第一篇:建筑声学 第三章 材料和结构的声学特性
建筑与城市物理环境概论---声环境

鞭打妻子,这不是为了保护妇女, 而是因为挨打妇女的叫声会干扰邻
1992年联合国环境保护署(UNEP)发表的报 告《环境状况——拯救我们的星球》,其中 关于噪声污染方面,报告指出,“与10年前 相比,噪声已经成为一个更加严重的问题, 特别是在许多发展中国家,噪声污染日趋严 重。在马尼拉、曼谷、开罗和许多其他城市, 它成为一个主要的环境问题”。
50ms前到达的声能/全部到达的声能 1962年,Beranek出版《Music Acoustics and Architecture》
提出初始延迟间隙(initial-time-delay gap):第一个反射声相对于直达声 的延迟时间,与亲切感(intimacy)有关; 1967年,Marshall提出側向反射声对音质的重要性; 1968年,Barron提出空间感的客观量度S: 早期(5~80ms)側向反射声能/早期(0~ 80ms)非側向反射声能 1970年,Jordan提出“早期衰减时间”EDT; 1974年,Abdel Alim提出明晰度(clarity)C,用于音乐的清晰度:
布朗(M.Barron)组织20个有经验的音质评价人员,大部 分为声学顾问,对英国的11个厅堂进行了现场评价。评价者在厅 内不同的位置听音,根据问卷调查对各主观指标作出评价。最后 对厅堂总的音质分成7个级别,从“顶级”到“很差”。结果显示 5个音质指标,即明晰度、混响感、环绕感、亲切感和响度是相互 独立的,而厅堂音质的总印象与混响、环绕感、亲切感的相关性 最高。同时,也发现评价人员对于厅堂音质有不同的偏好,一部 分倾向于混响感,而另一部分则倾向于亲切感。
纽约 Carnegie Hall
1891建,1986和1989年 改建
建筑物理-声学基本知识

人耳的主观听觉特性
人耳的听闻范围
听觉过程:外耳——中耳——内耳——大脑 人耳对不同频率的声音的敏感程度不一样
• 对中、高频敏感;对低频不敏感
听闻范围
响度
人耳所感觉的声音的大小称为响度
• 相同声压级,不同频率的声音,响度不同
• 相同频率,不同声压级的声音,响度不同
• 等响
响度的单位为宋(sone)
声音的计量
声音的叠加
多个声音的叠加
4
2019/10/22
Architectural Acoustics
第一章 建筑声学基本知识
声音的频谱
频谱
声音往往包含多个频率,所有频率的集合成为频谱 线状谱:由一些离散的频率成分形成的谱 连续谱:在一定频率范围内频率成分连续的谱
音乐(乐音)
声音的频谱
频谱
声音往往包含多个频率,所有频率的集合成为频谱 线状谱:由一些离散的频率成分形成的谱 连续谱:在一定频率范围内频率成分连续的谱
音乐(乐音)
纯音 基音和谐音、基频和谐频 音符和音色 线状谱 语言声
8
2019/10/22
Architectural Acoustics
描述不同频率声音等响时,频率与声压级相互关系的曲线称为 等响曲线
声级计与A声级
根据等响曲线,通过计权网络 模拟人耳对不同声音的响应
A、B、C、D声级
16
2019/10/22
Architectural Acoustics
第一章 建筑声学基本知识
人耳的主观听觉特性
时差效应
哈斯效应(Haas Effect)
Sabine 公式:
01建筑声学基本知识

建筑声学基础知识
声学漫画——声源、噪声
R 10lg 1
建筑声学基础知识
声学漫画——音质
R 10lg 1
谢 谢!
建筑声学基础知识
室内声现象
声反射 声吸收 声隔绝
建筑声学基础知识
声反射实例天坛
三音石 回声壁 圜丘
建筑声学基础知识
声反射/Sound reflection
概念:声波前进过程中遇到尺寸大于波长的界面,发生反射
建筑声学基础知识
声反射/Sound reflection
镜像反射 条件:声波前进过程中遇到光滑表面 符合反射定律——入射声线、反射声线和界面法线在同一平面内 反射声能与界面的吸声系数α有关
建筑声学基础知识
隔声/Sound Isolation
隔声——噪声控制的重要手段
空气声隔绝——隔声量R
R 10lg 1
R 10lg 1
式中:τ——构件透射系数
隔声构件的结构形式:
单层匀质密实墙、双层匀质密实墙、轻质墙、门窗、组合墙
隔声特性:质量定律、吻合效应
固体声隔绝 噪声产生:振动物体直接撞击结构物 噪声传播途径:物体直接撞击、受撞击而振动的结构与其它建筑构件连接而传播 隔绝途径:减弱振动源的振动、阻隔振动传播、阻隔振动结构向空间辐射声能 实例:楼板下做隔声吊顶
建筑声学基础知识
室内声场
在室内放置一个持 续发声的稳定声源, 经过一定时间的直 达声和来自各个界 面的反射声(混响) 声的共同作用,室 内声场会达到一个 稳态。此时,如果 声源停止发生,则 室内稳态声压级离 开开始衰减。
ห้องสมุดไป่ตู้
建筑声学基础知识
混响时间/Reverberation Time
建筑声学第三章 吸声材料和吸声结构

1、空间吸声体。2、尖劈—强吸声结构(声阻逐渐加大)。
2020/4/24
18
第一节 吸声材料(结构)的分类及吸声特性
3、可变吸声结构 利用改变吸声面和反 射面的方法调整吸声 量(如右图)
4、空气吸收。由于空气的热传导与粘滞性,以及空气中水分 子对氧分子振动状态的影响等造成。声音频率越大,空气吸 收越强烈(一般大于2KHz将进行考虑)。
有时使用平均吸声系数粗略衡量材料的吸声能力。 平均吸声系数:100Hz-5000Hz的1/3倍频带吸声系数的平均值 吸声量:对于平面物体A= S, 单位是平米(或塞宾)
对于单个物体,表面积难于确定,直接用吸声量
2020/4/24
3
概述
吸声量或吸声系数的测量:
1、混响室法
T=0.161V(1/T2-1/T1)/S A= 0.161V(1/T2-1/T1)/n
15
第一节 吸声材料(结构)的分类及吸声特性
狭缝吸音砖内如放入吸声材料则 增大吸声效果 右图为美国某音乐教室。 下图为狭缝吸音砖放入玻璃棉的 情况。
2020/4/24
16
第一节 吸声材料(结构)的分类及吸声特性
共振吸声效果和吸声腔内加入吸声材料 (玻璃棉)后的吸声效果
2020/4/24
17
第一节 吸声材料(结构)的分类及吸声特性
矿棉、玻璃棉、 泡沫塑料、毛毡
2020/4/24
穿孔板、薄膜、薄板
空间吸声体、可变 吸声体、强吸声体、家
具、空气、洞口等
6
第一节 吸声材料(结构)的分类及吸声特性
一 、多孔吸声材料的吸声原理
多孔吸声材料类型:玻璃棉、岩棉、泡沫塑料、毛毡 等具有良好的吸声性能,不是因为表面粗糙,而是因 为多孔材料具有大量的内外连通的微小孔隙和孔洞。
建筑物理 第3章 材料和结构的声学特性

空腔共振吸声结构:结构中封闭有一定体积的 空腔,并通过一定深度的小孔与声场空间连接。 其吸声原理可以用亥姆霍兹共振器来说明。
• 亥姆霍兹共振器的固有频率
f0
c
2
s
V t
c——声速,34000cm/s; s——颈口面积,cm2; V——空腔体积,cm3; t——孔颈深度,cm; δ——开口末端修正量,cm,对于圆孔,δ=0.8d
第三讲 材料和结构的声学特性
建筑声环境的形成及其特性,一方 面取决于声源的情况,另一方面取决于 建筑空间以及形成建筑空间的物质。
无论是创造良好的音质还是控制噪 声,都需要了解和把握材料和结构的声 学特性,以便正确合理地、有效灵活地 加以使用。
在研究建筑空间 围护结构的声学特性时, 对室内声波而言,通常 考虑的是反射和吸收 (这里的吸收含透射, 即吸收是指声波入射到 围护结构后不再返回该 空间的声能损失);对 室外声波而言,通常考 虑的是透射。
• 吸声量
• 对于建筑围蔽结构
A S
n
A 1S12S 2 nS n iS i i 1
• 对于在声场中的人、物或空间吸声体,由于 表面积很难确定,常直接用吸声量。
开窗
50厚玻璃棉 240砖墙
吸声系数 α 材料面积S (m2) 吸声量A =αS
1.0 100 m2 100 m2
0.8 100 m2
注意3
材料或结构的声学特性和入射声波 的频率和入射角度有关。
即某一材料或结构对不同频率的声 波会产生不同的反射、吸收和透射;相 同频率的声波以不同角度入射时,也有 不同的反射、吸收和透射。所以说到材 料或结构的声学特性时,总是与一定的 频率和入射角对应。
• 吸声材料和吸声结构 • 隔声和构件的隔声特性 • 反射和反射体
建筑声学-11室内声学与厅堂音质设计

4
几何声学方法: 适用条件:反射面或障碍物的尺寸要远大于声波的波长。 ——中高频声音、房间尺度较大。 ——对于低频声,如63~125Hz,波长为5.4m~2.7m。因此,在一个各个表
面尺寸均小于声波波长的小房间内,几何反射定律将不适用。
▪ P376 表17-1
27
二、客观技术指标 2.频率特性 ▪ 为了使音乐各声部和语音的低、中、高频的分量平衡,使音色不失
真,还必须照顾到低、中、高频声能之间的比例关系。 ▪ 由于人耳对低频声的宽容度较大,同时厅堂内界面和观众衣饰对中
高频的声能吸收较大,所以允许低频混响时间有15%-45%的提升。 ▪ 对于不同厅堂有不同具体要求。(录音室——以平直为主)
i 1
i 1
V T60 0.161 A
13
▪ 工程中普遍采用伊林(Erying)公式 ▪ 伊林公式在赛宾公式的基础上考虑了空气吸收的影响。
T60
-
S
0.161V
ln(1 ) 4 m V
▪ 空气吸声与声音频率有关,频率越高,空气吸声系数(4m)越大;频 率小于1000Hz时,4mV一项可省去。
25
4.优美的音质 ▪ 对于音乐声来说,除了听得见、听得清这些基本要求外,室内音质
设计还需要给听众提供听得舒服的环境。因此,为了让室内声音具 有优美的音质,还需要注意以下两方面: 1)足够的丰满度。丰满度的含意有:声音饱满、圆润,音色浑厚、温 暖,余音悠扬、有弹性。总之,它可以定义为声源在室内发声与在 露天发声相比较,在音质上的提高程度。(反射声:温暖or活跃) 2)良好的空间感。是指室内声场给听者提供的一种声音在室内的空间 传播感觉。其中包括听者对声源方向的判断(方向感),距声源远 近的判断(距离感)和对属于室内声场的空间感觉(环绕感、围绕 感)。
建筑物理 +声学部分+《第1章:建筑声学基础知识》

0c 又称为介质的特性阻抗。
郑州华信学院
建筑物理
第1章 建筑声学
1.2.2 声功率级、声强级和声压级 人耳刚能听见的下限声强为10-12w/m2,相应的声压为 2×10-5N/m2;使人感到疼痛的上限声强为1w/m 2,相 应的声压为20N/m2。所以用声强和声压计量声音很难。 1.声功率级( LW ) 声功率级是声功率与基准功率之比的对数的10倍。记为 LW W LW 10 lg (dB) W0
郑州华信学院
建筑物理
第1章 建筑声学
2.声强级(LI ) 声强级是声强与基准声强之比的对数的10倍。记为 LI
I LI 10 lg I0
(dB)
郑州华信学院
建筑物理
第1章 建筑声学
3.声压级(Lp) 声压级是声压与基准声压之比的对数的20倍。记为 Lp
p L p 20 lg (dB) p0
郑州华信学院
建筑物理
第1章 建筑声学
1.1.4 声音的透射、反射和吸收
当声波入射到建筑构件(如墙、天花)时,声能的一部 分被反射,一部分透过构件,还有一部分被构件吸收。 根据能量守恒定律,若入射总声能为E0,反射的声能 为Eρ,构件吸收的声能为Eα,透过构件的声能为Eτ, 则互相间有如下的关系:
E0=E 十Eα十E τ
Lp LW 20lg r 8
郑州华信学院
建筑物理
第1章 建筑声学
1.4.2 室内声压级的计算
1.直达声、早期反射声及混响声。
1.直达声:是指声源直接到达接收点的声音。 2.早期反射声:一般指直达声到达以后,相对延 迟时间为50ms内到达的反射声。(对于音乐声可 放宽至80ms)。 3.混响声:在早期反射声之后陆续到达的,经过 多次反射后的声音统称为混响声。
建筑声学实验报告

建筑声学实验报告建筑声学实验报告引言:建筑声学是研究建筑环境中声音传播和控制的学科,对于提高人们的居住和工作环境质量具有重要意义。
本实验旨在通过一系列实验手段,探究建筑声学的相关原理和应用,以及对建筑声学设计的一些建议。
实验一:声音传播特性测量在这个实验中,我们使用了声音传播特性测量仪器,对不同材料的声音吸收和反射特性进行了测量。
通过实验数据的分析,我们发现不同材料的声学特性差异巨大。
例如,吸音材料如泡沫板和吸音棉对声音的吸收效果较好,而金属板和玻璃等材料则对声音的反射较强。
这些结果为我们在建筑声学设计中选择合适的材料提供了依据。
实验二:噪声控制技术研究在这个实验中,我们研究了噪声控制技术在建筑环境中的应用。
通过设置不同类型的隔音墙和隔音窗,我们对噪声的传播进行了实验观测。
实验结果表明,合理设计的隔音结构能够有效减少噪声的传播,提供更为宁静的室内环境。
此外,我们还研究了噪声吸收材料的应用,发现其对于降低噪声污染也起到了积极的作用。
实验三:声学设计优化在这个实验中,我们通过对不同建筑结构的声学设计进行对比研究,探讨了声学设计的优化方法。
我们发现,在室内空间中,合理设置吸音板和吸音棉等材料能够有效减少噪音的反射和回声,提高声音的清晰度和质量。
此外,合理布置音箱和扬声器等音响设备,能够更好地实现声音的均匀分布,提高听音效果。
实验四:建筑声学仿真在这个实验中,我们使用声学仿真软件对建筑声学进行了模拟和分析。
通过输入不同声源和材料参数,我们可以模拟不同建筑环境中的声学效果,并对其进行评估和优化。
通过这种仿真方法,我们能够在设计阶段就对建筑声学进行预测和调整,提高设计效率和质量。
结论:通过本次实验,我们深入了解了建筑声学的相关原理和应用。
合理的声学设计可以提高建筑环境的舒适性和功能性,减少噪声污染对人们的影响。
在实际建筑设计中,我们应该根据具体需求选择合适的材料和技术手段,结合声学仿真和实验分析,进行全面的声学设计优化。