怎样凑微分

合集下载

常微分方程凑微分法

常微分方程凑微分法

常微分方程凑微分法常微分方程作为数学分析和物理学中非常重要的基础知识,涉及到了一系列的数学理论和方法,其中凑微分法就是其中的一种最常用、最基础的解题技巧。

在本文中,我们将从凑微分法的原理和步骤入手,讲解其具体应用和实现,在实际的数学和物理问题中,通过例题的形式来深入解析凑微分法的精髓和应用。

一、基本原理凑微分法是一种非常简单易懂的解题技巧,其基本思路是通过对微分方程进行一些特定的变换和调整,使得原方程可以化为几个可积的微分表达式,从而达到方便求解的目的。

该方法主要基于微分方程的性质和基本的微积分运算,利用普通微分和降阶的代数运算和技巧,使得原来难以处理的微分方程可以变成一些比较简单的方程,从而可以更加轻松地求解。

具体来说,凑微分法的基本思路可以概括为以下三个步骤:1. 判定微分方程的阶数和类型,确定需要凑的微分式以及其次数。

2. 通过巧妙的代数运算和微积分操作,将方程中可能的凑微分项进行配对和消去,使得方程变得更加简单。

3. 对更加简单的微分方程进行求解,最终得到原方程的通解或特解。

这三个步骤是凑微分法的核心内容,也是凑微分法能够成功解决大量微分方程问题的关键所在。

二、具体实现在实际的应用中,凑微分法最常用于解决非齐次和高阶微分方程,同时还可以解决一些简单的S型微分方程和变系数微分方程。

下面我们将从不同类型的微分方程出发,介绍凑微分法的具体应用和实现步骤。

1. 非齐次一阶微分方程对于比较简单的一阶非齐次微分方程,凑微分法的应用十分直观和简单,其基本步骤可以概括为:(1)将非齐次方程写成“齐次方程+特解”的形式;(2)找到一个函数v(x),满足v(x)y’+v’(x)y=p(x)中的v’(x)/v(x)等于齐次方程的解y/h(x);(3)将v(x)跟上述解h(x)相乘作为新的函数u(x),得到新的一阶齐次微分方程u'(x)=h(x);(4)对上述方程求解,得到一阶的齐次解C1,然后将其代入函数u(x)中,得到特解的形式y(x)=C1u(x)+u(x)∫p(x)u^(-2)(x)dx。

一、凑微分法

一、凑微分法

1 1 1 ( )d sin x 2 1 sin x 1 sin x
1 1 sin x 1 (1 sin x)2 ln C ln C 2 2 1 sin x 2 cos x
ln | sec x tan x | C.
dx dx 例4. csc xdx x x sin x 2 sin cos 2 2 x x d d (tan ) 2 2 ln | csc x cotx | C. x x x tan cos 2 tan 2 2 2 d (x ) dx 2 ln | sec x tan x | C. cos x sin( x ) x 1 cos x 2 (tan csc x cotx) 2 sin x 例5. x 2 4 3x3 dx
1 x
1 x
1 2 t 原式 t e ( 2 )dt et dt e x C. t
1
定理 :
设f ( x)连续,x (t )及 (t )皆连续,x (t )的反
函数t 1 ( x)存在且连续, 且
f ( (t )) (t )dt F (t ) C ,
g (t )dt
积分公式
带回
x
F ( ( x)) C.
实质上是一种简单换元积分法.
sin x d cos x dx ln | cos x | C. 例2. tan xdx cos x cos x
例3.

dx cos xdx d sin x sec xdx 2 cos x cos x 1 sin 2 x
e
x2
sin x dx , dx , x

一凑微分法

一凑微分法

解:
原式
x arctan
x
x 1 x2 dx
例13.
x arctan x 1 ln(1 x2 ) C. 2
x2e3xdx
x2d (e3x ) x2 e3x 2xe3xdx
33
3
x2 e3x 2 xd ( e3x ) x2 e3x 2x e3x 2 e3xdx
33
Yunnan University
§2. 不定积分的计算
根据代数分项分式定理, 有
F ( x) Q(x)
A1 (x a)
A2 (x a)2
A (x a)
B1 (x b)
B2 (x b)2
B (x b)
C1x D1 x2 px
q
C2 x (x2 px
D2 q)2
L
(
x
C 2
sec tdt ln(tan t 1 a
a2 a2 tan2 t ) C1
ln(x x2 a2 ) C, (C C1 ln a).
例10. 求
dx x 2 a2
解: 1. 令x a sect, dx a sect tan tdt.
2. 令x acht, dx ashtdt
dx (t)dt
( 将变量x替换为函数(t) )
求出这个不定积分,再将结果中的t换成-1(x)即得
所求的不定积分.
注:对某些函数的不定积分,有时可用不同的方法、不同的 函数作变量替换,因之所得结果在形式上可能不相同.
Yunnan University
§2. 不定积分的计算
例如:1.
sin
x
cos
函数t 1(x)存在且连续, 且
f ((t))(t)dt F(t) C,

凑微分法技巧口诀

凑微分法技巧口诀

凑微分法技巧口诀
这三句口诀是:换元必换限,换限不还原,换顺序必化为重积分。

“换元必换限”中限指的是上下限,也就是函数中自变量的取值范围,这句话意思是换了自变量则必须要重新确定自变量的取值范围。

“换限不还原”意思是自变量的取值范围变化了,则原来函数定义就不需要还原了。

“换顺序必化为重积分”指的是在做重积分运算时,如果要交换x,y的计算顺序则必须先化成二重积分在进行换算。

积分运算法则:
一、凑微分法(第一类换元积分)
当被积函数有一部分比较复杂时,可以通过观察把某些函数放到d的后面(放在d后面的函数会发生变化),使得d后面的函数与前面复杂的被积函数具有相似的结构,最后运用基本积分公式将其求出。

二、换元法(第二类换元积分)
当被积函数比较复杂时,可以通过换元的方法从d后面的函数放一部分到前面来,使其更容易积分。

2凑微分法

2凑微分法

2凑微分法微积分中最常用的方法之一就是微分法,可以通过微分法来求出对于复杂的函数的导数。

而对于一些比较复杂的函数,需要使用一些特殊的技巧来求导数,其中包括凑微分法。

1. 凑微分法的基本原理凑微分法的基本原理可以归结为以下三个步骤:(1)把原函数中的不可微部分分离出来。

(2)将可微部分用恰当的方法凑成微分的形式。

(3)利用微积分基本定理求出微分的导数。

对于一个复合函数而言,其可微部分即为所有的内函数对应的导数的乘积。

而不可微部分即为外函数的不可微分性质。

例如:$$y = \sin(x^2)$$对于上述函数而言,它的不可微部分即为$\sin(x^2)$,可微部分即为$(\sin(x^2))' = 2x \cdot \cos(x^2)$。

凑微分法的关键是要找到一种方法,使得所求的可微部分与其微分的形式尽量相似。

通常情况下,我们可以使用一些恰当的代换或变形来达到这个目的。

例如:对于上述函数而言,我们可以令$x = \sqrt{t}$,则有:$$\begin{aligned} y &= \cos((\sqrt{t})^2) \\ & = \cos(t) \end{aligned}$$此时,可微部分为$\cos(t)$,而其微分形式为$d\sin(t)$,进而有:$$y' = \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = - \sin(t) \cdot \frac{1}{2\sqrt{t}} = - \frac{\sin(x^2)}{2x}$$根据微积分基本定理,可得到函数的导数可以通过函数的微分求出,从而可以通过凑微分法求导。

即:其中,$F(u)$为可微函数,$g(x)$为实函数。

通过这种方法,我们可以将一些比较复杂的函数用凑微分法求导,从而简化求导过程,使得我们更加容易求得函数的导数。

总结凑微分法是微积分中重要的求导方法之一,其基本原理是通过将可微部分凑成微分的形式,然后利用微积分基本定理求出微分的导数。

一、凑微分法

一、凑微分法

函数t 1 ( x)存在且连续, 且
f ( (t )) (t )dt F (t ) C ,


f ( x)dx F ( 1 ( x)) C.
证明: d ( F ( 1 ( x)) F (t ) ( 1 ) dx
1 f ( (t )) (t ) f ( x). (t )
x x 2 a 2 x 2 a 2 dx a 2 ln | x x 2 a 2 | C1


2 x a x 2 a 2 dx x 2 a 2 ln | x x 2 a 2 | C. 2 2

Yunnan University
2 x a x 2 a 2 dx x 2 a 2 ln( x x 2 a 2 ) C. 2 2
ln | sec x tan x | C.
Yunnan University
§2. 不定积分的计算
dx dx 例4. csc xdx x x sin x 2 sin cos 2 2 x x d d (tan ) 2 2 ln | csc x cotx | C. x x x tan cos 2 tan 2 2 2 d (x ) dx 2 ln | sec x tan x | C. cos x sin( x ) x 1 cos x 2 (tan csc x cotx) 2 sin x 例5. x 2 4 3x3 dx
cos x 1 cos x sin x dx sin xd sin x 1 sin x dx 0 1?
Yunnan University
§2. 不定积分的计算 将不定积分视为一个数进行运算是错误的, 不定积分是 原函数的集合. 此时, cos x d sin x sin x dx sin x ln | sin x | C. 使用分部积分公式还可得到一些有用的递推公式, 例如:

不定积分凑微分法公式

不定积分凑微分法公式

不定积分凑微分法公式
不定积分凑微分法公式是一种常用的数学方法,其可以将复杂函数变换为微分形式,从而使得计算过程更加简单,有效地求解复杂问题。

本文结合具体实例,介绍不定积分凑微分法公式,并运用此方法求解复杂函数,以此来认识并理解不定积分凑微分法公式的应用。

首先,让我们来认识不定积分凑微分法公式。

不定积分凑微分法公式(I.F.D.)是一种数学方法,它利用基本定理将一些复杂的函数转换成微分形式,使得计算变得更加简单,能够有效求解一些复杂的问题。

通俗地说,它就是通过记录函数的不同方程参数来求解函数。

此外,它还可以帮助求解积分函数。

具体而言,这就意味着当一个函数被积分时,可以用I.F.D.来简化函数的形式,从而求得函数的极限,即求出函数的精确结果。

下面,让我们来看看不定积分凑微分法公式是如何运用的。

先来看一个例子,假设我们要求解一个复杂函数y = x^3 + 3x^2 + 4x + 5,《不定积分凑微分法公式》可以将它拆解为y = 3x^2 + 6x + 4,于是我们就可以将这个复杂函数转换为微分形式,从而使得计算变得简单。

除此之外,《不定积分凑微分法公式》也可以帮助求解积分函数。

举个例子,假设要求解积分函数y =e^x dx,可以利用不定积分凑微分法公式,从而求解y = e^x + c,而c为常数。

以上就是不定积分凑微分法公式的具体应用,它可以帮助我们将复杂的函数变换为微分形式,更重要的是,它还能帮助求解积分函数,
使计算过程变得更加简单。

总之,不定积分凑微分法公式是一种非常有益的数学方法,它能帮助我们更好地求解复杂的函数,使计算过程变得更加简单,由此也可以更快捷更加准确地求解函数。

《凑微分法》课件

《凑微分法》课件

复合函数与幂函数混合积 分
例如,计算积分 $int (x^{2}e^{x})dx$ 时, 可以将 $x^{2}e^{x}$ 视为
$frac{d}{dx}(e^{x}x^{2})$ 的微分,从而得 到 $e^{x}x^{2}$ 的积分结果。
04
凑微分法的注意事项与技巧
凑微分法的注意事项
观察目标函数形式
凑微分法的数学原理
凑微分法的定义
凑微分法是一种通过观察或变形,将复杂的积分表达式转化为容易计算的积分表达式的技巧。其核心 思想是将被积函数进行适当的变形,使其符合某个已知的积分公式的形式,从而简化计算过程。
凑微分法的应用
凑微分法在数学、物理和工程领域中都有广泛的应用。通过凑微分法,我们可以将复杂的积分问题转 化为简单的计算,从而快速得到结果。例如,在求解某些物理问题的过程中,我们经常需要用到凑微 分法来计算某个物理量的变化率或累积值。
三角函数凑微分
例如,计算积分 $int sin{x}dx$ 时, 可以将 $sin{x}$ 视为 $frac{d}{dx}(cos{x})$ 的微分,从而 得到 $-cos{x}$ 的积分结果。
复杂问题的凑微分法实例
多项式与三角函数混合积 分
例如,计算积分 $int (x^{2} + sin{x})dx$ 时,可以将 $x^{2}$ 视为 $frac{d}{dx}(x^{3})$ 的微分,将 $sin{x}$ 视为 $frac{d}{dx}(cos{x})$ 的微分,从而得 到 $frac{3}{2}x^{2} - cos{x}$ 的积分结果 。
微分与积分的互逆关系
微分与积分互为逆运算
微分和积分在数学上是互逆的过程。微分是将函数进行局部线性化,而积分则是 求函数与x轴所夹的面积。由于这两个过程具有相反的特性,因此它们可以相互 转化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档