角平分线与等腰三角形及答案

合集下载

与角平分线有关的证明、计算(含答案)

与角平分线有关的证明、计算(含答案)

学生做题前请先回答以下问题问题1:总结角平分线的相关定理:①______________________________________________;②_____________________________________________;③在下图中成立的比例_________________.问题2:总结角平分线常见的组合搭配:①等腰三角形“三线合一”,___________重合,考虑角平分线;②平行线+角平分线出现_______________________;③___________(填“三大变换”)会出现角平分线,四边形背景下会出现角平分线+_____________,进而出现等腰结构.以下是问题及答案,请对比参考:问题1:总结角平分线的相关定理:①;②;③在下图中成立的比例.答:问题2:总结角平分线常见的组合搭配:①等腰三角形“三线合一”,重合,考虑角平分线;②平行线+角平分线出现;③(填“三大变换”)会出现角平分线,四边形背景下会出现角平分线+ ,进而出现等腰结构.答:与角平分线有关的证明、计算一、单选题(共8道,每道11分)1.如图,点A,C在直线上,点B在射线AD上,,分别是∠BAE,∠CBD的平分线.若,则∠BAE的度数为( )A.150°B.168°C.135°D.160°答案:B解题思路:试题难度:三颗星知识点:角平分线的性质2.如图,梯形ABCD中,∠ABC和∠DCB的平分线相交于梯形中位线EF上的一点P,若EF=3,则梯形ABCD的周长为( )A.9B.10.5C.12D.15答案:C解题思路:试题难度:三颗星知识点:角平分线3.如图,在△ABC中,AD平分∠BAC,过B作BE⊥AD于点E,过E作EF∥AC交AB于F,连接CF,则下列判断正确的是( )A.BE=BFB.BE=EFC.BF=EFD.答案:C解题思路:试题难度:三颗星知识点:角平分线4.如图,已知等腰Rt△ABC中,∠ACB=90°,点D为等腰Rt△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA,连接BE,若CD=2,则BE的长为( )A. B.C.6D.答案:D解题思路:试题难度:三颗星知识点:等边三角形5.(用两种方法进行求解)如图,在△ABC中,若∠C=90°,,AD平分∠CAB,则sin∠CAD=______.( )(提示:从角平分线的相关思考角度出发)A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:角平分线6.(用三种方法进行求解)如图,在Rt△ABC中,AB=10,AC=6,AF平分∠BAC交BC于点F,BD⊥AF,交AF的延长线于点D,则AD的长为____________.( )(提示:从角平分线的相关思考角度出发)A.8B.6C. D.答案:C解题思路:试题难度:三颗星知识点:角平分线性质定理7.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处.若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是__________.( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:折叠问题8.如图,在正方形ABCD中,对角线AC,BD相交于点O,且,CE交OB于点E,过点B作BF⊥CE于点F,交AC于点G,则的值为( )A.1B.C. D.答案:B解题思路:试题难度:三颗星知识点:全等三角形的性质与判定二、填空题(共1道,每道12分)9.如图,在梯形ABCD中,AD∥BC,∠BCD的平分线CE交AB于点E,且CE⊥AB,BE=2AE.若四边形AECD的面积为7,则梯形ABCD的面积为____.答案:15解题思路:试题难度:知识点:三线合一。

培优专题等腰三角形(含答案)

培优专题等腰三角形(含答案)

9、等腰三角形【知识精读】(-)等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。

等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。

(二)等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

2. 定理及其推论的作用。

等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。

3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。

【分类解读】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。

等腰三角形角平分线定理垂直平分线定理

等腰三角形角平分线定理垂直平分线定理
故∠B=36°
如图,CA=CB,DF=DB,AE=AD,求∠A的度数
设∠A为x
∵CA=CB
∴ ∠A=∠B=x
E
∵DF=DB
∴∠F=∠B=x
∴ ∠A=∠B= ∠F =x
∴∠ADE=2x
∵AE=AD
∴∠AED=∠ADE=2x
∴ ∠A=180÷5=36°
△ABC是等边三角形,过AC边上的点D作 DG//BC,交AB于点G,在GD的延长线上取 一点E,使DE=DC,连接AE,BD。 (1)求证△AGE≌△DAB。
下列命题中真命题的个数是( B); ①等边三角形也是等腰三角形,任何一 边都可以作为底或腰; ②不等边三角形是遍都不相等的三角形 ; ③不等边三角形是三边不都相等的三角 形; ④三角形按边可分为不等边三角形、等 腰三角形、等边三角形。 A.1 B.2 C.3 D.4
已知一个三角形的边长为4cm,5cm,且第 三边长x为整数,问: (1)由4cm,5cm,xcm为边可组成多少个不同
∠CAD+∠C=90°, ∴∠BFD=∠CAD
又∵∠AFE=∠BFD
∴∠CAD=∠AFE, ∴EA=EF(等角对等边), ∴E在AF的垂直平分线上
谢谢!
谢谢!
如图,在△ABC中,∠BAC=90°,AB= AC,∠ABC的平分线交AC于D,过C作BD 垂线交BD的延长线于E,交BA的延长线于F
,求证:BD=2CE.
F A
E D
B
C
如图,在△ABC中,已知AB=AC, ∠BAC=90°,D是BC上一点,EC⊥BC, EC=BD,DF=FE. 求证:(1)△ABD≌△ACE;(2)AF⊥DE.
∵BP,CP分别是△ABC的外角平 分线
∴PE=PQ, PF=PQ ∴PE=PF ∵PE⊥AB,PF⊥AC ∴点P在∠A的平分线上

等腰三角形+角平分线

等腰三角形+角平分线

第一部分:知识点回顾角平分线的性质及判定:1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上。

4.注意在证明中用到这两个定理,如何把文字叙述转化成数学符号:例:如图角的平分线的性质定理的几何语言:∵OC是∠AOB的平分线,PD⊥OA于D,PE⊥OB于E,∴PD=PE角的平分线的判定定理的几何语言:∵PD⊥OA于D,PE⊥OB于E,PD=PE∴点P在∠AOB的平分线上等腰三角形的性质及判定:1.等腰三角形有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.2.等腰三角形的性质和判定性质1 等腰三角形的两个底角相等(简写成“等边对等角”)性质2 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”)判定(1)有两条边相等的三角形,叫做等腰三角形(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”)3.等边三角形三条边都相等的三角形叫做等边三角形.4.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60°.(2)等边三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.5.等边三角形有关判定(1 )三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形.(3)有一个角是60°的等腰三角形是等边三角形.6.由对等边三角形推出的一个关于直角三角形的一个性质在直角三角形中,如果有一个锐角等于30°,那么它对的直角边等于斜边的一半. 第二部分:典型例题如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于O,OB=OC。

初二数学等腰三角形的性质试题答案及解析

初二数学等腰三角形的性质试题答案及解析

初二数学等腰三角形的性质试题答案及解析1.如图,△ABC中,∠B,∠C的平分线相交于O点,作MN∥BC,EF∥AB,GH∥AC,BC=a,AC=b,AB=c,则△GMO的周长+△ENO的周长-△FHO的周长= .【答案】b+c-a【解析】由角平分线及平行线可得等腰三角形,进而得边长相等,再通过转化,即可得出结论.∵OB、OC分别平分∠ABC、∠ACB,MN∥BC,EF∥AB,GH∥AC,∴OM=BM,ON=NC,OG=AE,OE=AG,∴△GMO周长+△ENO的周长-△FHO的周长=OG+OM+GM+OE+ON+EN-OH-OF-FH=AE+EN+NC+BM+GM+AG-HC-FH-BF=b+c-a,故应填b+c-a.【考点】本题主要考查角平分线的性质,平行线的性质点评:解答本题的关键是掌握由角平分线及平行线可得等腰三角形,再通过转化求解。

2.△ABC中,AB=AC,∠A=∠C,则∠B=_______.【答案】60°【解析】由AB=AC根据等边对等角可得∠B=∠C,即可得到∠A=∠B=∠C,再根据三角形的内角和180°即可求得结果。

∵AB=AC,∴∠B=∠C,∵∠A=∠C,∴∠A=∠B=∠C,∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°,故答案为60°.【考点】本题考查的是等腰三角形的性质,三角形的内角和定理点评:解答本题的关键是根据等边对等角得到∠A=∠B=∠C.3.如图,Rt△ACB中,∠ACB=90°,点D、E在AB上,AC=AD,BE=BC,则∠DCE等于()A、45°B、60°C、50°D、65°【答案】A【解析】根据等腰三角形的性质可得到几组相等的角,再根据三角形内角和定理可分别表示出∠ACD,∠BCE,再根据角之间的关系,不难求得∠DCE的度数.∵AC=AD,BC=BE∴∠ACD=∠ADC,∠BCE=∠BEC∴∠ACD=(180°-∠A),∠BCE=(180°-∠B)∴∠DCE=∠ACD+∠BCE-∠ACB=90°-(∠A+∠B)∵∠A+∠B=90°∴∠DCE=45°故选A.【考点】此题主要考查等腰三角形的性质及三角形内角和定理的综合运用点评:解答本题的关键是熟练掌握等腰三角形的性质及三角形内角和定理的综合运用。

等腰三角形底角角平分线定理

等腰三角形底角角平分线定理

等腰三角形底角角平分线定理1. 引言说到三角形,大家都不会陌生吧?无论是课堂上那一张张透光的图纸,还是生活中形形色色的标志和建筑,三角形总是出现在我们眼前。

今天我们要聊的是等腰三角形中的一个小秘密——底角角平分线定理。

乍一听,这个名字好像挺高深的,其实嘛,它就像是一个温暖的朋友,轻松易懂,能带你了解三角形的一些小妙招。

2. 等腰三角形的基本概念2.1 什么是等腰三角形?等腰三角形,顾名思义,就是那种两边相等的三角形。

想象一下,你的两个手指头并排站在一起,像极了等腰三角形的两条边。

而那根连接指尖的手指,就是它的底边。

等腰三角形的一个特别之处在于,它的底角相等,简直是数学界的双胞胎!而这些底角的大小,跟它的角平分线可是有着千丝万缕的联系哦。

2.2 底角角平分线的定义那什么是底角角平分线呢?简单来说,底角角平分线就是把底角分成两个相等角度的那条线。

想象一下,假如你有一块美味的蛋糕,切蛋糕的时候,如果从中心切下去,那块蛋糕就会被分成两个一模一样的部分,这就像是底角角平分线在等腰三角形里的作用。

真是好比“分蛋糕”的哲学,讲究的是公平与美味。

3. 底角角平分线定理的内容3.1 定理的具体内容底角角平分线定理告诉我们,当你在等腰三角形中画出底角的角平分线时,这条线会把对边分成两段,使得这两段的长度相等。

也就是说,如果你把等腰三角形的两个底角用一条线分开,那么这条线会把对边切得刚刚好,真是“分道扬镳”的绝佳示范!所以,掌握这个定理,不仅能在数学考试中加分,还能在生活中增添不少趣味。

3.2 生活中的应用想象一下,你在家里做手工,准备剪一张纸成一个等腰三角形。

你心里想着要把角分得好看,这时候,你可以利用这个定理,确保纸张被剪得“公平公正”。

另外,在一些建筑设计中,等腰三角形的结构也是常见的,底角的角平分线帮助设计师保持对称美感,真是实用至极!4. 小结在这个数学的小世界里,底角角平分线定理不仅仅是一个公式,它更像是一把钥匙,能打开等腰三角形的神秘大门。

角平分线和平行线出等腰例题

角平分线和平行线出等腰例题角平分线和平行线出等腰例题角平分线和平行线是我们在几何学中经常遇到的概念。

它们是几何学中的基础知识,很多几何问题都离不开这两个概念。

在这篇文档中,我将讨论关于角平分线和平行线出等腰三角形的例题。

例题1:证明:如果一条角平分线与另一条边相交,那么这条角平分线将这个角分成两个相等的小角。

解析:首先,我们假设有一个角ABC,角平分线AD将其分成两个小角BAD和DAC。

我们需要证明角BAD等于角DAC。

根据角平分线的定义,角BAD和角DAC是由角ABC的两边所构成的。

我们可以将角BAD和角DAC的顶点放在一起,形成一个角BAC。

那么,角BAC的两条边AB和AC都是角ABC的边,这意味着角BAC等于角ABC。

然后,我们可以通过角相等的性质来得到结论。

角BAD等于角BAC,而角DAC等于角BAC,所以角BAD等于角DAC。

这样,我们就证明了角平分线将角ABC分成了两个相等的小角。

例题2:证明:如果一条平行线与一个角的两边相交,那么这条平行线将这个角分成两个相等的小角。

解析:给定一个角ABC和一条平行线DE,我们需要证明角ADE等于角BAC。

首先,我们可以通过转角的定义知道角ADE和角BAC 都是由角ABC的两条边所构成的。

我们将角ADE的顶点放在一起,形成一个角ABC。

由于平行线DE与角ABC的两边相交,可以知道平行线DE和线段AC构成了交角。

接下来,我们可以应用平行线的性质。

平行线与一条直线相交时,对应角相等。

所以,角ADE等于角ABC。

最后,我们可以通过角相等的性质得到结论。

角ADE 等于角ABC,而角BAC也等于角ABC,所以角ADE等于角BAC。

这样,我们就证明了平行线将角ABC分成了两个相等的小角。

例题3:证明:如果一条角平分线与一条平行线相交,那么这条平行线将角平分线所分的角分成两个相等的小角。

解析:给定一条角平分线AD和一条平行线BC,我们需要证明角BAD等于角DAC。

灵活运用角平分线、平行线、等腰三角形知二推一解中考题


回回

4 c m, AD = 5 c m,  ̄ I I J A曰 =

决 问题 。
由点D、 盼 别是B C、 AB 的中点 ,利用 三角形 中
位 线的 性质, g h ; t .  ̄ D F = L A C = ÷6 ,F G = B G — B F , 可
求 得D F = F G,又 由 D E#A B, 即 可 求 得 D C平 分
‘ .
衙 旧 凰

cm

角 对 等边 , B D : D G : c D, 即可 证 明 。
【 分析】 这个 图形 中 出现 了角平 分线A C 和平 行
【 解答 】 ( 1 ) ・ . ・ D、 C、 盼 别是 AA B C  ̄ 边中点 , _

D E / / A B DF / / A C
厶F DG = /E D GI O D G 平 分 厶E DF
( 3 ) 在 △D F G 中, /F DG = F G D,
・ .
. ・
・ .
【 例2 】 ( 2 0 1 2 年 安徽 省 第 2 2
△D 1 G 是等腰三角形 , △B DG 与 AD F G  ̄ I 似, AB DG 是等腰 三角形 ,
题可以结合前面问题来做 。这里证 明 AD F G为等腰 三 角 形 是 关键 。
( 作 者单 位 : 贵 州 省 安 顺 市教 育科 学研 究所 )
备考方 略

厨 碴 厕 厕
■ 李 志均

国 画 量 厕
B G = ( A 曰 “ C) = ( c + b )

( 2 ) 由于这里 要证 明 的是D G平 分 / _E D F, 而由

等腰三角形角平分线

注意在证明中用到这两个定理,如何把文字叙述转化成数学符号:如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于O,OB=OC。

求证∠1=∠2.四边形ABCD中,AD∥BC,AE平分∠DAB,BE平分∠ABC,点E恰在DC上,∠C=∠D=90°。

(1)求证:AE⊥BE(2)猜想AB、AD、BC之间有何数量关系?请证明你的结论。

如图,D、E、F分别是△ABC的三条边上的点,CE=BF,△DCE和△DBF的面积相等.求证:AD平分∠BAC.如图,某铁路MN与公路PQ相交于点O,且夹角为90°,其仓库G在A区,到公路和铁路距离相等,且到公路距离为5cm.交BC于E,DBE所以这个三角形腰长为10㎝,底边长为7㎝。

剖析:在处理等腰三角形的问题时,有的同学习惯上总认为腰大于底,这是造成错误的原因所在。

事实上本题有两种情况。

正解:此题有两种情况:∵BD 为等腰△ABC 的中线∴AD=DC 设AB 为x ㎝ ,BC 为ycm.(1) ⎪⎪⎩⎪⎪⎨⎧=+=+122152y x x x 解得 ⎩⎨⎧==710y x 或 (2) ⎪⎪⎩⎪⎪⎨⎧=+=+152122y x x x 解得 ⎩⎨⎧==118y x 所以这个三角形腰长为10㎝,底边长为7㎝或腰长为8㎝,底边长为11㎝。

三、概念不清造成的错误例3、已知在等腰三角形中,一个角是另一个角的2 倍,求等腰三角形三个内角的度数。

错解:设等腰三角形的顶角为x°,则底角为2 x°。

根据题意,得 x+2x+2x=180解得 x=36 ∴2x=72∴这个等腰三角形的三个内角为:36°、72°、72°.剖析:错误在于误认为等腰三角形的底角一定大于顶角,是概念不清造成的错误想法。

本题应分底角大于或小于顶角两种情况解答。

正解:当等腰三角形的底角大于顶角时,设顶角为x°,则底角为2 x°。

角平分线等腰三角形平行线


能力挑战:
如图,△ABC和△EDC都为等边三角形
A
请试着说明 AD=BE
E B D C
变式挑战1:
若△EDC在△ABC的外部, 如图△ABC和 △EDC都为等边三角形,点B、C、D在同 A 一直线上。
此时,请再试着
说明 AD=BE
E
B
C
D
变式挑战1:
图中还有哪些三角形全等? 若连接M、N,试判断△MNC的形状。 A MN与BD在位置上有什 么关系?
B
7
C
3、放学以后,小红和小颖从学校分手,分别沿 着东南方向和西南方向回家,若小红和小颖行走 的速度都是40米/分,小红用15分钟到家,小颖 用20分钟到家,小红和小颖家的距离为( ) A、600米 B、800米 C、1000米 D、不能确定
如图,AB=AD,BC=CD,AC,BD相交于E点, 由这些条件你能推导出哪些结论呢? 请说明理由。
E
M
N
B
C
D
变式挑战2:
若点B、C、D不在同一直线上呢?此时, AD与BE是否还相等?请说明理由。 A
E
B
C
D
3.如图,AB⊥BD于点B,CD⊥BD于点D,P是BD上 一点,且BP=CD,∠1=∠2,则: (1)Rt△ABP与Rt△PDC全等吗?说明理由. (2) △APC是不是等腰直角三角形?说 明理由。 (3)若AC=10,E为AC中点,
C
求PE的长度.
A
1
E
2
B
P
D
4.如图,一个消防用梯子AB长为25米的, 顶端A靠在墙AC上,这时梯子下端B与墙 角C的距离为7米,求: (1)这个梯子的顶端A距地面有多高? A (2)当梯子顶端下滑了4米到E, 那么梯子的底端B在水平方向 E 滑动了多少米? 25 (3)当梯子顶端下滑 了多少米后,梯子与水 平方向成30°角? D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角平分线与等腰三角形1.(2011•牡丹江)在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.2.(2010•西宁)(1)班同学上数学活动课,利用角尺平分一个角(如图所示).设计了如下方案:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由;(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.3.(2007•福州)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.4.(2013•房山区一模)(1)如图1,△ABC和△CDE都是等边三角形,且B、C、D三点共线,联结AD、BE相交于点P,求证:BE=AD.(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、等边三角形CDE和等边三角形BDF,联结AD、BE和CF交于点P,下列结论中正确的是_________(只填序号即可)①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.5.(2012•岳阳)(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D在等边△边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.6.(2010•雅安)如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.7.(2012•牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH.又∵S△ABP+S△ACP=S△ABC,∴AB•PE+AC•PF=AB•CH.∵AB=AC,∴PE+PF=CH.(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH=_________.点P到AB边的距离PE=_________.8.(2010•丹东)如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.9.(2010•贵港)如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.求证:PE=PD10.(2010•德州)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.11.(2010•金山区二模)如图,在△ABC中,点D、E分别在AB、AC上,连接BE、CD相交于点O.(1)如果AB=AC,AD=AE,求证:OB=OC;(2)在①OB=OC,②BD=CE,③∠ABE=∠ACD,④∠BDC=∠CEB四个条件中选取两个个作为条件,就能得到结论“△ABC是等腰三角形”,那么这两个条件可以是:_________(只要填写一种情况).12.(2014•龙岩)如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.13.(2014•怀柔区二模)已知△ABC是等边三角形,E是AC边上一点,F是BC边延长线上一点,且CF=AE,连接BE、EF.(1)如图1,若E是AC边的中点,猜想BE与EF的数量关系为_________.(2)如图2,若E是线段AC上的任意一点,其它条件不变,上述线段BE、EF的数量关系是否发生变化,写出你的猜想并加以证明.(3)如图3,若E是线段AC延长线上的任意一点,其它条件不变,上述线段BE、EF的数量关系是否发生变化,写出你的猜想并加以证明.14.(2014•鞍山一模)如图,△ABC是等边三角形,AN=BM,BN,MC相交于O,CH⊥BN于点H,求证:2OH=OC.参考答案与试题解析1.(2011•牡丹江)在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜解答:(1)证明:如图,∵△ABC是等边三角形,∴BC=AB,∠A=∠EBC=60°,∴在△BCE与△ABF中,,∴△BCE≌△ABF(SAS),∴CE=BF;(2)解:∵由(1)知△BCE≌△ABF,∴∠BCE=∠ABF,∴∠PBC+∠PCB=∠PBC+∠ABF=∠ABC=60°,即∠PBC+∠PCB=60°,∴∠BPC=180°﹣60°=120°.即:∠BPC=120°.(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由;(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明解答:解:(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件,∵只有OP=OP,PM=PN不能判断△OPM≌△OPN;∴就不能判定OP就是∠AOB的平分线;方案(Ⅱ)可行.证明:在△OPM和△OPN中,,∴△OPM≌△OPN(SSS),∴∠AOP=∠BOP(全等三角形对应角相等);∴OP就是∠AOB的平分线.(2)当∠AOB是直角时,此方案可行;∵四边形内角和为360°,∠OMP=∠ONP=90°,∠MPN=90°,∴∠AOB=90°,∵PM=PN,∴OP为∠AOB的平分线.(到角两边距离相等的点在这个角的角平分线上),当∠AOB不为直角时,此方案不可行;因为∠AOB必为90°,如果不是90°,则不能找到同时使PM⊥OA,PN⊥OB的点P的位置.AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD 三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.解答:解:(1)解法一:如图1延长BP交直线AC于点E.∵AC∥BD,∴∠PEA=∠PBD.∵∠APB=∠PAE+∠PEA,∴∠APB=∠PAC+∠PBD;解法二:如图2过点P作FP∥AC,∴∠PAC=∠APF.∵AC∥BD,∴FP∥BD.∴∠FPB=∠PBD.∴∠APB=∠APF+∠FPB=∠PAC+∠PBD;解法三:如图3,∵AC∥BD,∴∠CAB+∠ABD=180°,∠PAC+∠PAB+∠PBA+∠PBD=180°.又∠APB+∠PBA+∠PAB=180°,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)(a)当动点P在射线BA的右侧时,结论是∠PBD=∠PAC+∠APB.(b)当动点P在射线BA上,结论是∠PBD=∠PAC+∠APB.或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD(任写一个即可).(c)当动点P在射线BA的左侧时,结论是∠PAC=∠APB+∠PBD.选择(a)证明:如图4,连接PA,连接PB交AC于M.∵AC∥BD,∴∠PMC=∠PBD.又∵∠PMC=∠PAM+∠APM(三角形的一个外角等于与它不相邻的两个内角的和),∠PBD=∠PAC+∠APB.选择(b)证明:如图5∵点P在射线BA上,∴∠APB=0度.∵AC∥BD,∴∠PBD=∠PAC.∴∠PBD=∠PAC+∠APB 或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD.选择(c)证明:如图6,连接PA,连接PB交AC于FBE相交于点P,求证:BE=AD.(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、等边三角形CDE和等边三角形BDF,联结AD、BE和CF交于点P,下列结论中正确的是①②③(只填序号即可)①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;解答:(1)证明:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠BCE=∠ACD,∵在△BCE和△ACD中∴△BCE≌△ACD(SAS)∴BE=AD;(2)解:①②③都正确,理由是:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠BCE=∠ACD,在△BCE和△ACD中∴△BCE≌△ACD(SAS)∴BE=AD,∠BEC=∠ADC,∴②正确;同理△FDC≌△BDE,∴BE=CF,∴BE=AD=CF,∴①正确;∵△BCE≌△ACD,∴∠CEP=∠CDA,∵∠CED=∠CDE=60°,∴∠DEP+∠CEP=∠CED=60°=∠CDP+∠DEP,∴∠DPE=180°﹣60°﹣60°=60°,同理∠EPC=∠CPA=60°,即∠DPE=∠EPC=∠CPA=60°,∴③正确;故答案为:①②③;(3)证明:在PE上截取PM=PC,连接CM,由(1)可知,△BCE≌△ACD(SAS)∴∠1=∠2设CD与BE交于点G,在△CGE和△PGD中,∵∠1=∠2,∠CGE=∠PGD,∴∠DPG=∠ECG=60°,同理∠CPE=60°,∴△CPM是等边三角形,∴CP=CM,∠PMC=60°.∴∠CPD=∠CME=120°.∵∠1=∠2,∴△CPD≌△CME(AAS),∴PD=ME,∴BE=PB+PM+ME=PB+PC+PD,即PB+PC+PD=BE.以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D在等边△边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不解答:解:(1)AF=BD;证明如下:∵△ABC是等边三角形(已知),∴BC=AC,∠BCA=60°(等边三角形的性质);同理知,DC=CF,∠DCF=60°;∴∠BCA﹣∠DCA=∠DCF﹣∠DCA,即∠BCD=∠ACF;在△BCD和△ACF中,,∴△BCD≌△ACF(SAS),∴BD=AF(全等三角形的对应边相等);(2)证明过程同(1),证得△BCD≌△ACF(SAS),则AF=BD(全等三角形的对应边相等),所以,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,AF=BD仍然成立;(3)Ⅰ.AF+BF′=AB;证明如下:由(1)知,△BCD≌△ACF(SAS),则BD=AF;同理△BCF′≌△ACD(SAS),则BF′=AD,∴AF+BF′=BD+AD=AB;Ⅱ.Ⅰ中的结论不成立.新的结论是AF=AB+BF′;证明如下:在△BCF′和△ACD中,,∴△BCF′≌△ACD(SAS),∴BF′=AD(全等三角形的对应边相等);又由(2)知,AF=BD;∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.解答:证明:∵△ABC为等边三角形,∴AB=BC=AC,∠A=∠ABC=∠ACB=60°,在△BAN和△CBM中,,∴△BAN≌△CBM(SAS),∴∠ABN=∠BCM,∵∠ABN+∠OBC=60°,∴∠BCM+∠OBC=60°,∵∠NOC为△OBC的外角,∴∠NOC=∠BCM+∠OBC=60°,在Rt△OHC,∠HCO=30°,则2OH=OC.同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.解答:证明:(1)∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,在△ACE与△DCB中,∵,∴△ACE≌△DCB,∴AE=BD;(2)∵由(1)得,△ACE≌△DCB,∴∠CAM=∠CDN,∵∠ACD=∠ECB=60°,而A、C、B三点共线,∴∠DCN=60°,在△ACM与△DCN中,∵,∴△ACM≌△DCN,∴MC=NC,∵∠MCN=60°,∴△MCN为等边三角形,∴∠NMC=∠DCN=60°,∴∠NMC=∠DCA,∴MN∥AB.分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH.又∵S△ABP+S△ACP=S△ABC,∴AB•PE+AC•PF=AB•CH.∵AB=AC,∴PE+PF=CH.(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH=7.点P到AB边的距离PE=4或10.解答:解:(1)如图②,PE=PF+CH.证明如下:∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH,∵S△ABP=S△ACP+S△ABC,∴AB•PE=AC•PF+AB•CH,又∵AB=AC,∴PE=PF+CH;(2)∵在△ACH中,∠A=30°,∴AC=2CH.∵S△ABC=AB•CH,AB=AC,∴×2CH•CH=49,∴CH=7.分两种情况:①P为底边BC上一点,如图①.∵PE+PF=CH,∴PE=CH﹣PF=7﹣3=4;②P为BC延长线上的点时,如图②.∵PE=PF+CH,∴PE=3+7=10.故答案为7;4或10.线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系解答:解:(1)判断:EN与MF相等(或EN=MF),点F在直线NE上,(2)成立.连接DF,NF,证明△DBM和△DFN全等(AAS),∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴EF=DF=BF.∵∠BDM+∠MDF=60°,∠FDN+∠MDF=60°,∴∠BDM=∠FDN,在△DBM和△DFN中,,∴△DBM≌△DFN,∴BM=FN,∠DFN=∠FDB=60°,∴NF∥BD,∵E,F分别为边AC,BC的中点,∴EF是△ABC的中位线,∴EF∥BD,∴F在直线NE上,∵BF=EF,∴MF=EN.(3)如图③,MF与EN相等的结论仍然成立(或MF=NE成立).连接DF、DE,由(2)知DE=DF,∠NDE=∠FDM,DN=DM,在△DNE和△DMF中,∴△DNE≌△DMF,∴MF=NE.(1)如果AB=AC,AD=AE,求证:OB=OC;(2)在①OB=OC,②BD=CE,③∠ABE=∠ACD,④∠BDC=∠CEB四个条件中选取两个个作为条件,就能得到连接BE、EF.(1)如图1,若E是AC边的中点,猜想BE与EF的数量关系为.(2)如图2,若E是线段AC上的任意一点,其它条件不变,上述线段BE、EF的数量关系是否发生变化,写出你的猜想并加以证明.(3)如图3,若E是线段AC延长线上的任意一点,其它条件不变,上述线段BE、EF的数量关系是否发解答:(1)答:猜想BE与EF的数量关系为:BE=EF;证明:(1)∵△ABC是等边三角形,E是线段AC的中点,∴∠CBE=∠ABC=30°,AE=CE,∵AE=CF,∴CE=CF,∴∠F=∠CEF,∵∠F+∠CEF=∠ACB=60°,∴∠F=30°,∴∠CBE=∠F,∴BE=EF;(2)答:猜想BE=EF.证明如下:如图2,过点E作EG∥BC,交AB于点G,∵△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE,∴BG=CE,又∵CF=AE,∴GE=CF,在△BGE与△ECF中,,∴△BGE≌△ECF(SAS),∴BE=EF;(3)BE=EF.证明如下:如图3,过点E作EG∥BC交AB延长线于点G,∵△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE,∴BG=CE,又∵CF=AE,∴GE=CF,又∵∠BGE=∠ECF=60°,∴在△BGE 与△ECF中,,∴△BGE≌△ECF(SAS),∴BE=EF.。

相关文档
最新文档