人教版高中物理选修3-5教案:16.3+动量守恒定律(二)+(2篇)

合集下载

高中物理选修3-5教学设计7:16.3 动量守恒定律教案

高中物理选修3-5教学设计7:16.3 动量守恒定律教案

16.3 动量守恒定律知识与技能掌握运用动量守恒定律的一般步骤过程与方法知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点. 情感态度与价值观学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力.教学重难点教学重点:运用动量守恒定律的一般步骤教学难点:动量守恒定律的应用.教学过程重难点一、动量守恒定律动量守恒定律1.系统、内力和外力.(1)系统.有相互作用的两个(或两个以上)的物体通常称为系统.(2)内力和外力.系统中各物体之间的相互作用力叫内力,系统外部其他物体对系统的作用力叫外力.注:内力和外力与系统的划分有关.例如甲、乙、丙三物体均有相互作用,如果以三个物体为系统,则甲、乙、丙相互之间的作用均为内力;如果以甲、乙两个物体为系统,则甲、乙间的相互作用为内力,丙对甲、乙的作用为外力.2.动量守恒定律.(1)动量守恒定律的表述和表达式.①定律表述:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.这就是动量守恒定律.②数学表达式:p =p ′.在一维情况下,对由A 、B 两物体组成的系统有:11221122m m m m +='+'v v v v(2)动量守恒定律的条件.①系统内的任何物体都不受外力作用,这是一种理想化的情形,如天空中两星球的碰撞,微观粒子间的碰撞都可视为这种情形.②系统虽然受到了外力的作用,但所受合外力都为零,像光滑水平面上两物体的碰撞就是这种情形,两物体所受的重力和支持力的合力为零.③系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒.抛出去的手榴弹在空中爆炸的瞬间,火药的内力远大于其重力,重力完全可以忽略不计,动量近似守恒.两节火车车厢在铁轨上相碰时,在碰撞瞬间,车厢的作用力远大于铁轨给车厢的摩擦力,动量近似守恒.④系统所受的合外力不为零,即F外≠0,但在某一方向上合外力为零(F x=0或F y=0),则系统在该方向上动量守恒.特别提醒①m1、m2分别是A、B两物体的质量,v1、v2分别是它们相互作用前的速度,v1′、v2′分别是它们相互作用后的速度.②动量守恒定律的表达式是矢量式,解题时选取正方向后用正、负来表示方向,将矢量运算变为代数运算.③若物体A的动量增加Δp A,物体B的动量减少Δp B,则Δp A=Δp B.④动量守恒指整个作用过程中总动量没有变化,不是两个状态动量相等.对动量守恒定律的理解1.研究对象相互作用的物体组成的系统.2.对系统“总动量保持不变”的理解(1)系统在整个过程中任意两个时刻的总动量都相等,不能误认为只是初、末两个状态的总动量相等.(2)系统的总动量保持不变,但系统内每个物体的动量可能都在不断变化.(3)系统的总动量指系统内各物体动量的矢量和,总动量不变指的是系统的总动量的大小和方向都不变.3.表达式a.p=p′,表示系统的总动量保持不变;在一维情况下,对由A、B两物体组成的系统有:m1v1+m2v2=m1v′1+m2v′2.b.Δp1=-Δp2,表示一个物体的动量变化与另一个物体的动量变化大小相等、方向相反;c.Δp=0,表示系统的总动量增量为4.动量守恒定律的“五性”(1)条件性:动量守恒定律是有条件的,应用时一定要首先判断系统是否满足守恒条件.a.系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形.b.系统虽然受到了外力的作用,但所受外力的和——即合外力为零.象光滑水平面上两物体的碰撞就是这种情形,两物体所受的重力和支持力的合力为零.零,即系统的总动量保持不变.c.系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒.抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药的内力远大于其重力,重力完全可以忽略不计,动量近似守恒.d.系统所受的合外力不为零,即F外≠0,但在某一方向上合外力为零(F x=0或F y=0),则系统在该方向上动量守恒.e.系统受外力,但在某一方向上内力远大于外力,也可认为在这一方向上系统的动量守恒.(2)矢量性:定律的表达式是一个矢量式.a.该式说明系统的总动量在任意两个时刻不仅大小相等,而且方向也相同.b.在求系统的总动量p=p1+p2+…时,要按矢量运算法则计算.(3)相对性:动量守恒定律中,系统中各物体在相互作用前后的动量,必须相对于同一惯性系,各物体的速度通常均为相对于地的速度.(4)同时性:动量守恒定律中p1、p2…必须是系统中各物体在相互作用前同一时刻的动量,p1′、p2′…必须是系统中各物体在相互作用后同一时刻的动量.(5)普适性:动量守恒定律不仅适用于两个物体组成的系统,也适用于多个物体组成的系统.不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.特别提醒(1)分析动量守恒时要着眼于系统,要在不同的方向上研究系统所受外力的矢量和.(2)要深刻理解动量守恒的条件.(3)系统动量严格守恒的情况是很少的,在分析守恒条件是否满足时,要注意对实际过程的理想化.典型例题如图所示,木板A质量m A=1kg,足够长的木板B质量m B=4kg,质量为m C=1kg的木块C置于木板B上,水平面光滑,B、C之间有摩擦,开始时B、C均静止,现使A以v0=12m/s的初速度向右运动,与B碰撞后以4m/s速度弹回.求:(1)B运动过程中的最大速度大小.(2)C运动过程中的最大速度大小.[答案](1)4m/s(2)3.2m/s[解析](1)A与B碰后瞬间,C的运动状态未变,B速度最大.由A、B系统动量守恒(取向右为正方向)有:m A v0+0=-m A v A+m B v B代入数据得:v B=4m/s.(2)B与C相互作用使B减速、C加速,由于B板足够长,所以B和C能达到相同速度,二者共速后,C速度最大,由B、C系统动量守恒,有m B v B+0=(m B+m C)v C代入数据得:v C=3.2m/s重难点二、应用动量守恒定律解题的基本步骤1.确定所研究的物体系:动量守恒定律是以两个或两个以上相互作用的物体系为研究对象,并分析此物体系是否满足动量守恒的条件.即这个物体系是否受外力作用,或合外力是否为零(或近似为零).显然动量守恒的物体系,其内力(即系统内物体间的相互作用力)仍然存在,这些相互作用的内力,使每个物体的动量变化,但这个物体系的总动量守恒.2.建立坐标系,选定方向:如果所研究的物体系中每个物体的动量都在同一直线上,则需选定某方向为正方向,以判断每个速度的正负;如果这些动量不是在同一直线上,则必须建立一个直角坐标系,并把各个速度进行正交分解,此时,只要某一个方向上(x方向或y方向)系统不受外力或合外力为零时,则有:m1v1x+m2v2x=m1v1x′+m2v2x′m1v1y+m2v2y=m1v1y′+m2v2y′3.确定参考系:如果所研究的物体系中的物体在做相对运动,此时应特别注意选定某一静止或匀速直线运动的物体作为参考系,定律中各项动量都必须是对同一参考系的速度.一般选地球为参考系.4.列方程,求解作答:按以上方法正确地确定相互作用前后速度的正负和大小后,列出正确的方程.即:m1v1+m2v2=m1v1′+m2v2′.保持方程两边单位一致的前提下,代入数据进行求解作答.应用动量守恒定律解题的基本步骤1.分析题意,合理地选取研究对象,明确系统是由哪几个物体组成的.2.分析系统的受力情况,分清内力和外力,判断系统的动量是否守恒.3.确定所研究的作用过程.选取的过程应包括系统的已知状态和未知状态,通常为初态到末态的过程,这样才能列出对解题有用的方程.4.对于物体在相互作用前后运动方向都在一条直线上的问题,设定正方向,各物体的动量方向可以用正、负号表示.5.建立动量守恒方程,代入已知量求解.典型例题如图所示,甲、乙两个小孩各乘一辆冰车在水平冰面上游戏.甲和他的冰车的质量共为M=30kg,乙和他的冰车总质量也是30kg,游戏时,甲推着一个质量为m=15kg的箱子,和他一起以大小为v0=2.0m/s的速度滑行,乙以同样大小的速度迎面滑来,为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞.【审题指导】本题从动量守恒定律的应用角度看并不难,但需对两个物体的运动关系分析清楚(乙和箱子、甲的运动关系如何,才能不相撞).这就需要我们要将“不相撞”的实际要求转化为物理条件,即:甲、乙可以同方向运动,但只要乙的速度不小于甲的速度,就不可能相撞.[答案]5.2m/s,方向与甲的初速度方向相同[解析]如图所示,在甲推出箱子的过程中,甲和箱子组成的系统动量守恒.乙接到箱子并和乙一起运动的过程中,乙和箱子组成的系统动量也是守恒的,分别选甲、箱子为研究对象,箱子、乙为研究对象求解.要想刚好避免相撞,要求乙抓住箱子后与甲的速度正好相等.设甲推出箱子后的速度为v1,箱子的速度为v,乙抓住箱子后的速度v2.对甲和箱子,推箱子前后动量守恒,以初速度方向为正,由动量守恒定律:(M+m)v0=m v+M v1 ①对乙和箱子,抓住箱子前后动量守恒,以箱子初速方向为正,由动量守恒定律有:m v-M v0=(m+M)v2②刚好不相撞的条件是:v1=v2 ③联立①②③解得:v=5.2 m/s,方向与甲和箱子初速的方向一致.教学反思。

高中物理选修3-5教学设计12:16.3 动量守恒定律教案

高中物理选修3-5教学设计12:16.3 动量守恒定律教案

16.3 动量守恒定律教学目标1.理解动量守恒定律的内容2.动量守恒定律的条件3.动量守恒定律的应用重点难点:动量守恒定律的条件和应用教学方法:教师启发、引导,学生讨论、交流。

教学用具:投影片,多媒体辅助教学设备教学过程:新课教学一、情景模拟及推导:1.几个概念:系统:相互作用的一组物体通常称为系统。

外力:系统内的物体受到系统外的物体的作用力。

内力:系统内物体间的相互作用力。

2、推导:情景见课件:推导过程:根据牛顿第二定律,碰撞过程中1、2两球的加速度分别是111m F a =,222m F a = 根据牛顿第三定律,F 1、F 2等大反向,即:F 1= -F 2所以:2211a m a m -=碰撞时两球间的作用时间极短,用t ∆表示,则有:111'a t -=∆v v ,222'a t-=∆v v 代入2211a m a m -=并整理得:11221122m m m 'm '+=+v v v v二、动量守恒定律:1、内容:一个系统不受外力或所受外力的合力为零,这个系统的总动量保持不变。

这个结论叫做动量守恒定律。

2、表达式:11221122m m m 'm '+=+v v v v (两个物体组成的系统)类比机械能守恒定律,还有其他的表达式吗?(学生讨论)p 1+ p 2= p 1′+ p 2′(p 1′- p 1)+(p 2′- p 2)= 0Δp 1= -Δp 23、定律的理解:矢量性。

动量是矢量,所以动量守恒定律的表达式为矢量式。

若作用前后动量都在一条直线上,要选取正方向,将矢量运算简化为代数运算。

相对性。

因速度具有相对性.其数值与参考系选择有关,故动量守恒定律中的各个速度必须是相对同—参考系的。

若题目不作特别说明,一般都以地面为参考系。

瞬时性。

动量是状态量,具有瞬时性。

动量守恒指的是系统内物体相互作用过程中任一瞬时的总动量都相同,故v l 、v 2必须时某同一时刻的速度,v l ′、v 2′必须是另同一时刻的速度。

高中物理选修3-5人教版16.3《动量守恒定律》教案设计

高中物理选修3-5人教版16.3《动量守恒定律》教案设计

动量守恒定律的应用 教案【学习目标】1、能用牛顿定律推导动量守恒定律2、了解不同类型的碰撞;知道弹性碰撞和非弹性碰撞的主要特征。

(重点与难点)【知识要点】一、动量守恒定律与牛顿运动定律问题情景:如图所示,在水平桌面上做匀速运动的两个小球,质量分别是m 1、m 2,沿着同一直线向相同的方向运动,速度分别是V 1和V 2,V 2>V 1。

当第二个小球追上第一个小球时两球碰撞。

碰后两球的速度分别是V 1′和V 2′。

碰撞过程中第一个小球所受第二个小球对它的作用力是F 1,第二个小球所受第一个小球对它的作用力是F 2.推导过程:根据牛顿第二定律,碰撞过程中1、2两球的加速度分别是 ,根据牛顿第三定律,F 1、F 2等大反响,即 网所以 碰撞时两球间的作用时间极短,用t ∆表示,则有=1a , =2a代入2211a m a m -=并整理得 这就是动量守恒定律的表达式二、碰撞的种类及特点1.弹性碰撞:动量守恒,机械能守恒规律:以质量为m 1速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,则有 m 1v 1=m 1v ′1+m 2v ′2 222111122111222m v m v m v ''=+ 解得:v ′1= ;v ′2=(1)当两球质量相等时,两球碰撞后交换速度(2)当质量大的球碰质量小的球时,碰撞后两球都向前运动.(3)当质量小的球碰质量大的球时,碰撞后质量小的球被反弹回来.2.非完全弹性碰撞:动量守恒,机械能有损失3.完全非弹性碰撞:碰后以共同速度运动;动量守恒,机械能损失最大五、碰撞及反冲现象的特点分析1.碰撞现象(1)动量守恒 (2) 碰撞后瞬间系统动能不增原则(3)速度要合理①若碰前两物体同向运动,则应有v 后>v 前,碰后原来在前的物体速度一定增大,在后的物体动量在原方向上不能增加;若碰后两物体同向运动,则应有v ′前≥v ′后.②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变.2.反冲现象(1)物体的不同部分在内力作用下向相反方向运动.(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理.(3)反冲运动中,其他形式的能转变为机械能,所以系统的总动能增加.【典型例题】例1. 质量m B =1kg 的平板小车B 在光滑水平面上以速度v 1=1m/s 向左匀速运动。

高中物理选修3-5教学设计5:16.3 动量守恒定律教案

高中物理选修3-5教学设计5:16.3  动量守恒定律教案
全体学生独立思考,独立完全,小组同学都完全后可交流讨论。
PPT课件
技能拓展
视学生基础和课堂时间、教学进度决定是否作要求
教师未提出要求的情况下学有余力的学生可自主完成
PPT课件
记录要点
教师可在学生完成后作点评
学生在相应的位置做笔记。
PPT课件
第四层级
知识总结
教师可根据实际情况决定有没有必要总结或部分点评一下。
课前
准备
动量守恒的实验器材
导学过程设计
程序设计
学习内容
教师行为
学生行为
媒体运用
新课导入
创设情境
动量定理研究了一个物体受到力的冲量作用后,动量变化的规律。但生活中较为常见的是两个或两个以上物体的相互作用。在这些过程中,相互作用的物体的动量都有变化,那么它们的动量变化遵循什么规律呢?本节课我们来探讨这个问题。
阅读教材“系统内力和外力”标题下的内容,思考对一个系统而言,内力和外力的区别,如果判断对某个系统来说何为外力,何为内力。在研究某个系统的动量时,内力和外力对系统的动量有什么影响?
PPT课件
主题2:
探究系统动量守恒的条件
引导学生阅读教材,针对学生在自主学习教材的过程中存在的问题进行点评、讲解,系统为什么会动量守恒,系统动量守恒的条件。教材例2中炸裂成两块的火箭受到了重力作用,系统动量还守恒吗?为什么?
从理论上来推导动量守恒定律。(分组完成,教师点评,只限于一维情况)
注意动量守恒定律的“四性”。
对具体的问题要恰当选择研究对象,并进行受力分析;特别要分清“内力”和“外力”;看所研究的对象合外力是否为0,以便判断它的动量是否守恒。
口头表述
第三层级
基本检测
根据具体情况与部分同学交流,掌握学生的能力情况.

人教版高中物理选修3-5教学案:第十六章 第3节 动量守恒定律 -含答案

人教版高中物理选修3-5教学案:第十六章 第3节 动量守恒定律 -含答案

第3节动量守恒定律1.相互作用的两个或多个物体组成的整体叫系统,系统内部物体间的力叫内力。

2.系统以外的物体施加的力,叫外力。

3.如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。

一、系统内力和外力1.系统:相互作用的两个或多个物体组成的整体。

2.内力:系统内部物体间的相互作用力。

3.外力:系统以外的物体对系统以内的物体的作用力。

二、动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。

2.表达式:对两个物体组成的系统,常写成:p1+p2=p1′+p2′或m1v1+m2v2=m1v1′+m2v2′。

3.适用条件:系统不受外力或者所受外力矢量和为零。

4.普适性:动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。

1.自主思考——判一判(1)如果系统的机械能守恒,则动量也一定守恒。

(×)(2)只要系统内存在摩擦力,动量就不可能守恒。

(×)(3)只要系统受到的外力做的功为零,动量就守恒。

(×)(4)只要系统所受到合外力的冲量为零,动量就守恒。

(√)(5)系统加速度为零,动量不一定守恒。

(×)2.合作探究——议一议(1)如果在公路上有三辆汽车发生了追尾事故,将前面两辆汽车看作一个系统,最后面一辆汽车对中间汽车的作用力是内力,还是外力?如果将后面两辆汽车看作一个系统呢?提示:内力是系统内物体之间的作用力,外力是系统以外的物体对系统以内的物体的作用力。

一个力是内力还是外力关键是看所选择的系统。

如果将前面两辆汽车看作一个系统,最后面一辆汽车对中间汽车的作用力是系统以外的物体对系统内物体的作用力,是外力;如果将后面两辆汽车看作一个系统,最后面一辆汽车与中间汽车的作用力是系统内物体之间的作用力,是内力。

(2)动量守恒定律和牛顿运动定律的适用范围是否一样?提示:动量守恒定律比牛顿运动定律的适用范围要广。

人教版高中物理选修3-516.3动量守恒定律教学设计

人教版高中物理选修3-516.3动量守恒定律教学设计
练习与巩固:
- 分发习题纸,让学生独立完成相关的习题。
- 对学生的练习进行点评和指导,帮助学生巩固对动量守恒定律的理解。
- 针对学生的困难点进行讲解和辅导,确保学生能够掌握动量守恒定律的应用。
- 对本节课的学习内容进行总结,强调动量守恒定律的重要性和应用范围。
- 鼓励学生在课后继续深入学习和探索动量守恒定律的相关知识。
学情分析
在进入高中物理选修3-5 16.3动量守恒定律的学习之前,学生们已经掌握了动量的概念和计算方法,具备了一定的物理逻辑思维能力。然而,对于动量守恒定律的深层含义和应用,部分学生可能还存在理解上的困难。
在知识层面,大部分学生已经能够理解质量和速度对动量的决定作用,但将其应用于复杂情境中,如多个物体相互作用的情况,他们可能会感到困惑。在能力层面,学生们在实验操作和数据处理方面具备一定的基础,但动量守恒定律的实际应用训练相对较少。
3. 综合评价:
通过这些评价方式,我可以全面了解学生的学习情况,及时发现问题并进行解决,帮助学生更好地理解和掌握动量守恒定律。同时,我也会根据学生的评价结果,调整教学方法和策略,以提高教学效果,促进学生的学习进步。
板书设计
1. 本文重点知识点:
- 动量守恒定律的定义
- 动量守恒的条件
- 动量守恒定律的应用
- 实验教学
- 多媒体演示
- 小组讨论
- 互动提问
- 习题训练
这些资源的整合将有助于提高教学效果,使学生能够从不同角度理解和掌握动量守恒定律。
教学过程
课前准备:
- 确认学生已经掌握了动量的概念和计算方法。
- 准备好实验室设备,确保动量守恒实验装置的正常运行。
- 准备动量守恒定律教学视频和动画演示,以便在课堂上进行多媒体演示。

高一下学期物理人教版选修3-5第十六章第三节动量守恒定律(二)

高一下学期物理人教版选修3-5第十六章第三节动量守恒定律(二)

古城学校教案纸(A)教学环节教师活动学生活动备注引入新课进行新课用牛顿运动定律推导动量守恒定律演示:气垫导轨滑块的碰撞。

轻推滑块1,使其向前运动;将滑块2向反向推,使其与导轨碰撞后追上滑块1并与其碰撞描述运动过程,用牛顿运动定律推导:设第一个物体原来的速度是v1,相互作用后的速度为v1′,所受作用力为F1,作用时间为t;第二个物体原来的速度是v2,相互作用后的速度为v2′,所受作用力为F2,作用时间也为t。

根据牛顿第三定律:F1= - F2相互作用力方向相反,∴m1a1= - m2a2,m1tvvmtvv22211-'⋅-=-'⋅整理可得:m1v1′+m2v2′=m1v1+m2v2可写成:p1′+p2′=p1+p2或p′=p上述证明可以推广到多个物体之间发生相互作用的情况,此时物体系统动量守恒的方程为:+++=+++'3'2'1321pppppp问题:动量守恒实验为什么要在气垫导轨上演示?动量守恒定律的适用条件:两个或两个以上有相互作用(内力)的物体组成的系统不受力或所受外力之和为零。

例1、在光滑水平面上有一个弹簧振子系统,如图所示,两振子的质量分别为m1和m2.讨论此系统在振动时动量是否守恒?分析:由于水平面上无摩擦,故振动系统不受外力(竖直方向重力与支持力平衡),所以此系统振动时动量守恒,即向左的动量与向右的动量大小相等.例2、接上题,若水平地面不光滑,若两振子的振动方向相反,两振子的动摩擦因数μ相同,讨论m1=m2和m1≠m2两种情况下振动系统的动量是否守恒.分析:m1和m2所受摩擦力分别为f1=μ学生描述运动过程,了解将实际运动过程抽象为物理模型的基本方法。

学生推导:复习所学知识,学会构建模型,用物理语言描述运动过程。

了解寻找多体运动问题间相互联系的途径。

学生分析运动过程中物体所受的外力,总结发现系统动量守恒的条件。

学生参与分析、讨论,理解动量守恒的条件组织学生分组讨论、探究具体情境下守恒条件满足的分析方法学生思考并回答:在相互作用的极短的时间内,内力很大。

高中物理选修3-5教学设计13:16.3 动量守恒定律教案

高中物理选修3-5教学设计13:16.3 动量守恒定律教案

16.3 动量守恒定律用投影片出示本节课的学习目标:1、知道什么叫系统、什么是系统的内力,什么是系统的外力。

2、理解动量守恒定律的内容,知道得出动量守恒定律的数学表达式的条件。

3、能通过在光滑水平面上的两球发生碰撞,推导出动量守恒定律表达式。

4、知道动量守恒定律的成立条件和适应范围。

5、会应用动量守恒定律分析计算有关问题(只限于一维运动)学习目标完成过程:(一)实验、观察,初步得到两辆小车在相互作用前后,动量变化之间的关系1、用多媒体课件:介绍实验装置。

把两个质量相等的小车静止地放在光滑的水平木板上,它们之间装有弹簧,并用细线把它们拴在一起。

2、用CAI课件模拟实验的做法:①实验一:第一次用质量相等的两辆小车,剪断细线,观察它们到达距弹开埏等距离的挡板上时间的先后。

②实验二:在其中的一辆小车上加砝码,使其质量变为原来的2倍,重新做上述实验并注意观察小车到达两块木挡板的先后。

3、学生在气垫导轨上分组实验并观察。

4、实验完毕后各组汇报实验现象:学生甲:如果用两辆质量相同的小车做实验,看到小车同时撞到距弹开处等距离的挡板上。

学生乙:如果用两辆质量不同的小车做实验,看到质量大的小车后到,而质量小的小车先到达,且当质量小的小车到达挡板时,质量大的小车行驶到弹开处与木板的中点处。

5、教师针对实验现象出示分析思考题:①两小车在细线未被剪断前各自动量为多大?总动量是多大?②剪断细线后,在弹力作用下,两小车被弹出,弹出后两小车分别做什么运动?③据两小车所做的运动,分析小球运动的距离、时间,得到它们的速度有什么关系。

④据动量等于质量与速度的乘积,分析在弹开后各自的动量和总动量各为多大?⑤比较弹开前和弹出后的总动量,你得到什么结论。

6、学生讨论后,回答上述问题:①两小车未被剪断前,各自的动量为0,总动量为0;②两小车在被弹簧弹出后所做的运动,学生有两种看法:一种认为做加速直线运动;另一种认为做匀速直线运动。

教师结合小车在弹出后所受合力等于0的受力特点,得到小车在被出后做匀速直线运动;并向学生讲明小车之所以获得一个速度,是由于弹力的瞬间冲量的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.3 动量守恒定律(二)★新课标要求(一)知识与技能掌握运用动量守恒定律的一般步骤(二)过程与方法知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。

(三)情感、态度与价值观学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力。

★教学重点运用动量守恒定律的一般步骤★教学难点动量守恒定律的应用.★教学方法教师启发、引导,学生讨论、交流。

★教学用具:投影片,多媒体辅助教学设备★课时安排1 课时★教学过程(一)引入新课1.动量守恒定律的内容是什么?2.分析动量守恒定律成立条件有哪些?答:①F合=0(严格条件)②F内远大于F外(近似条件)③某方向上合力为0,在这个方向上成立。

(二)进行新课1.动量守恒定律与牛顿运动定律师:给出问题(投影教材11页第二段)学生:用牛顿定律自己推导出动量守恒定律的表达式。

(教师巡回指导,及时点拨、提示)推导过程:根据牛顿第二定律,碰撞过程中1、2两球的加速度分别是111m F a =, 222m F a = 根据牛顿第三定律,F 1、F 2等大反响,即F 1= - F 2所以2211a m a m -=碰撞时两球间的作用时间极短,用t ∆表示,则有t v v a ∆-'=111, tv v a ∆-'=222 代入2211a m a m -=并整理得22112211v m v m v m v m '+'=+ 这就是动量守恒定律的表达式。

教师点评:动量守恒定律的重要意义从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。

(另一个最基本的普适原理就是能量守恒定律。

)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。

相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。

例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。

但云室照片显示,两者径迹不在一条直线上。

为解释这一反常现象,1930年泡利提出了中微子假说。

由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。

(2000年高考综合题23 ②就是根据这一历史事实设计的)。

又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。

这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。

2.应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象。

在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。

(2)要对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力。

在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。

(3)明确所研究的相互作用过程,确定过程的始、末状态,即系统内各个物体的初动量和末动量的量值或表达式。

注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。

(4)确定好正方向建立动量守恒方程求解。

3.动量守恒定律的应用举例 【例1(投影)见教材12页】【学生讨论,自己完成。

老师重点引导学生分析题意,分析物理情景,规范答题过程,详细过程见教材,解答略】补充例2。

如图所示,在光滑水平面上有A 、B 两辆小车,水平面的左侧有一竖直墙,在小车B 上坐着一个小孩,小孩与B 车的总质量是A 车质量的10倍。

两车开始都处于静止状态,小孩把A 车以相对于地面的速度v 推出,A 车与墙壁碰后仍以原速率返回,小孩接到A 车后,又把它以相对于地面的速度v 推出。

每次推出,A 车相对于地面的速度都是v ,方向向左。

则小孩把A 车推出几次后,A 车返回时小孩不能再接到A 车?分析:此题过程比较复杂,情景难以接受,所以在讲解之前,教师应多带领学生分析物理过程,创设情景,降低理解难度。

解:取水平向右为正方向,小孩第一次 推出A 车时m B v 1-m A v=0即:v 1=v m m BA第n 次推出A 车时:m A v +m B v n -1=-m A v +m B v n则:v n -v n -1=v m m BA2, 所以v n =v 1+(n -1)v m m BA2 当v n ≥v 时,再也接不到小车,由以上各式得n ≥5.5 取n =6点评:关于n 的取值也是应引导学生仔细分析的问题,告诫学生不能盲目地对结果进行“四舍五入”,一定要注意结论的物理意义。

(三)课堂小结教师活动:让学生概括总结本节的内容。

请一个同学到黑板上总结,其他同学在笔记本上总结,然后请同学评价黑板上的小结内容。

学生活动:认真总结概括本节内容,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,看谁的更好,好在什么地方。

点评:总结课堂内容,培养学生概括总结能力。

教师要放开,让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架。

(四)作业:“问题与练习”4~7题课后补充练习1.(2002年全国春季高考试题)在高速公路上发生一起交通事故,一辆质量为15000 kg 向南行驶的长途客车迎面撞上了一辆质量为3000 kg向北行驶的卡车,碰后两车接在一起,并向南滑行了一段距离后停止.根据测速仪的测定,长途客车碰前以20 m/s的速度行驶,由此可判断卡车碰前的行驶速率为A.小于10 m/sB.大于10 m/s小于20 m/sC.大于20 m/s小于30 m/sD.大于30 m/s小于40 m/s2.如图所示,A、B两物体的质量比m A∶m B=3∶2,它们原来静止在平板车C上,A、B 间有一根被压缩了的弹簧,A、B与平板车上表面间动摩擦因数相同,地面光滑.当弹簧突然释放后,则有A.A、B系统动量守恒B.A、B、C 系统动量守恒C.小车向左运动D .小车向右运动3.把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是A .枪和弹组成的系统,动量守恒B .枪和车组成的系统,动量守恒C.三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系统动量近似守恒D.三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零4.甲乙两船自身质量为120 kg,都静止在静水中,当一个质量为30 kg 的小孩以相对于地面6 m/s 的水平速度从甲船跳上乙船时,不计阻力,甲、乙两船速度大小之比:v 甲∶v乙=_______.5.(2001年高考试题)质量为M 的小船以速度v 0行驶,船上有两个质量皆为m 的小孩a 和b ,分别静止站在船头和船尾.现在小孩a 沿水平方向以速率v (相对于静止水面)向前跃入水中,然后小孩b 沿水平方向以同一速率v (相对于静止水面)向后跃入水中.求小孩b 跃出后小船的速度.6.如图所示,甲车的质量是2 kg ,静止在光滑水平面上,上表面光滑,右端放一个质量为1 kg 的小物体.乙车质量为4 kg ,以5 m/s 的速度向左运动,与甲车碰撞以后甲车获得8 m/s 的速度,物体滑到乙车上.若乙车足够长,上表面与物体的动摩擦因数为0.2,则物体在乙车上表面滑行多长时间相对乙车静止?(g 取10 m/s 2)参考答案:1.A 2.BC 3.D 4.5∶45.因均是以对地(即题中相对于静止水面)的水平速度,所以先后跃入水中与同时跃入水中结果相同.设小孩b 跃出后小船向前行驶的速度为v ,取v 0为正向,根据动量守恒定律,有 (M +2m )v 0=Mv +mv -mv 解得:v =(1+Mm2)v 06.乙与甲碰撞动量守恒: m 乙v 乙=m 乙v 乙′+m 甲v 甲′小物体m 在乙上滑动至有共同速度v ,对小物体与乙车运用动量守恒定律得 m 乙v 乙′=(m +m 乙)v对小物体应用牛顿第二定律得a =μg所以t =v /μg代入数据得t =0.4 s16.3 动量守恒定律(二)★新课标要求(一)知识与技能掌握运用动量守恒定律的一般步骤(二)过程与方法知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。

(三)情感、态度与价值观学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力。

★教学重点运用动量守恒定律的一般步骤★教学难点动量守恒定律的应用.★教学方法教师启发、引导,学生讨论、交流。

★教学用具:投影片,多媒体辅助教学设备★课时安排1 课时★教学过程(一)引入新课1.动量守恒定律的内容是什么?2.分析动量守恒定律成立条件有哪些?答:①F合=0(严格条件)②F内远大于F外(近似条件)③某方向上合力为0,在这个方向上成立。

(二)进行新课1.动量守恒定律与牛顿运动定律师:给出问题(投影教材11页第二段)学生:用牛顿定律自己推导出动量守恒定律的表达式。

(教师巡回指导,及时点拨、提示)推导过程:根据牛顿第二定律,碰撞过程中1、2两球的加速度分别是111m F a =, 222m F a = 根据牛顿第三定律,F 1、F 2等大反响,即F 1= - F 2所以2211a m a m -=碰撞时两球间的作用时间极短,用t ∆表示,则有t v v a ∆-'=111, tv v a ∆-'=222 代入2211a m a m -=并整理得22112211v m v m v m v m '+'=+ 这就是动量守恒定律的表达式。

教师点评:动量守恒定律的重要意义从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。

(另一个最基本的普适原理就是能量守恒定律。

)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。

相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。

例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。

但云室照片显示,两者径迹不在一条直线上。

为解释这一反常现象,1930年泡利提出了中微子假说。

由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。

(2000年高考综合题23 ②就是根据这一历史事实设计的)。

又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。

这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。

相关文档
最新文档