数论基础
数论基础知识

• 合数是指除1和它本身之外还有其他因数的整数
• 最大公约数是指两个或多个整数的最大公共因数
• 最小公倍数是指两个或多个整数的最小公共倍数
• 数论的应用领域广泛,包括密码学、计算机科学、组合数学等
数论的发展历程及重要成果
数论的发展历程可以追溯到古代希腊和古代印度
数论在古典密码学中的应用包括凯撒密
码、维吉尼亚密码等
• 替换密码:通过替换字符或字母来加
• 凯撒密码:通过将字母向右或向左移
密和解密信息
动固定的位数来进行加密和解密
• 换位密码:通过改变字符或字母的顺
• 维吉尼亚密码:通过将字母替换为其
序来加密和解密信息
他字母来进行加密和解密
• 简单密码:通过简单的数学运算来加
04
最大公约数与最小公倍数的计
算
最大公约数与最小公倍数的定义与性质
最大公约数(GCD)是指两个或多个整数的最大公共因数
• 最大公约数的性质:GCD(a, b) = GCD(b, a % b)
最小公倍数(LCM)是指两个或多个整数的最小公共倍数
• 最小公倍数的性质:LCM(a, b) = |a × b| / GCD(a, b)
题中具有重要
应用
最大公约数与
最小公倍数在
计算机科学和
密码学领域也
有应用
01
02
• 可以用于求解分数和比例问
• 可以用于数据压缩和文件加
题
密
• 可以用于求解最简分数和最
• 可以用于算法设计和密码破
大公因数问题
解
05
同余与模运算的性质及应用
同余的定义与性质
同余是指两个整数除以同一个数所得的余数相等
数论基础(六讲)

数论基础(六讲)第一讲:数的概念数论是数学的一个分支,主要研究整数的性质和结构。
在数论中,我们需要理解一些基本概念。
整数:整数是数学中最基本的概念之一,包括正整数、负整数和零。
正整数是自然数,可以用来表示数量;负整数是自然数的相反数,用来表示缺少或债务;零是整数中的中性元素。
自然数:自然数是正整数的集合,通常用0, 1, 2, 3, 表示。
自然数是数论研究的核心,许多数论问题都与自然数有关。
有理数:有理数是可以表示为两个整数的比值的数,包括整数和分数。
有理数在数论中也有重要应用,例如研究整数分解和数论函数。
素数:素数是大于1的自然数,除了1和它本身以外,没有其他因数。
素数在数论中有着重要的地位,许多数论问题都与素数有关。
整除:如果一个整数a能够被另一个整数b整除,即a/b是一个整数,我们说a被b整除。
整除是数论中的基本概念,许多数论问题都涉及到整除关系。
同余:两个整数a和b,如果它们除以同一个整数m的余数相同,即a%m = b%m,我们说a和b同余。
同余是数论中的基本概念,许多数论问题都涉及到同余关系。
在数论中,我们还需要了解一些基本的运算规则,如加法、减法、乘法和除法。
这些运算规则是数论研究的基础,我们需要熟练掌握它们。
第二讲:数的分解数的分解是数论中的一个重要问题,涉及到将一个整数分解为素数的乘积。
这个问题在密码学、计算机科学和数学的其他领域中都有广泛的应用。
素数分解:素数分解是将一个整数分解为素数的乘积的过程。
例如,将60分解为2×2×3×5。
素数分解是数论中的基本问题,也是密码学中 RSA 算法的基础。
最大公约数:最大公约数(GCD)是两个或多个整数共有的最大的因数。
例如,12和18的最大公约数是6。
最大公约数在数论中有着重要的应用,例如求解线性丢番图方程。
最小公倍数:最小公倍数(LCM)是两个或多个整数共有的最小的倍数。
例如,12和18的最小公倍数是36。
数论基础知识

1. 倍数规律末位系:2的倍数规律是末位数是偶数(即末位数是2的倍数),5的倍数规律是末位数是0或5(也即末位数是5的倍数);4的倍数规律是末两位数是4的倍数(例如:28是4的倍数,则128、1128、23574335435328都是4的倍数),同样,25的倍数规律也是末两位是25的倍数;8的倍数规律是末三位是8的倍数,125的倍数规律是末三位是125的倍数。
练习:23400是上面提到的哪些数的倍数?(提示:0是任何数的倍数。
)数位和系:3或9的倍数规律是各个数位相加之和是3或9的倍数(例如:1+2+3=6是3的倍数但不是9的倍数,则123、321、213等等都是3的倍数而不是9的倍数;3+6=9既是3的倍数也是9的倍数,所以36、63也既是3的倍数也是9的倍数。
) 练习:[ ]里能填哪些数可以使12[ ]34是3的倍数?9的倍数呢?数位差系:11的倍数规律是从后往前数奇数位上的数之和减去偶数位上的数之和是11的倍数。
(若不够减则可通过加上11的倍数使其够减。
)例:231,从后往前数,第1位是1,第2位3,第3位是2,所以奇数位的和是1+2=3,偶数位的和是3,所以奇数位和减偶数位和等于3-3=0是11的倍数,因此231就是11的倍数。
6160,奇数位和等于1+0=1,偶数位和等于6+6=12,奇数位和减偶数位和不够减,但加上一个11以后就够减了,变成了1+11-12=0是11的倍数,所以6160是11的倍数。
7、11、13的倍数有个公共的规律,即将末3位与之前断开,形成两个新的数之差是7、11、13的倍数。
例如:1012,把末三位断开后刚好变成了1与014(也就是12),于是这两数的差是11,因此是13的倍数,因此1014就是13的倍数。
练习:判断下列各数是不是7、11或13的倍数。
1131、25795、34177、123452. 分解质因数把一个整数拆成成若干个质数(质数即只有1和本身作为因数的大于一的整数,如2、3、5、7……)相乘的形式。
解析数论的基础概念与应用

解析数论的基础概念与应用数论是研究整数性质的一个分支学科,它在数学领域中具有重要的地位和广泛的应用。
本文将介绍数论的基础概念与应用,并探讨其在密码学、计算机科学和其他领域中的重要性。
一、基础概念1. 整数与素数:整数是数论中最基本的概念,它包括自然数、负整数和零。
素数是只能被1和自身整除的正整数,如2、3、5、7等。
2. 最大公约数与最小公倍数:最大公约数是两个数中最大的能够同时整除它们的正整数,最小公倍数是两个数的公倍数中最小的正整数。
3. 同余与模运算:同余是指两个数除以同一个正整数所得的余数相等,模运算是一种对整数进行同余运算的方法。
4. 欧拉函数与费马小定理:欧拉函数是小于等于一个正整数n且与n互质的正整数的个数,费马小定理是描述了在模n意义下的幂运算的规律。
二、应用领域1. 密码学:数论在密码学中起到了关键的作用。
其中,大素数的选择和素数分解是公钥密码系统中的重要问题,而离散对数问题和模幂运算是基于数论的加密算法的核心。
2. 计算机科学:数论在计算机科学中有广泛的应用。
例如,在计算机算法设计中,数论可以用于解决各种问题,如最大公约数和最小公倍数的计算、素数的判定和生成、同余关系的处理等。
3. 数字签名与认证:基于数论的方法可以实现数字签名和认证,用于验证数字信息的完整性和真实性,保证信息传输的安全性。
4. 信息编码与压缩:数论的一些基本概念和方法被应用于信息编码和压缩领域,例如霍夫曼编码和循环冗余校验等。
5. 算法设计与优化:数论中的一些算法和技巧可以用于算法设计和优化,提高计算机算法的效率和性能。
三、数论的研究方向1. 素数分布与素数定理:素数的分布一直是数论研究的核心问题之一,素数定理描述了素数的分布规律。
2. 整数因子分解与质因数分解:整数因子分解是将一个整数表示为若干个素数的乘积,质因数分解是将一个合数分解为若干个素数的乘积。
3. 同余方程与模运算:同余方程是数论中的一个重要问题,模运算可以用于解决同余方程和模幂运算等问题。
数论基础知识

数论基础知识数论是研究整数性质和整数运算规律的分支学科,是纯粹数学的一部分。
它是数学中最古老,最基础,最重要的学科之一,对数学发展和应用具有重要的意义。
本文将介绍数论的基础知识,包括整除性质、素数与合数、同余关系等内容。
整除性质整除是数论中的重要概念,用来描述一个整数能被另一个整数整除的关系。
如果一个整数a能够被另一个整数b整除,我们称a为b的倍数,b为a的约数。
如果一个整数a能被另一个整数b整除且除以b后余数为0,我们称a被b整除。
可以表示为a = b * c,其中c为整数。
整除的性质有以下几个重要定理:1. 任意整数a都能被1和它自身整除,即1和a是a的约数。
2. 如果a能被b整除且b能被c整除,则a能被c整除。
3. 如果a能被b整除且b能被a整除,则a与b相等或者互为相反数。
素数与合数素数是只能被1和自身整除的正整数,例如2、3、5、7、11等。
合数是除了1和自身外还有其他约数的正整数,例如4、6、8、9等。
素数和合数是数论中的两个重要概念。
素数有以下重要性质:1. 每个大于1的整数,都可以被表示为若干个素数的乘积。
2. 若一个整数n不是素数,则它一定可以被表示为两个整数的乘积。
对于一个数字n,判断其是否为素数的一种有效方法是试除法。
我们只需要从2到√n的范围内尝试将n进行整除,如果都无法整除,则n为素数。
例如判断17是否为素数,只需要从2到4的整数范围内进行试除即可。
同余关系同余是数论中研究整数之间的等价关系。
如果两个整数a和b满足除以某个正整数m后的余数相等,即(a - b)能被m整除,我们称a与b关于模m同余,记作a ≡ b (mod m)。
同余关系有以下性质:1. 若a ≡ b (mod m),则对于任意整数c,a + c ≡ b + c (mod m)。
2. 若a ≡ b (mod m),则对于任意整数c,a * c ≡ b * c (mod m)。
同余关系在密码学、编码理论等领域都有广泛的应用。
数论基础知识解读

数论基础知识解读数论是数学中的一个重要分支,研究整数及其性质。
它涵盖了许多基本概念和定理,为解决许多实际问题提供了重要的工具和方法。
本文将对数论的基础知识进行解读,帮助读者更好地理解和应用数论。
一、素数及其性质素数是指除了1和它本身外,没有其他正整数能整除的数。
例如2、3、5、7等都是素数。
关于素数有许多有趣的性质,其中一个重要的概念是素数定理,它表明在给定范围内的素数个数大致与范围的大小成正比。
这个定理在数论中有重要的应用。
另一个重要的概念是最大公约数和最小公倍数。
最大公约数是指两个或多个整数中能够整除所有整数的最大正整数。
最小公倍数则是指能够被两个或多个整数整除的最小正整数。
最大公约数和最小公倍数在分数的化简、方程的解法等方面都有重要的应用。
二、同余关系同余关系是数论中一个基本的概念,用符号“≡”表示。
如果两个整数的差能被一个正整数整除,那么它们就是关于这个正整数的同余数。
例如,对于模3同余,整数1和整数4是同余的,因为它们的差3能被3整除。
同余关系有许多有趣的性质和定理。
其中一个重要的定理是欧拉定理,它给出了同余关系在幂运算中的应用。
欧拉定理表明,如果a和n互质,那么a的φ(n)次幂与1同余,其中φ(n)表示小于n且与n互质的正整数的个数。
这个定理在加密算法和密码学中有广泛应用。
三、费马小定理费马小定理是数论中的一个重要定理,它给出了同余关系的另一种应用。
费马小定理表明,对于任意正整数a和素数p,如果a不是p的倍数,则a^(p-1)与1模p同余。
这个定理在判断素数、求解同余方程等问题上有重要的应用。
四、质因数分解和数的性质质因数分解是将一个正整数分解为质数的乘积。
它是数论中一个基础而重要的概念。
质因数分解有许多有趣的性质和应用,例如可以用它来解决最大公约数、最小公倍数等问题,也可以用它来判断一个数是否为完全平方数等。
数论还涉及到许多其他的概念和定理,如欧几里得算法、中国剩余定理、模反演定理等。
数论基础

由本节命题1还有
(a, b)=(b, r1)=(r1, r2)=…=(rn-1, rn)=rn 推论 1 数a和数b的公约数集合与它们的最大公约数的约数 集合相同。
第一章 数论基础 推论2 这个最大公约数等于rn(n∈Z+),即等于上述等式组
中最后的不等于零的余数。
推论 3 若b|a, 则(a, b)=b。
观察等式组(1.2.1)的构造过程不难发现:当某个余数 rk(k∈Z+)不为0时,即将除数作为被除数,并将余数作为除数再 写出一个等式,依此类推,直至余数是零为止。故可将Euclid算
法改写如下:
第一章 数论基础 · 改进的Euclid算法 №1 输入正整数A, B; №2 MA; NB; (保护原始数据) №3 KM-[M/N]*N; №4 若K>0, 则MN, NK, 转№3;
(7) 若bc|ac, 则b|a。
第一章 数论基础
证明 只证(6)式。
事实上
c / d c | e q1 , q2 Z , d cq1 , e cq2 m, n Z dm en cq1m cq2n c( q1m q2n ) cq( q q1m q2n ) c | ( dm en)
第一章 数论基础 证明 根据推论1,数a1, a2的公约数集合与d2的约数集合相同, 所以数a1, a2, a3公约数集合与数d2和a3的公约数集合相同,即与 d3的约数集合相同。然后肯定,数a1, a2, a3 ,a4的全体公约数所成 之集与d4约数集相同,…… 最后,数a1, a2, …, an的公约数所成之集 与dn约数之集相同。 因而dn的最大公约数是dn自身,所以它就是 数a1, a2, …, an的最大公约数。
数论基础知识点总结

数论基础知识点总结1. 整数的性质整数是我们熟悉的数学概念,包括正整数、负整数和零。
整数有许多基本性质,比如加法、减法和乘法的封闭性、交换律、结合律和分配律等。
这些性质在数论中都有重要的应用,例如在证明整数的性质、定理及推论时经常用到。
2. 素数素数是指只能被1和自身整除的正整数,例如2、3、5、7、11等。
素数具有许多重要的性质,比如任何一个大于1的整数都可以被唯一地分解为若干个素数的乘积。
这就是著名的素因数分解定理。
素数在密码学中有着重要的应用,比如RSA加密算法就是基于素数的乘积难以分解的特性来实现的。
3. 同余同余是数论中一种重要的概念,表示两个数的差能被某个数整除。
例如,对于整数a、b和n,如果a-b能够被n整除,即(a-b) mod n=0,则称a与b关于模n同余,记作a≡b(mod n)。
同余在数论中有着广泛的应用,比如判断整数的奇偶性、最大公约数等问题。
4. 求模运算求模运算是数论中常见的一种运算,它指的是对一个整数进行取余操作。
例如,对于整数a和n,a mod n表示a除以n的余数。
求模运算在数论中有着重要的应用,比如判断奇偶性、判断整数是否能被某个数整除等问题。
5. 费马小定理费马小定理是数论中的一个重要定理,它描述了在模p意义下的幂的性质。
具体来说,费马小定理说明,如果p是素数,且a是p的倍数,那么a^p与a模p同余。
费马小定理在密码学中有着重要的应用,比如用来生成加密密钥、生成大素数等。
6. 欧拉定理欧拉定理是数论中的一个重要定理,它描述了模n意义下幂的性质。
具体来说,欧拉定理说明,如果n是大于1的整数,a和n互质(即它们的最大公约数是1),那么a的φ(n)次方与a模n同余,其中φ(n)表示小于n且与n互质的正整数的个数。
欧拉定理有着广泛的应用,比如RSA加密算法就是基于欧拉定理来实现的。
7. 等差数列等差数列是数学中常见的一种数列,它的每一项与前一项之差都相等。
例如,1,3,5,7,9就是一个公差为2的等差数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故
数论基础 ——§3 同余类
同余类 对于模m同余的数组成由模m决定的数类。 就是说,一个模决定了一个数类。因此,与同一个 类的所有数对应的是同一个余数r,而且只要在式子mq+r 里让q通过所有的整数,我们就得到这个类的所有数。 例 对于模5,数列…,-12,-7,-2,3,8,13,…属于同一个数 类。
证明
由这个定理,若c有素数因子p1,p2,..,pn,那么 c=p1α1p2α2…pnαn。 这个式称为c的标准分解式。
数论基础 ——§3 同余类
同余:若m|(a-b),即a-b=km,我们就说a和b模m同余,记 为 a≡b mod m 有时记为 a≡b (mod m)。
例
将整数a和b用模m和余来表示 a=qam+r,b=qbm+r 这里,r<a,r<b,是关于模m的余。因此有 a-b=(qa-qb)m=km。
数论基础 ——§3 同余类
非负最小剩余:一个类的什意数,对于同一个类的所有数 而言,都叫作模m的剩余。我们得到的剩余正好等于余数r ,叫做非负最小盛余。 在上例中,每一个数都是模5的剩余;而3则是模5的 非负最小剩余。注意:0≤3<5。 对于余r的m个不同值,我们有m个由模m决定的数 类。就是说,当模m确定以后,有m个不同的余数r对应的 数类。
qs Ps Qs 1 0 q1 P1 1 q2 P2 Q2 … … … P s -2 Q s -2 P s -1 Q s -1 qs Ps Qs … … … P n -1 Q n -1 qn m a
数论基础 ——§4 线性同余式 例如 对于分数105/38,其各级近似的分子和分母:
qs Ps Qs 1 0
数论基础 ——§3 同余类
例 从上面两例的每一个数类中各任取一个数组成数组 –12,-11,2,1,10,称为组成模5的一个完全剩余组,其 中元素只有5个,它们对于模5是两两不同余的。 而数组0,1,2,3,4为模5的一个非负的最小剩余 组。
数论基础 ——§3 同余类
与模互素的剩余组:模m的同一个类里的数与模有同一个 最大公约数。其中特别重要的是这个公约数等于1的类, 它包含着与模互素的数的类。 从每个这样的与模互素的数类中取一个剩余,便得 到与模m互素的剩余组。 因此,可以取完全剩余组里与模互素的数来组成与 模互素的剩余组。通常与模互素的剩余组从非负的最小剩 余组0,1,2,… ,m-1中分出。 例 数组0,1,2,3,4为模5的一个非负的最小剩余组, 而数组1,2,3,4为模5互素的剩余组。
完全剩余组 从模m决定的每个数类中取一个剩余,我们 得到模m的一个完全剩余组。
由于模m所决定的数类只有m个,故一个完全剩余 组的元素也只有m个。 对于模m的两两不同余的任意m个数,组成这个模 的完全剩余组。 显然模m的一个完全剩余组可以有无穷多个。而最 常取作完全剩余组的是非负最小剩余0,1,2…m-1。
素数 只能被1和数自身整除的数称为素数。 合数 不是1且非素数的正整数称为合数。即一个合数至 少能被非1的两个整数整除。 最大公因子:用a,b,c为正整数,a除尽b表示为a|b。若a|b, 且a|c,就是说a是b何c的公因子。若a是b和c的公因子,且b 和c的每一个公因子都能除尽a,则称a是b和c的最大公因子, 用gcd{b,c}或(b,c)表示。即 a gcd{b , c} ,或 a ( b , c )
则有递推公式
Ps q s Ps 1 Ps 2 Q s q s Q s 1 Q s 2
可以证明,递推公式中各因子还有关系 P Q Q P ( 1) 0) (s ———————(7)
s s s 1 s s 1
并且可以做出一个表示确定各级近似分数的分子和分母:
n
因此 两边同乘b得
aPn 1 ( 1)
n 1
mod m
a ( 1)
证明:因d=(c,m),故d|c,d|m. 可令c=c1d,m=m1d,得 (c1,m1)=1, ac1≡bc1 mod m1。 由定理3可得 a≡b mod m1, 即 a≡b mod m/d。 证毕。
数论基础 ——§3 同余类
例 而 60=42 mod 9, 3=(6,9), 60=10×6, 42=7×6, 9/3=3 10≡7 mod 3。
例
12=gcd(12,60)
数论基础 ——§2 因数分解 最小公倍数 若a|c,则称c是a的倍数。若a|c,b|c,则称c 是a和b的公倍数;如果a和b的公倍数c除尽a和b的什何一个 公倍数,则称c是a和b的最小公倍数,表示为
c lcm{ a , b} ,或 c [ a , b ]
例 60 = lcm{15,20,30} 下面有关因数分解的5条定理。
信息安全与保密
主讲人:何毅
数论基础 ——§1 整数的表示方法
§1 整数的表示法
整数
包括正整数(自然数)、零和负整数。
数论基础 ——§1 整数的表示方法 定理1
设m是大于1的正整数,则每一个正整数n可唯一表示为:
0
其中cj是整数,满足0≤ cj <m,且ck≠0,这里j=0,1,2,…k.。
证明
c m 1c
1 1
2 q1
......
1 q2
叫做m/a的近似分数。对于近似分数,可以很容易地找到 一个非常简单的规律: 假定P0=1,Q0=0,P1=q1,Q1=1并且依次把近似分数写 成
1
q1 1 P1 Q1 , 2 P2 Q2 , ..., s Ps Qs
数论基础 ——§4 线性同余式
数论基础 ——§4 线性同余式
同余解 解同余式也就是类似于解方程一样要找出适 合上列同余式的所有x来。x的同一些值所适合的两个同余 式叫作等价的。 若整数x1满足 ax≡b mod m ———————————(4) 即ax1≡b mod m,则可以证明,对于模m与x1同余的所有数 都满足这个线性同余式。 则模m和x1同余的整数构成同余式(1) x≡x1 mod m 的同余解。 例 对于 2x≡3 mod 5,可求得x≡4 mod 5是它 的解。如x=9,14,19,…
数论基础 ——§3 同余类
例 对于模5,数列 …,-11,-6,-1,4,9,14,…;r=4 …,-13,-8,-3,2,7,12,…; …,-14,-9,-4,1,6,11,…;r=1 …,-15,-10,-5,0,5,10,…; 分别为模5决定的4个数类。
r=2 r=0
数论基础 ——§3 同余类
1 k
m 1 k c m k c n
k
———(1)
例题1
数论基础 ——§1 整数的表示方法 定理2 每一个正整数a可以唯一地通过正整数b而被表示成
a bq r ; 0 r b
数q叫做a被b除的不完全商数,数r叫做a被b除的余数。
证明
例题2
数论基础 ——§2 因数分解
§2 因数分解
数论基础 ——§2 因数分解 推论 若素数p除尽a1a2…an,则必存在k:,使得p|ak。
证明:若p与a1互素,则p|a2…an; 若p也与a2互素,则p|a3…an;…. 。 若p与a1,a2,… ,an-1的每一个互素,则最后有p|an。
数论基础 ——§2 因数分解
定理5 每一个正合数,可表示为正素数的乘积,并且不考 虑乘积的—§4 线性同余式
证明:若x0是(5)的一个解,则 ax0 - km=b 所以,d=(a,m)除尽b,即d|b。 反之,若d|b,令b=b’d,a=a’d,m=m’d,则有 (a’,m’)=1,即存在整数p和q,使得 pa’+qm’=1 即pb’满足同余式(5)。
数论基础 ——§4 线性同余式
数论基础 ——§4 线性同余式
连分式 对任一有理数m/a,分割成有 限的连分数形式
m a q0 q1 q2 . . . + 1 qm 1 1
上连分式课表示为
m a q0 1 1 ... 1 qm
q1 q 2
数论基础 ——§4 线性同余式
其中在连分式里出现的数q1,q2,… ,叫做不完全商数, 分数 q
2 2 1
1 3 1
3 11 4
4 47 17
2 105 38
由此表由此表可以验证式(7): 105×17-38 × 47=(-1)5=-1
同余式(6)的解 讨论最后两个邻近的近似分数(用a1代替a):
Pn 1 , Pn m a Q n 1 Q n
由连分式的性质式(7)得
m Q n 1 aPn 1 ( 1)
以上两条定理给出三个常数a,b和m可以确定线性同 余式的解,这使我们联想到一元二次方程的系数解。下面 给出求d个解的方法; 令a=a1d,b=b1d,m=m1d。式(5)等价于约去d以后的 同余式 a1x=b1 mod m1——————————(6) 其中已经有(a1,m1)=1,它对于模m1有一个解。令其解为x1 ,即 x≡x1 mod m1。 则对于模m,同余式(5)的问题便简化为同余式(6)。 探求同余式(6)的解答,可用基于连分式理论的一种方 法。
数论基础 ——§3 同余类
定理1 模m的同余关系满足 1) 自反性,即a≡a mod m; 2) 对称性,即若a≡b mod m,则b≡a mod m; 3) 传递性,即若a≡b mod m,b≡c mod m,则 a≡c mod m。
这三条性质看起来是明显的,证明从略。
数论基础 ——§3 同余类 定理2 若a≡b mod m,c≡d mod m,则 1) a±c≡b±d mod m; 2) ac≡bd mod m; 证明:因a≡b mod m,c≡d mod m,所以 a = km+b,c=hm+d a±c=(k±h)m+(b±d) 从而 a±c≡b±d mod m。 同理可证:ac≡bd mod m。 证毕。