高考数学复习重点内容知识点

合集下载

高考数学知识点总结(全而精-一轮复习必备)

高考数学知识点总结(全而精-一轮复习必备)

高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=,则C s A= {0})A A ⊆A ⊆φB A ⊆A B ⊆C A C B B A ⊆⊆⊆,那么,+N③空集的补集是全集.④若集合A=集合B,则C B A=,C A B =C S(C A B)=D(注:C A B =).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是. (例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B =)4. ①n个元素的子集有2n个. ②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:①若应是真命题.,则a+b = 5,成立,所以此命题为真.②.1或y = 2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.∅∅∅}⎩⎨⎧=-=+1323yxyxφ∅⇔⇔325≠≠≠+baba或,则且1≠x3≠y1≠∴yx且3≠+yx21≠≠yx且255xxx或,⇒{|,}{|}{,}A B x x A x BA B x x A x BA x U x A⇔∈∈⇔∈∈⇔∈∉U交:且并:或补:且C,,,,,;,;,.UA A A A U A UA B B C A C A B A A B B A B A A B B⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇CUA B A B A A B B A B U⊆⇔=⇔=⇔=C.;ABBAABBA==)()();()(CBACBACBACBA==)()()();()()(CABACBACABACBA==0-1律:等幂律:求补律:A∩C U A=φA∪C U A=U C U U=φ C Uφ=U反演律:C U(A∩B)= (C U A)∪(C U B) C U(A∪B)= (C U A)∩(C U B)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card( A)规定 card(φ) =0.基本公式:(3) card( U A)= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-x m)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.>∆0=∆0<∆二次函数cbxaxy++=2(0>a)的图象,,,A A A U A A U A UΦ=ΦΦ===.,AAAAAA==(1)()()()()(2)()()()()()()()()card A B card A card B card A Bcard A B C card A card B card Ccard A B card B C card C Acard A B C=+-=++---+x)0)((002211><>++++--aaxaxaxa nnnn原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x << ∅∅2.分式不等式的解法(1)标准化:移项通分化为>0(或<0); ≥0(或≤0)的形式,(2)转化为整式不等式(组)3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

数学高考必考知识点

数学高考必考知识点

数学高考必考知识点一、代数1. 集合与函数- 集合的基本概念、运算及其性质- 函数的定义、性质和常见类型(如线性函数、二次函数、指数函数、对数函数等)- 函数的图像和变换(平移、伸缩、对称等)2. 不等式与方程- 一元一次不等式和方程的解法- 二元一次不等式组和方程组的解法- 一元二次方程的解法及其判别式- 不等式的解集表示和基本性质3. 数列- 等差数列和等比数列的通项公式、求和公式- 数列的极限概念及其计算- 数列的递推关系和通项公式的求解二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式- 相似与全等的判定和应用2. 立体几何- 空间几何体的性质和计算(如棱柱、棱锥、圆柱、圆锥、球等) - 空间向量及其在立体几何中的应用- 立体几何中的表面积和体积计算3. 解析几何- 直线和圆的解析表达式- 圆锥曲线(椭圆、双曲线、抛物线)的标准方程- 坐标变换和参数方程三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件的概念- 排列组合的基本原理和公式2. 统计- 数据的收集、整理和描述- 均值、中位数、众数、方差、标准差等统计量的计算- 概率分布(如二项分布、正态分布)的概念和应用四、数学分析1. 极限与连续- 数列极限的概念和性质- 函数极限的定义和计算- 连续函数的性质和判断2. 导数与微分- 导数的定义、几何意义和物理意义- 常见函数的导数公式- 微分的概念和应用3. 积分- 不定积分的概念和基本积分表- 定积分的定义、性质和计算- 微积分基本定理及其应用五、数学解题技巧- 快速准确的计算方法- 图形和代数方法的结合使用- 逻辑推理和证明技巧- 常见数学问题的解题策略六、数学思维与应用- 数学建模和实际问题的应用- 创新思维在数学问题解决中的运用- 数学与其他学科的交叉融合七、复习策略- 定期复习和巩固基础知识- 针对性练习和模拟考试- 错题分析和知识点查漏补缺以上是数学高考必考知识点的概览。

高考前必看数学考点资料内容大全

高考前必看数学考点资料内容大全

高考前必看数学考点资料内容大全在高考前一段时间的数学的复习中,应当听从老师的安排,跟随考纲的重点,明确复习的重要目标,查漏补缺,寻求新的提升。

下面是为大家整理的关于高考前必看数学考点资料内容,欢迎大家来阅读。

高中数学简单的知识点空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)。

2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高。

3、a—边长,S=6a2,V=a3。

4、长方体a—长,b—宽,c—高S=2(ab+ac+bc)V=abc。

5、棱柱S—h—高V=Sh。

6、棱锥S—h—高V=Sh/3。

7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。

8、S1—上底面积,S2—下底面积,S0—中h—高,V=h(S1+S2+4S0)/6。

9、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h。

第1页共7页10、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)。

11、r—底半径h—高V=πr^2h/3。

12、r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/313、球r—半径d—直径V=4/3πr^3=πd^3/6。

14、球缺h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3。

15、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6。

16、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/4。

17、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。

数学高考知识点重点

数学高考知识点重点

数学高考知识点重点高考数学知识点重点一、函数及其图像1. 函数与映射函数的概念及性质,映射的概念与判断2. 函数的表示与运算函数的解析式、图像、性质;函数的四则运算、复合与反函数3. 初等函数幂函数、指数函数、对数函数、三角函数、反三角函数等初等函数及其性质二、数列与数学归纳法1. 等差数列与等比数列数列的概念、通项公式、求和公式、性质及应用2. 递推数列与数学归纳法递推数列的概念与性质,利用数学归纳法证明命题三、函数的极限与连续性1. 函数的极限函数的极限定义、性质与计算方法;无穷大与无穷小概念2. 函数的连续性函数连续性的概念、性质与判断条件;间断点的分类与分析四、导数与微分1. 导数的概念与运算法则导数定义、基本性质、四则运算法则、复合函数求导2. 函数的几何意义与应用函数图像的切线与法线,导数在图像研究中的应用;利用导数解分析几何问题3. 微分学基本定理函数的可微性与导数的等价性定理;微分的概念与计算方法五、不等式与线性规划1. 一元二次不等式一元二次不等式的解法及应用2. 线性规划线性规划的基本概念、最优解的确定与图形解法六、概率与统计1. 随机试验与事件随机试验的概念、样本空间、事件及其运算2. 概率的概念与性质概率的定义、性质、计算方法及应用3. 随机变量与分布律随机变量的概念与性质,离散型随机变量的分布律与期望4. 抽样与统计推断样本、抽样的方法与调查法,统计推断中的基本概念七、数与数论1. 整除与同余整数的整除性及性质,同余关系的定义与应用2. 递推与逼近递推数列的构造及性质,实数逼近的基本性质与方法八、向量与立体几何1. 向量的概念与运算向量的定义、运算法则及性质;向量的线性运算与几何应用2. 空间几何中的基本概念平面与直线的方程、位置关系、线面垂直与平行关系的判断以上是数学高考的重点知识点,掌握这些知识将有助于应对高考数学考试。

在学习过程中,建议多做相关的练习题,并及时解答疑惑,加深对知识的理解与运用。

高考数学259个核心考点

高考数学259个核心考点

高中数学考试必备的知识点整理温馨提示:在复习的同时,也要结合课本上的例题去复习,重点是课本,而不是题目应该怎样去做,所以在考前的一天必须回归课本复习,心中无公式,是解不出任何题目来的,只要心中有公式,中等的题目都可以解决。

必修一:一、集合的运算:交集:定义:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B 并集:定义:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为A B补集:定义:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为C UA 二、指数与指数函数1、幂的运算法则:(1)a m •a n =a m + n ,(2)a m ÷a n =a m -n ,(3)(a m )n =a m n (4)(ab )n = a n •b nn -11a n⎛a ⎫nm-n (5) ⎪=n (6)a 0 = 1 ( a ≠0)(7)a =n (8)am=a(9)am=mna b ⎝b ⎭a 2、根式的性质⎧a ,a ≥0n n n n n n n n (1)(a )=a .(2)当为奇数时,a =a ;当为偶数时,a =|a |=⎨.-a ,a <0⎩n n 5.指数式与对数式的互化:log aN =b ⇔a b =N (a >0,a ≠1,N >0).6、对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N = N (6)log a (MN) = log a M + log a N(7)log a (log b N M ) = log a M -log a N(8)log a N b = b log a N (9)换底公式:log a N =Nlog banlog a b (a >0,且a >1,m ,n >0,且m ≠1,n ≠1,N >0).m (10)推论:log a m b n =(11)log a N =1(12)常用对数:lg N = log 10N(13)自然对数:ln A = log e Alog Na必修4:1、特殊角的三角函数值角α0°30°45°60°πππ角α的弧度数643Sinα12223290°π21180°π0270°3π2-1360°2π0321Cosα12220-101tanα03313不存在0不存在02、诱导公式:函数名不变,符号看象限(把α看成锐角)公式一:Sin(α+2kπ)=Sinα公式二:Sin(α+π)=-SinαCos(α+2kπ)=Cosα Cos(α+π)=-Cosαtan(α+2kπ)=tanα tan(α+π)=tanα公式三:Sin(-α)=-Sinα公式四:Sin(π-α)=SinαCos(-α)= Cosα Cos(π-α)=-Cosαtan(-α)=-tanα tan(π-α)=-tanα公式五:Sin(π2-α)=Cosα公式六:Sin(π2+α)=CosαCos(ππ2-α)=Sinα Cos(2+α)=-Sinα3、两角和与角差的正弦、余弦和正切公式①sin(α+β)=sin αcos β+cos αsin β②sin(α-β)=sin αcos β-cos αsin β③cos(α+β)=cos αcos β-sin αsin β④cos(α-β)=cos αcos β+sin αsin β⑤tan(α+β)=tan α+tan β1-tan αtan β⑥tan(α-β)=tan α-tan β1+tan αtan β4.二倍角的正弦、余弦和正切公式①sin 2α=2sin αcos α②cos 2α=cos 2α-sin 2α=1-2sin 2α=2cos α2-1③tan 2α=2tan α1-tan 2α④sin 2α=1-cos 2α2⑤cos 2α=1+cos 2α2sin αcos α=12sin 2α5、向量公式:→→→→①a ∥b ⇔x 1x =y 1(x 2,y 2≠0)(a ∥b ⇔x 1y 2-x 2,y 1=0)2y2→→→→→②a +b =(a +b )2=a 2+2a →⋅b →→+b 2=→2a +2a →⋅b →⋅cos θ+b→2→→③cos θ=a ⋅b =x 1x 2+y 1y2→(求向量的夹角)a ⋅→bx21+y2x2212+y2⑥④a ⊥b ⇔a ⋅b =0⑥平面内两点间的距离公式:设a =(x ,y ),则→2→→→→→a =x +y 或a =x 2+y 2→22→⑦平面内两点间的距离公式:a =(x 1-x 2)+(y 1-y 2)2222高中数学必修5知识点归纳第一章解三角形1、正弦定理:在∆AB C 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为∆AB C 的外接圆的a b c半径,则有===2R .sin A sin B sin C2、正弦定理的变形公式:①a =2R sin A ,b =2R sin B ,c =2R sin C ;a b c②sin A =,sin B =,sin C =;③a :b :c =sin A :sin B :sin C ;2R 2R 2R a +b +c a b c④.===sin A +sin B +sin C sin A sin B sin C(正弦定理用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。

高考数学基础知识点大全总结归纳

高考数学基础知识点大全总结归纳

高考数学基础知识点大全总结归纳数学是高考中最重要的科目之一,也是考生们备战高考的重点之一。

要在高考数学中取得好成绩,掌握基础知识点是至关重要的。

本文将对高考数学中的基础知识点进行全面总结归纳,帮助考生们更好地复习备考。

一、代数与函数代数与函数是数学中最基础也是最核心的内容之一。

在高考数学中,代数与函数的知识点占据了相当大的比重。

以下是高考数学代数与函数部分的基础知识点:1.1 整式与分式1.2 多项式与多项式的运算1.3 幂的运算与整式的整除性1.4 分式的化简与运算1.5 分式方程的解法二、数与数量关系数与数量关系是高考数学中的重要知识点之一,它不仅包括了基础的数与数的关系,还包括了数量之间的比较和计算。

以下是高考数学数与数量关系部分的基础知识点:2.1 数与数的性质2.2 数与式的计算2.3 数与面积、体积的关系2.4 一次函数与一次函数的应用三、几何与变换几何与变换是高考数学中相对较为复杂的知识点,但也是不可或缺的一部分。

几何与变换包括了图形的性质、图形的变换与运动等内容。

以下是高考数学几何与变换部分的基础知识点:3.1 线与角3.2 三角形与三角形的性质3.3 圆与圆的性质3.4 二次曲线与二次曲线的性质3.5 向量与向量的运算四、概率与统计概率与统计是高考数学中较为实际且应用广泛的知识点,它涉及到事件的发生概率和数据的统计分析等内容。

以下是高考数学概率与统计部分的基础知识点:4.1 随机事件与随机事件的运算4.2 概率的计算与性质4.3 统计数据的收集与整理4.4 统计指标与统计图的应用综上所述,高考数学基础知识点的掌握对于考生在高考中取得好成绩至关重要。

通过对代数与函数、数与数量关系、几何与变换以及概率与统计等知识点的全面总结归纳,相信考生们能够更好地复习备考并在高考中取得优异成绩。

希望本文能为广大考生提供帮助,祝愿各位考生都能顺利通过高考,实现自己的人生目标。

高考数学考试重难点知识总结

高考数学考试重难点知识总结

高考数学考试重难点知识总结高考数学考前必背知识点一、三角函数题三角题一般在解答题的前两道题的位置上,主要考查三角恒等变换、三角函数的图像与性质、解三角形等有关内容.三角函数、平面向量和三角形中的正、余弦定理相互交汇,是高考中考查的热点.二、数列题数列题重点考查等差数列、等比数列、递推数列的综合应用,常与不等式、函数、导数等知识综合交汇,既考查分类、转化、化归、归纳、递推等数学思想方法,又考查综合运用知识进行运算、推理论证及解决问题的能力.近几年这类试题的位置有所前移,难度明显降低.三、立体几何题常以柱体、锥体、组合体为载体全方位地考查立体几何中的重要内容,如线线、线面与面面的位置关系,线面角、二面角问题,距离问题等,既有计算又有证明,一题多问,递进排列,此类试题既可用传统方法解答,又可用空间向量法处理,有的题是两法兼用,可谓珠联璧合,相得益彰.究竟选用哪种方法,要由自己的长处和图形特点来确定.便于建立空间直角坐标系的,往往选用向量法,反之,选用传统方法.另外,“动态”探索性问题是近几年高考立体几何命题的新亮点,三视图的巧妙参与也是立体几何命题的新手法,要注意把握.四、概率问题概率题一般在解答题的前三道题的位置上,主要考查数据处理能力、应用意识、必然与或然思想,因此近几年概率题常以概率与统计的交汇形式呈现,并用实际生活中的背景来“包装”.概率重点考查离散型随机变量的分布列与期望、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验与二项分布等;统计重点考查抽样方法(特别是分层抽样)、样本的频率分布、样本的特征数、茎叶图、线性回归、列联表等,穿插考查合情推理能力和优化决策能力.同时,关注几何概型与定积分的交汇考查,此类试题在近几年的高考中难度有所提升,考生应有心理准备.五、圆锥曲线问题解析几何题一般在解答题的后三道题的位置上,有时是“把关题”或“压轴题”,说明了解析几何题依然是重头戏,在新课标高考中依然占有较突出的地位.考查重点:第一,解析几何自身模块的小交汇,是指以圆、圆锥曲线为载体呈现的,将两种或两种以上的知识结合起来综合考查.如不同曲线(含直线)之间的结合,直线是各类曲线和相关试题最常用的“调味品”,显示了直线与方程的各知识点的基础性和应用性.第二,圆锥曲线与不同模块知识的大交汇,以解析几何与函数、向量、代数知识的结合最为常见.有关解析几何的最值、定值、定点问题应给予重视.一般来说,解析几何题计算量大且有一定的技巧性(要求品出“几何味”来),需要“精打细算”,对考生的意志品质和数学机智都是一种考验和检测.六、导数、极值、最值、不等式恒成立(或逆用求参)问题导数题考查的重点是用导数研究函数性质或解决与函数有关的问题.往往将函数、不等式、方程、导数等有机地综合,构成一道超大型综合题,体现了在“知识网络交汇点处设计试题”的高考命题指导思想.鉴于该类试题的难度大,有些题还有高等数学的背景和竞赛题的味道,标准答案提供的解法往往如同“神来之笔”,确实想不到,加之“搏杀”到此时的考生的精力和考试时间基本耗尽,建议考生一定要当机立断,视时间和自身实力,先看第(1)问可否拿下,再确定放弃、分段得分或强攻.近几年该类试题与解析几何题轮流“坐庄”,经常充当“把关题”或“压轴题”的重要角色.高考数学必考知识点大全第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

高考数学最全知识点

高考数学最全知识点

高考数学最全知识点一、代数与函数1. 整式与分式- 整式的定义与性质- 分式的定义与性质- 分式的化简与运算法则2. 方程与不等式- 一元一次方程与不等式- 一元二次方程与不等式- 二元一次方程与不等式- 绝对值方程与不等式3. 函数与图像- 函数的定义与性质- 基本初等函数的性质与图像- 复合函数与反函数- 二次函数与它的图像特征4. 一次、二次函数和分式函数- 一次函数的图像与性质- 二次函数的图像与性质- 分式函数的图像与性质二、解析几何1. 点、直线与圆- 坐标平面、点的坐标与点的表示- 直线的方程与性质- 圆的方程与性质2. 平面与空间图形- 不共面点的坐标与距离- 空间图形的投影与投影性质- 空间几何体的体积计算3. 向量与坐标变换- 向量的定义与性质- 向量的线性运算与数量积- 坐标变换与平移、旋转、对称三、概率与统计1. 排列与组合- 排列的概念与计算- 组合的概念与计算- 排列组合在实际问题中的应用2. 概率与事件- 概率的定义与性质- 事件的概念与运算- 事件的概率计算与应用3. 统计与数据分析- 统计数据的收集与整理- 统计量与频数分布表- 统计图表与数据分析四、数学思维与方法1. 数学思想方法与证明- 数学思维的培养与发展- 数学证明的基本方法与思路2. 推理与逻辑- 数学推理的基本规律与方法- 逻辑关系的分析与判断3. 分析与解决问题- 数学问题的分析与解决思路- 解决问题的数学模型与方法五、高考数学应试技巧1. 命题特点与解题技巧- 高考数学命题特点的认识- 解题技巧与策略的训练2. 考前复习与应试心态- 高考数学的复习计划与安排- 应试心态与考场策略3. 高考数学备考注意事项- 考试要点与考纲的掌握- 考前注意事项与常见错误的避免以上是高考数学的最全知识点,通过系统地学习和掌握这些知识点,相信你能在高考中取得优异的成绩。

祝你成功!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学复习重点知识点一. 集合1.已知集合A 、B ,当∅=⋂B A 时,你是否注意到“极端”情况:∅=A 或∅=B ;求集合的子集时是否忘记∅?2.对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n反演律:B C A C B A C I I I ⋂=⋃)(,B C A C B A C I I I ⋃=⋂)(。

“p 且q ”的否定是“非p 或非q ”;“p 或q ”的否定是“非p 且非q ”。

命题的否定只否定结论;否命题是条件和结论都否定。

(1).你是否掌握了“p ⌝”形式时常用的否定词语(2.)反证法的一般证明过程(否定结论矛盾) (3.)命题的充要性证明①证必要性②证充分性 (4.)数学归纳法 ①证明n 取第一个值n 时结论正确②假设n=k (*k N ∈)时结论正确 证明n=k+1时结论也正确 则命题对于从n 开始的所有正整数n 都成立二. 函数1. 函数的几个重要性质:①如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+,那么函数()x f y =的图象关于直线a x =对称⇔()y f x a =+是偶函数;②若都有()()x b f x a f +=-,那么函数()x f y =的图象关于直线2ba x +=对称;函数()x a f y -=与函数()x b f y +=的图象关于直线2ba x -=对称; ③函数()x f y =与函数()x f y -=的图象关于直线0=x 对称;函数()x f y =与函数()x f y -=的图象关于直线0=y 对称;函数()x f y =与函数()x f y --=的图象关于坐标原点对称;④若奇函数()x f y =在区间()+∞,0上是增函数,则()x f y =在区间()0,∞-上也是增函数;若偶函数()x f y =在区间()+∞,0上是增函数,则()x f y =在区间()0,∞-上是减函数; ⑤函数()a x f y +=)0(>a 的图象是把()x f y =的图象沿x 轴向左平移a 个单位得到的;函数()a x f y +=()0(<a 的图象是把()x f y =的图象沿x 轴向右平移a 个单位得到的; ⑥函数()x f y =+a )0(>a 的图象是把()x f y =助图象沿y 轴向上平移a 个单位得到的;函数()x f y =+a )0(<a 的图象是把()x f y =助图象沿y 轴向下平移a 个单位得到的。

2. 求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗? 3. 函数与其反函数之间的一个有用的结论:()().b f 1a b a f=⇔=-原函数与反函数图象的交点不全在y=x 上(例如:xy 1=);()1y f x a -=+只能理解为()x f y 1-=在x+a处的函数值。

4. 原函数()x f y =在区间[]a a ,-上单调递增,则一定存在反函数,且反函数()x fy 1-=也单调递增;但一个函数存在反函数,此函数不一定单调.判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗? 10.一定要注意“()'fx >0(或()'f x <0)是该函数在给定区间上单调递增(减)的必要条件。

11.你知道函数()0,0>>+=b a xbax y 的单调区间吗?(该函数在(]ab -∞-,或[)+∞,ab 上单调递增;在[)0,ab -或(]ab ,0上单调递减)这可是一个应用广泛的函数!12.切记定义在R 上的奇函数y=f(x)必定过原点。

13.抽象函数的单调性、奇偶性一定要紧扣函数性质利用单调性、奇偶性的定义求解。

同时,要领会借助函数单调性利用不等关系证明等式的重要方法:f(a)≥b 且f(a)≤b ⇔f(a)=b 。

14.对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论。

三. 数列四. 数的换底公式及它的变形,你掌握了吗?(b b abb a n ac c a n log log ,log log log ==) 五. 你还记得对数恒等式吗?(b aba =log )六. “实系数一元二次方程02=++c bx ax 有实数解”转化为“042≥-=∆ac b ”,你是否注意到必须0≠a ;若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?例如:()()02222<-+-x a x a 对一切R x ∈恒成立,求a 的取值范围,你讨论了a =2的情况了吗?七. 等差数列中的重要性质:()n m a a n m d =+-;若q p n m +=+,则q p n m a a a a +=+;n n n n n S S S S S 232,,--成等差。

八. 等比数列中的重要性质:n m n m a a q -=;若q p n m +=+,则q p n m a a a a ⋅=⋅;n n n n n S S S S S 232,,--成等比。

九. 你是否注意到在应用等比数列求前n 项和时,需要分类讨论.(1=q 时,1na S n =;1≠q 时,qq a S n n --=1)1(1)十. 等差数列的一个性质:设n S 是数列{}n a 的前n 项和,{}n a 为等差数列的充要条件是bn an S n +=2(a, b 为常数),其公差是2a 。

十一. 你知道怎样的数列求和时要用“错位相减”法吗?(若n n n b a c =,其中{}n a 是等差数列,{}n b 是等比数列,求{}n c 的前n 项的和)十二. 用1--=n n n S S a 求数列的通项公式时,a n 一般是分段形式对吗?你注意到11S a =了吗?十三. 你还记得裂项求和吗?(如111)1(1+-=+n n n n )叠加法:112211()()()n n n n n a a a a a a a a ---=-+-++-+叠乘法:1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=----- 四.三角函数在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?在△ABC 中,sinA>sinB ⇔A>B 对吗? 一般说来,周期函数加绝对值或平方,其周期减半.(如xy x y sin ,sin 2==的周期都是π,但xx y cos sin +=及xy tan =的周期为2π,)函数xy x y x y cos ,sin ,sin 2===是周期函数吗?(都不是)正弦曲线、余弦曲线、正切曲线的对称轴、对称中心你知道吗?在三角中,你知道1等于什么吗?(x x x x 2222tan sec cos sin 1-=+=====⋅=0cos 2sin4tancot tan ππx x 这些统称为1的代换),常数“1”的种种代换有着广泛的应用.在三角的恒等变形中,要特别注意角的各种变换.(如,)(αβαβ-+=,)(αβαβ+-=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=+βαβαβα222等)你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值的式子,一定要算出值来)你还记得三角化简的通性通法吗?(从函数名、角、运算三方面进行差异分析,常用的技巧有:切割化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次)你还记得某些特殊角的三角函数值吗?(41518sin ,42615cos 75sin ,42675cos 15sin -=︒+=︒=︒-=︒=︒)你还记得在弧度制下弧长公式和扇形面积公式吗?(lr S r l 21,==扇形α)辅助角公式:()θ++=+x b a x b x a sin cos sin 22(其中θ角所在的象限由a, b 的符号确定,θ角的值由a b=θtan 确定)在求最值、化简时起着重要作用.在用反三角函数表示直线的倾斜角、两向量的夹角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围及意义?①异面直线所成的角、直线与平面所成的角、二面角的取值范围依次是;],0[],2,0[,2,0πππ⎥⎦⎤⎝⎛②直线的倾斜角、1l 到2l 的角、1l 与2l 的夹角的取值范围依次是]2,0[),,0[),,0[πππ; ③向量的夹角的取值范围是[0,π]④异面直线公垂线长度即为两异面直线距离⑤点到面距离即过该点向面引垂线,垂线段长度即为点到面距离⑥用向量求二面角借助1212cos n n n n θ=(或其补角)解决其中12,n n 为两个面法向量⑦用向量法求距离借助PA n d n=来解决其中点A 在平面内点P 在平面外,n 为该平面法向量 若11(,)a x y =,22(,)b x y =,则b a //,a b ⊥的充要条件是什么?如何求向量的模?a 在b 方向上的投影为什么?若a 与b 的夹角θ,且θ为钝角,则cos θ<0对吗?(必须去掉反向的情况)你还记得平移公式是什么?(这可是平移问题最基本的方法);还可以用结论:把y=f(x)图象向左移动|h|个单位,向上移动|k|个单位,则平移向量是a =(-|h|,|k|)。

五.不等式不等式的解集的规范书写格式是什么?(一般要写成集合的表达式)分式不等式()()()0≠>a a x g x f 的一般解题思路是什么?(移项通分)含有两个绝对值的不等式如何去绝对值?(两边平方或分类讨论)利用重要不等式ab b a 2≥+ 以及变式22⎪⎭⎫⎝⎛+≤b a ab 等求函数的最值时,你是否注意到a ,b +∈R (或a ,b 非负),且“等号成立”时的条件?在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底10<<a 或1>a )讨论完之后,要写出:综上所述,原不等式的解是…….解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”恒成立不等式问题通常解决的方法:借助相应函数的单调性求解,其主要技巧有数形结合法,分离变量法,换元法。

六.解析几何与立体几何教材中“直线和圆”与“圆锥曲线”两章内容体现出解析几何的本质是用代数的方法研究图形的几何性质。

(04上海高考试题)直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式.以及各种形式的局限性,(如点斜式不适用于斜率不存在的直线,所以设方程的点斜式或斜截式时,就应该先考虑斜率不存在的情形)。

相关文档
最新文档