·河北中考)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示.设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p 又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.解:(1)若以B为原点,则点A,C分别对应-2,1,∴p=-2+0+1=-1;若以C为原点,则点A,B分别对应-3,-1,∴p=-3-1+0=-4;(2)若原点O在图中数轴上点C的右边,且CO=28,则点A,B,C分别对应-31,-29,-28,∴p =-31-29-28=-88.12.(河北中考)利用运算律有时能进行简便计算.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×11845 +999×⎝ ⎛⎭⎪⎫-15 -999×1835 . 解:(1)原式=(1 000-1)×(-15)=-15 000+15=-14 985;(2)原式=999×⎣⎢⎡⎦⎥⎤11845+⎝ ⎛⎭⎪⎫-15-1835 =999×100=99 900.二、考点解析实数的运算【例1】(1)4的平方根是±2;(2)3-27 的绝对值是3;(3)|-9|的平方根是±3.【例2】(2020·石家庄市模拟)计算:181+3-27+(-2)2+(-1)2 020.1.(2020·衡阳中考)下列各式中正确的是(D) A.-|-2|=2 B.4=±2C.39=3 D.30=12.(2020·邢台市模拟)若4是数a的平方根.则a=16. 3.(2020·河北中考样题)若正数m的平方根为x+1和x-3,则m=4.4.计算:|2-1|+2sin 45°-8+tan260°.解:原式=2-1+2×22-22+(3)2=2-1+2-22+3=2.实数的大小比较【例3】(2020·遵化市模拟)下列实数中最大的是(B)A.32B.|-5|C.15D.π5.(2020·石家庄市模拟)在-3,-1,1,3四个数中,比2大的数是(D) A.-3 B.-1C.1 D.3,6.(2020·邢台市一模)若a表示正整数,且15.1<a<332,则a的值是(B)A.3 B.4 C.15 D.167.(2020·枣庄中考)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是(D)A.|a|<1 B.ab>0C.a+b>0 D.1-a>1与数轴有关的运算【例4】(2020·唐山市一模)如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数是0;②b+d=0;③e=-2;④a+b+c+d+e=0.正确的有(D)A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确8.(2020·邯郸丛台区一模)如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a,c满足|a+3|+(c-5)2=0.(1)a=________,b=________,c=________;(2)若将数轴折叠,使得点A与点C重合,则点B与数________表示的点重合;(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t s 过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=________,BC=________;(用含t的代数式表示)(4)请问:3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.解:(1)-3;-1;5;(2)3;[a+c-b=-3+5-(-1)=3.](3)3t+2;t+6;[t s过后,点A表示的数为-t-3,点B表示的数为2t-1,点C表示的数为3t+5,∴AB=(2t-1)-(-t-3)=3t+2,BC=(3t+5)-(2t-1)=t+6.](4)不变.∵AB=3t+2,BC=t+6,∴3BC-AB=3(t+6)-(3t+2)=3t+18-3t-2=16.∴3BC-AB的值为定值16.。
【中考必备】最新中考数学试题分类解析 专题2 实数的运算

2012年全国中考数学试题分类解析汇编(159套63专题)专题2:实数的运算一、选择题1. (2012山西省2分)计算:﹣2﹣5的结果是【 】 A . ﹣7 B . ﹣3C . 3D . 7【答案】A 。
【考点】有理数的加法。
【分析】根据有理数的加法运算法则计算即可:﹣2﹣5=﹣(2+5)=﹣7。
故选A 。
2. (2012广东佛山3分)与2÷3÷4运算结果相同的是【 】A .4÷2÷3B .2÷(3×4)C .2÷(4÷2)D .3÷2÷4【答案】B 。
【考点】有理数的乘除运算。
【分析】根据连除的性质可得:2÷3÷4=2÷(3×4)。
故选B 。
3. (2012广东梅州3分)012⎛⎫-- ⎪⎝⎭=【 】A .﹣2B .2C .1D .﹣1 【答案】D 。
【考点】零指数幂。
【分析】根据任何非0数的0次幂等于1解答即可:01=12⎛⎫--- ⎪⎝⎭。
故选D 。
4. (2012广东肇庆3分)计算 23+- 的结果是【 】A .1B .1-C . 5D . 5- 【答案】B 。
【考点】有理数的加法。
【分析】根据有理数的加法运算法则计算即可得解:-3+2=-(3-2)=-1。
故选B 。
5. (2012浙江杭州3分)计算(2﹣3)+(﹣1)的结果是【 】 A .﹣2 B .0 C .1 D .2 【答案】A 。
【考点】有理数的加减混合运算。
【分析】根据有理数的加减混合运算的法则进行计算即可得解:(2﹣3)+(﹣1)=﹣1+(﹣1)=﹣2。
故选A 。
6. (2012浙江嘉兴、舟山4分)(﹣2)0等于【 】 A . 1 B . 2 C . 0 D . ﹣2【答案】A 。
【考点】零指数幂。
【分析】根据不等于0的数的零次幂为0的定义,直接得出结果:(﹣2)0=1。
故选A 。
初三数学中考复习 实数的大小比较和运算 专题练习题 含答案

2019 初三数学中考复习实数的大小比较和运算专题练习题1. 下列四个数中,最大的数是( )A.3 B. 3 C.0 D.π2.|6-3|+|2-6|的值为( )A.5 B.5-2 6 C.1 D.26-13. 下列说法中正确的是( )A.实数-a2是负数 B.a2=|a|C.|-a|一定是正数 D.实数-a的绝对值是a4. 下列实数中最大的数是( )A.3 B.0 C. 2 D.-45. 比较三个数-3,-π,-10的大小,下列结论正确的是( ) A.-π>-3>-10 B.-10>-π>-3C.-10>-3>-π D.-3>-π>-106. 3-11的相反数是___________.7. 估计5-12与0.5的大小关系是:5-12_______0.5.(填“>”“=”或“<”)8. 若|a|=|-5|,则a=____________9. 若|a+1|=5,则a=_______________________10. 实数a在数轴上的位置如图,则|a-3|=__________11. 大于-18而小于13的所有整数的和为____.12. 已知实数a,b在数轴上的对应点的位置如图所示,则a+b____0.(填“>”“<”或“=”)13. 求下列各式中的x:(1)|-x|=5-1; (2)|3-x|= 2.14. 计算:25+3-8-(3)2+2215. 观察例题:∵4<7<9,即2<7<3,∴7的整数部分为2,小数部分为7-2.请你观察上述规律后解决下面的问题:(1)规定用符号[m]表示实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定,[10+1]的值为____;(2)如果3的小数部分为a ,5的小数部分为b ,求3·a+5·b-8的值. 参考答案:1---5 DCBAD 6. 11-37. >8. ±5 9. 5-1或-5-1 10. 3-a11. -412. >13. (1) 解:x =5-1或-5+1.(2) 解:x =3+2或3- 2.14. 解:原式=5-2-3+2=2.15. (1) 4(2) 解:∵1<3<4,即1<3<2,∴3的整数部分为1,小数部分为a =3-1.∵4<5<9,即2<5<3,∴5的整数部分为2,小数部分为b =5-2,∴3·a+5·b-8=3(3-1)+5(5-2)-8=3-3+5-25-8=-3-2 5.。
中考典型例题精析实数的运算及大小比较

中考典型例题精析实数的运算及大小比较-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2中考典型例题精析二考点一 实数的大小比较例 1 (2015·潍坊)在|-2|, 20 ,2-1,2这四个数中,最大的数是( ) A .|-2| B .20C .2-1D. 2 考点二 实数非负性的应用例 2 (2015·绵阳)若a +b +5+||2a -b +1=0,则(b -a)2 015= ( ) A .-1 B .1 C .52 015 D .-52 015 考点三 实数的混合运算例 3 (2015·安顺)计算:⎝ ⎛⎭⎪⎫-12-2-(3.14-π)0+|1-2|-2sin 45°.基础巩固训练:1.在13,0,-1,2这四个实数中,最大的数是( ) A. 13 B .0 C .-1 D. 22.计算:3-2×(-1)=( ) A .5 B .1 C .-1 D .6 3.下面计算错误的是( )A .(-2 015)0=1 B.3-9=-3 C. ⎝ ⎛⎭⎪⎫12-1=2 D .(32)2=814.若(a -2)2+||b +3=0,则(a +b)2 016的值是( )A .1B .-1C .2 016D .-2 0165.若a =20,b =(-3)2,c =3-9,d =⎝ ⎛⎭⎪⎫12-1,则a ,b ,c ,d 按由小到大的顺序排列正确的是( )A .c <a <d <b B .b <d <a <c C .a <c <d <b D .b <c <a <d6.计算: 3-4 -⎝ ⎛⎭⎪⎫12-2= .7.实数m ,n 在数轴上的位置如图所示,则 |n -m|= . 8.计算:3-27-(-3)÷⎝ ⎛⎭⎪⎫-13×3= . 9.计算:(1)(1-2)0+(-1)2 016-3tan 30°+⎝ ⎛⎭⎪⎫13-2;(2) (-1)2 016+(1-π)0×3-27-⎝ ⎛⎭⎪⎫17-1+|-2|.考点训练一、选择题1.(2015·山西)计算-3+(-1)的结果是( ) A .2 B .-2 C .4 D .-42.杨梅开始采摘了!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是( )A .19.7千克B .19.9千克C .20.1千克D .20.3千克 3.在实数-1,0,12,-3,2 0160中,最小的数是( ) A .-3 B .-1 C. 12 D .0 4.(2015·衡阳)计算()-10+||-2的结果是( ) A .-3 B .1 C .-1 D .35.(2015·北海)计算2-1+12的结果是( ) A .0 B .1 C .2 D .212 6.下列计算错误的是( )A .4÷(-2)=-2B .4-5=-1C .(-2)-2=4D .2 0140=17.(2015·常州)已知a =22,b =33,c =55,则下列大小关系正确的是( ) A .a >b >c B .c >b >a C .b >a >c D .a >c >b8.(2015·六盘水)下列运算结果正确的是( )A .-87×(-83)=7 221 B .-2.68-7.42=-10 C .3.77-7.11=-4.66 D.-101102<-10210339.计算9-2 0160×⎝ ⎛⎭⎪⎫12-1的结果为( )A .4 B .1 C. 12 D .010.已知实数x ,y 满足x -1+|y +3|=0,则 x +y 的值为( ) A .-2 B .2 C .4 D .-411.(2015·成都)实数a ,b 在数轴上对应的点的位置如图所示,计算|a -b|的结果为( )A .a +bB .a -bC .b -aD .-a -b12.实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .ac>bcB .|a -b|=a -bC .-a<-b<cD .-a -c>-b -c 二、填空题(每小题3分,共27分) 13.(2015·玉林)计算:3-(-1)= . 14.(2015·德州)计算:2-2+(3)0= .15.(2015·泉州)比较大小:4 15(用“>”或“<”号填空). 16.(2015·襄阳)计算:2-1-318= .17.(2015·烟台)如图,数轴上点A ,B 所表示的两个数的和的绝对值是1.18.计算:-22-(-2)2=19.(2015·百色)实数28-2的整数部分是 .20.(2015·攀枝花)计算:9+||-4+(-1)0-⎝ ⎛⎭⎪⎫12-1= .21.(2015·荆州)计算:9-2-1+38-|-2|+⎝ ⎛⎭⎪⎫-130= .三、解答题22. (1)(2015·绍兴)计算:2cos 45°-(π+1)0+14+⎝ ⎛⎭⎪⎫12-1.(2)(2015·菏泽)计算:(-1)2 015+sin 30°+(π-3.14)0+⎝ ⎛⎭⎪⎫12-1.23.(每小题4分,共16分)(1)计算: 2 +(π-3)0+⎝ ⎛⎭⎪⎫12-1-2cos 45°.(2)计算:2tan 30°- 1- 3 +(2 014-2)0+13.(3)(2015·武威)计算:(π-5)0+4+(-1)2 015- 3tan 60°.(4)(2015·梅州)计算:8+ 22-3 -⎝ ⎛⎭⎪⎫13-1- (2 015+2)0.24.(1)(4分)计算:(-3)2-⎝ ⎛⎭⎪⎫14-1+(π-310)0-(-1)10.(2)(4分)计算:(3-2)0+⎝ ⎛⎭⎪⎫13-1+4cos 30°-|3-27|.(3)(5分)计算:12-⎝ ⎛⎭⎪⎫12-3+⎝ ⎛⎭⎪⎫cos 68°+5π0+33-8sin 60° .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2 实数的运算与大小比较中考试题】 一.选择题1.(2009年,2分)3(1)-等于( )A .-1B .1C .-3D .3 2.(2010年,2分)计算3×(-2)的结果是( ) A .5 B .-5 C .6 D .-6 3. 计算23-的结果是( )A. -9B. 9C.-6 4.(10巴中)下列各式正确的是( ) A .33--=B .326-=-C .(3)3--=D .0(π2)0-=5.下列计算中,正确的是 ( )(A ) 33=-- (B )725)(a a = (C )02.02.022=-b a b a (D )4)4(2-=- 6. “!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4.=4×3×2×1,…,则100!98!的值为( ) A.5049B. 99!C. 9900D. 2!7.(2011广州市)四个数-5,-,12,3中为无理数( ) A. -5B. -0.1C.12D.38. (2011山东)在实数π、13、sin30°,无理数的个数为( ).2 C 9. (2011湖北)下列说法正确的是( ) A.0)2(π是无理数B.33是有理数 C.4是无理数 D.38-是有理数 10.(20011江苏)在下列实数中,无理数是( )B.0C.D.1311. (2011贵州)如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )(A ) (B )2 2 (C ) 3 (D ) 5 12. (10宁夏)下列各式运算正确的是( )A .2-1=-21B .23=6C .22·23=26D .(23)2=2613. (2011福建)如在实数0,-3,32-,|-2|中,最小的是( ).A .32-B . -3C .0D .|-2|14.(2011四川)已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 ( )(A)0>m (B)0<n (C)0<mn (D)0>-n mm1n15.(2011湖北宜昌)如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A . a < b = b C. a > b D .ab > 016. (2011广东茂名)对于实数a 、b ,给出以下三个判断:①若b a =,则b a =.②若b a <,则 b a <. ③若b a -=,则 22)(b a =-.其中正确的判断的个数是( )A .3B .2C .1D .0 17. (2011湖南常德)下列计算错误的是( )A.020111= 819=± C.1133-⎛⎫= ⎪⎝⎭ D.4216=18. (2011四川广安)下列运算正确的是( )A.(1)1x x --+=+ 954= C .3223=- D .222()a b a b -=- 19. (2011四川) 下列计算不正确的是( )(A )31222-+=- (B )21139⎛⎫-= ⎪⎝⎭ (C )33-= (D 1223=二.填空题1.(2009年,3分)比较大小:-6 -8.(填“<”、“=”或“>”)2.(10大连)某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温高__________°C .3. (2011山东日照)计算sin30°﹣2-= .4. (2011江苏盐城)将1、2、3、6按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(15,7)表示的两数之积是 .111122663263323第1排第2排第3排第4排第5排三.解答题1.计算:(10龙岩)20080+|-1|-3cos30°+ (21)3;2.计算.200)2(60sin 2)23(|31|-+--+-3.(2009年昆明5分)计算:(2009×2008-1)0+(-2)-1-|-3|+tan60o .4..0220041312521)21()1(⎪⎪⎭⎫ ⎝⎛-+---+--5. 计算:(1).(10南宁)4245tan 21)1(10+-︒+--;(2). (10东莞) 01)2008(260cos π-++-ο(3).(10年郴州)201()2sin 3032--+︒+-;(4).3112927)3(2312÷-÷-+----(5).200)2(60sin 2)23(|31|-+--+-(6).0220041312521)21()1(⎪⎪⎭⎫ ⎝⎛-+---+--(7).(10宜宾)计算:︒---+-45tan 2)510()31(401.6. (2011浙江)计算:|-1|-128-(5-π)0+4cos45°.7. (2011广东)计算:0011)452-+-8.(2011福建)计算:0|-4|+20119. (2011江苏)30)2(4)2011(23-÷+---10. (2011山东)计算:()101-3cos30 1.2π-︒⎛⎫+-+- ⎪⎝⎭11. (20110(4)6cos302-π-+-o12. (201104sin 45(3)4︒+-π+-13. (2011 浙江)计算:0022sin 30)π--+14.(2011浙江)计算:()0232cos 45π---+︒.15. (2011浙江)(1012cos 454π-+︒+(-2);16. (2011浙江)计算:12)21(30tan 3)21(01+-+---ο17. (2011浙江省)(1)计算:202(3)+-18. (2011浙江)计算:|-1|-128-(5-π)0+4cos45°.19. (2011福建)计算:()()2201113132π-⎛⎫-+-⨯- ⎪⎝⎭.20. (2011浙江)计算:203)12(1+-+-21. (2011湖南)计算:020103-。
22. (2011湖南益阳,14,6()032-+-.23. (2011广东)计算:02011|2|(1)--+-.24. (2011浙江)计算:20(2)(2011)-+-25. (2011江苏)计算:22+|-1|-9. 26. (2011江苏)计算:︒+-+-30sin 2)2(20.27. (2011江苏)计算或化简: ︒60sin 2321(0+﹣+)-;28. (2011四川)计算:30cos 2°20110)1()2010(33-+---+π.29.(2011四川)设12211=112S ++,22211=123S ++,32211=134S ++,…,2211=1(1)n S n n +++设...S =S=_________ (用含n 的代数式表示,其中n 为正整数).30. (2011四川)计算:12( 3.14)sin 60π-+-︒+︒-31. (201130(2011)1π--o o32. (2011浙江)(1)计算: ο45sin 2820110-+;33. ( 2011重庆)(31)-1-∣-2∣+2sin30o +(23-)o 34. (2011重庆) 计算:|―3|―(5―π)0+141-⎪⎭⎫⎝⎛+(-1)335. (2011浙江)计算:)2()3(9202---+-. 36. (2011四川)计算:|-3|+(-1)2011×(π-3)0-327+(12)-237. (2011广东)计算:0011)452-+-38. (2011湖南)计算:01121)(5)().3--+---39. (2011江苏)计算:|-5|+22+1)040. (2011江苏)计算:22+(-1)4+-2)0-3-;41. (2011四川)计算:131|2|()cos303---+o42. (2011四川)计算:()()0233sin 30380.125+-⨯-o 43. (2011江苏) (1)2 16 + (2)0;44. (2011湖北)计算:(-2011)0+(22)-1-22--2cos60045. (2011广东)计算:︒-+-60cos 292146. (2011湖南)计算:1)31(8|2|45sin 2-+--︒+ 47. (2011江苏)计算:(3 )0 - (12 )-2 +tan45°;48. (2011山东)计算:2011011(1)7)()5π----+49. (20011江苏)计算:sin45°+; 50.(2011内蒙古) 计算:()0020112130tan 38π----+51. (2011+|-2|+113-⎛⎫⎪⎝⎭+(-1)2011.52.(2011广东中山,11,6分)计算:0021)452+-53. (2011(2011)|2|π︒-+-54. (2011贵州)计算:23860tan 211231-+-+︒-⎪⎭⎫ ⎝⎛---55. (2011湖南)计算:o45cos 2)2011(201+---π.56. (2011湖北)计算:|322|21121--⎪⎭⎫⎝⎛--57. (2011广东)计算:0011)452-+-。