上海七年级数学期末试卷及答案
2023-2024学年上海市普陀区七年级(上)期末数学试卷及答案解析

2023-2024学年上海市普陀区七年级(上)期末数学试卷一、单选题(本大题共6题,每题2分,满分12分)1.(2分)下列计算结果正确的是()A.(﹣a3)2=﹣a6B.(a﹣b)2=a2﹣b2C.a6÷a3=a3D.3a2+2a3=5a52.(2分)下列判断中错误的是()A.3a2bc与﹣bca2是同类项B.3x2﹣y+5xy2是三次三项式C.单项式﹣x3y2的系数是﹣1D.是分式3.(2分)下列从左到右的变形中,是因式分解的是()A.6x2y=2x•3xyB.2a3b﹣4a2b=2a2b(a﹣2)C.(a+b)2=a2+2ab+b2D.a2﹣2a﹣3=a(a﹣2)﹣34.(2分)如果当x=﹣1时,分式M的值为0,那么M可以是()A.B.C.D.5.(2分)下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.6.(2分)如果x﹣2y+2=0,那么x2﹣xy+y2﹣3的值是()A.﹣2B.﹣1C.1D.0二、填空题(本大题共12题,每题3分,满分36分)7.(3分)用代数式表示:“x与y的2倍的和”.8.(3分)单项式a3bc2的次数是.9.(3分)计算:(x﹣5y)(2x+y)=.10.(3分)计算:(4a3﹣a2)÷a2=.11.(3分)因式分解:3a2b﹣9ab=.12.(3分)因式分解:am+an﹣bm﹣bn=.13.(3分)3D打印技术日渐普及,打印出的高精密游标卡尺误差只有±0.000063米.0.000063这个数用科学记数法可以表示为.14.(3分)如果方程=4有增根,那么增根是.15.(3分)计算:=.16.(3分)如果多项式x2+mx﹣6可以因式分解为(x+p)(x+q),其中m、p、q都为整数,那么m的最大值是.17.(3分)如图,在△ABC中,点E、F分别在边AB、BC上,将△BEF沿EF所在的直线折叠,使点B落在点D处,将线段DF沿着BC向左平移若干单位长度后,恰好能与边AC重合,联结AD.如果阴影部分的周长为18,那么BC=.18.(3分)如图,已知△ABC和△DBF是形状、大小完全相同的两个直角三角形,点B、C、D在同一条直线上,点B、A、F也在同一条直线上,△ABC的位置不动,将△DBF 绕点B顺时针旋转x°(0<x<180),点F的对应点为点F1,点D的对应点为点D1,当∠F1BC=∠ABF1时,∠D1BC的度数为.三、简答题(本大题共6题,每题4分,满分24分)19.(4分)计算:(a+1)2﹣(a+4)(a﹣4).20.(4分)计算:a2•a4+(﹣2a2)3+a8÷a2.21.(4分)因式分解:a2﹣2ab+b2﹣1.22.(4分)因式分解:(x2﹣2x)2﹣2(x2﹣2x)﹣3.23.(4分)计算:.24.(4分)解方程:=1.四、解答题(本大题共4题,第25、26题每题6分,第27、28题每题8分,满分28分)25.(6分)化简:(1﹣a+)÷,然后从﹣1,1,﹣2,2中取一个你认为合适的数作为a的值,再代入求值.26.(6分)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)画出△AB1C1,使△AB1C1与△ABC关于直线MN成轴对称;画出△AB2C2,使△AB2C2与△ABC关于点A成中心对称.(2)在第(1)小题的基础上,联结B1B2,四边形AC1B1B2的面积为.(直接写出答案)27.(8分)金秋时节,七年级的同学组织去公园秋游,从景区A出发到相距15千米的景区B,公园有脚踏车和电瓶车两种交通工具可供租用,一部分学生骑脚踏车从A景区先出发,过了半小时后,其余学生乘电瓶车出发,结果他们同时到达B景区.假设他们全程都保持匀速前行,且已知乘电瓶车学生的速度是骑脚踏车的2倍,请问骑脚踏车学生的速度为每小时多少千米?28.(8分)阅读下列材料,并完成相应任务.教材第九章探索整式乘法法则时,我们用不同方法表示同一个图形的面积,直观地理解乘法法则.如图1,现有4张大小形状相同的直角三角形纸片,三边长分别是a、b、c,将它们拼成如图2的大正方形.(1)观察:图2中,大正方形的面积可以用(a+b)2表示,也可以用含a、b、c的代数式表示为,那么可以得到等式:.整理后,得到a、b、c之间的数量关系:a2+b2=c2,这就是著名的“勾股定理”,它反映了直角三角形的三边关系,即直角三角形的两直角边a、b与斜边c所满足的关系式.(2)思考:爱动脑的小明通过图2得到启示,发现其它图形也能验证“勾股定理”,请你帮助小明画出该图形.(画出一种即可)(3)应用:如图3,在直角三角形ABC中,∠C=90°,AC=3,BC=4,那么AB=,点D为射线BC上一点,将△ACD沿AD所在直线翻折,点C的对应点为点C1,如果点C1在射线BA上,那么CD=.(直接写出答案)2023-2024学年上海市普陀区七年级(上)期末数学试卷参考答案与试题解析一、单选题(本大题共6题,每题2分,满分12分)1.(2分)下列计算结果正确的是()A.(﹣a3)2=﹣a6B.(a﹣b)2=a2﹣b2C.a6÷a3=a3D.3a2+2a3=5a5【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:(﹣a3)2=a6,故选项A错误,(a﹣b)2=a2﹣2ab+b2,故选项B错误,a6÷a3=a3,故选项C正确,3a2+2a3不能合并,故选项D错误,故选:C.【点评】本题考查同底数幂的乘除法、幂的乘方与积的乘方、合并同类项、完全平方公式,解答本题的关键是明确它们各自的计算方法.2.(2分)下列判断中错误的是()A.3a2bc与﹣bca2是同类项B.3x2﹣y+5xy2是三次三项式C.单项式﹣x3y2的系数是﹣1D.是分式【分析】根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【解答】解:A、3a2bc与﹣bca2是同类项,正确,故不符合题意;B、3x2﹣y+5xy2是三次三项式,正确,故不符合题意;C、单项式﹣x3y2的系数是﹣1,正确,故不符合题意;D、是整式,错误,故符合题意.故选:D.【点评】主要考查了整式的有关概念及分式的定义.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.3.(2分)下列从左到右的变形中,是因式分解的是()A.6x2y=2x•3xyB.2a3b﹣4a2b=2a2b(a﹣2)C.(a+b)2=a2+2ab+b2D.a2﹣2a﹣3=a(a﹣2)﹣3【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、6x2y不是多项式,故A不符合题意;B、把一个多项式转化成几个整式积的形式,故B符合题意;C、是整式的乘法,故C不符合题意;D、等式右边不是整式积的形式,故不是分解因式,故D不符合题意;故选:B.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积.4.(2分)如果当x=﹣1时,分式M的值为0,那么M可以是()A.B.C.D.【分析】直接利用分式的值为零则分子为零,分母不为零进而得出答案.【解答】解:A.当x=﹣1时,分式没有意义,故本选项不符合题意;B.当x=﹣1时,分式没有意义,故本选项不符合题意;C.当x=﹣1时,分式的值为0,故本选项符合题意;D.当x=﹣1时,分式没有意义,故本选项不符合题意.故选:C.【点评】此题主要考查了分式的值为零的条件,正确把握相关定义是解题关键.5.(2分)下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A、原图是轴对称图形,不是中心对称图形,故此选项不符合题意;B、原图是中心对称图形,不是轴对称图形,故此选项符合题意;C、原图既是中心对称图形,又是轴对称图形,故此选项不符合题意;D、原图是轴对称图形,不是中心对称图形,故此选项不符合题意.故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.6.(2分)如果x﹣2y+2=0,那么x2﹣xy+y2﹣3的值是()A.﹣2B.﹣1C.1D.0【分析】由已知条件可得x﹣2y=﹣2,将原式变形后代入数值计算即可.【解答】解:∵x﹣2y+2=0,∴x﹣2y=﹣2,∴x2﹣xy+y2﹣3=(x2﹣4xy+4y2)﹣3=(x﹣2y)2﹣3=×(﹣2)2﹣3=1﹣3=﹣2,故选:A.【点评】本题考查代数式求值,将原式进行正确的变形是解题的关键.二、填空题(本大题共12题,每题3分,满分36分)7.(3分)用代数式表示:“x与y的2倍的和”x+2y.【分析】根据题意可以用相应的代数式表示出题目中对的语句,本题得以解决.【解答】解:x与y的2倍的和是:x+2y,故答案为:x+2y.【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.8.(3分)单项式a3bc2的次数是6.【分析】单项式中所有字母的次数之和即为该单项式的次数,据此即可求得答案.【解答】解:单项式a3bc2的次数是3+1+2=6,故答案为:6.【点评】本题考查单项式的次数,熟练掌握其定义是解题的关键.9.(3分)计算:(x﹣5y)(2x+y)=2x2﹣9xy﹣5y2.【分析】多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加,根据多项式乘多项式的法则计算即可.【解答】解:(x﹣5y)(2x+y)=2x2+xy﹣10xy﹣5y2=2x2﹣9xy﹣5y2.故答案为:2x2﹣9xy﹣5y2.【点评】本题考查了多项式乘多项式,解题的关键是熟记法则,运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.10.(3分)计算:(4a3﹣a2)÷a2=4a﹣1.【分析】根据多项式除以单项式的运算法则计算即可.【解答】解:(4a3﹣a2)÷a2=4a3÷a2﹣a2÷a2=4a﹣1.故答案为:4a﹣1.【点评】本题主要考查了整式的除法,熟记多项式除以单项式的运算法则是解答本题的关键.11.(3分)因式分解:3a2b﹣9ab=3ab(a﹣3).【分析】提取公因式,即可得出答案.【解答】解:3a2b﹣9ab=3ab(a﹣3),故答案为:3ab(a﹣3).【点评】本题考查了因式分解,掌握因式分解的各种方法的特点是解此题的关键.12.(3分)因式分解:am+an﹣bm﹣bn=(m+n)(a﹣b).【分析】把前两项分为一组,后两项分为一组,然后再进行分解即可解答.【解答】解:am+an﹣bm﹣bn=(am+an)﹣(bm+bn)=a(m+n)﹣b(m+n)=(m+n)(a﹣b),故答案为:(m+n)(a﹣b).【点评】本题考查了因式分解﹣分组分解法,熟练掌握因式分解﹣分组分解法是解题的关键.13.(3分)3D打印技术日渐普及,打印出的高精密游标卡尺误差只有±0.000063米.0.000063这个数用科学记数法可以表示为 6.3×10﹣5.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000063=6.3×10﹣5,故答案为:6.3×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(3分)如果方程=4有增根,那么增根是﹣2.【分析】将原方程等号左边通分,若它有增根,其分母为零,求出此时x的值即可.【解答】解:∵原方程可整理为=4,它有增根,∴x+2=0,∴x=﹣2.故答案为:﹣2.【点评】本题考查分式方程的增根,理解并掌握增根的定义是本题的关键.15.(3分)计算:=﹣1.【分析】利用分式的加减法则计算即可.【解答】解:原式=﹣==﹣1,故答案为:﹣1.【点评】本题考查分式的加减运算,熟练掌握相关运算法则是解题的关键.16.(3分)如果多项式x2+mx﹣6可以因式分解为(x+p)(x+q),其中m、p、q都为整数,那么m的最大值是5.【分析】根据十字相乘法的分解方法和特点可知m=p+q,pq=﹣6.【解答】解:﹣6可以分成:﹣1×6,1×(﹣6),﹣2×3,2×(﹣3),3×(﹣2),﹣3×2,而﹣1+6=5,1+(﹣6)=﹣5,﹣2+3=1,2+(﹣3)=﹣1,3+(﹣2)=1,﹣3+2=﹣1,因为5>1>﹣1>﹣5,=p+q=5.所以m最大故答案为:5.【点评】本题主要考查十字相乘法分解因式,对常数项的不同分解是解本题的关键.17.(3分)如图,在△ABC中,点E、F分别在边AB、BC上,将△BEF沿EF所在的直线折叠,使点B落在点D处,将线段DF沿着BC向左平移若干单位长度后,恰好能与边AC重合,联结AD.如果阴影部分的周长为18,那么BC=9.【分析】由折叠性质得DF=BF,四边形ADFC为平行四边形,AD=FC,再由BC=BF+FC,可得四边形ADFC的周长为:2×(DF+FC),据此解答即可.【解答】解:∵△BEF沿EF折叠点B落在点D处,∴DF=BF,∵DF沿BC向右平移若干单位长度后恰好能与边AC重合,∴四边形ADFC为平行四边形(DF∥AC且DF=AC),∴AD=FC,∵BC=BF+FC,∴2×(DF+FC)=2×BC=18,∴BC=9,∴故答案为:9.【点评】题主要考查了翻折及平移变换,解题的关键是掌握折叠及平移的性质,求出DF+FC=10.18.(3分)如图,已知△ABC和△DBF是形状、大小完全相同的两个直角三角形,点B、C、D在同一条直线上,点B、A、F也在同一条直线上,△ABC的位置不动,将△DBF 绕点B顺时针旋转x°(0<x<180),点F的对应点为点F1,点D的对应点为点D1,当∠F1BC=∠ABF1时,∠D1BC的度数为112.5°或45°.【分析】分两种情形:当BF1在BC的上方时,当BF1在BC的下方时,分别求解.【解答】解:当BF1在BC的上方时,∵∠F1BC=∠ABF1,∴∠CBF1=∠CBF=22.5°,∴∠CBD1=∠CBF1+∠F1BD1=22.5°+90°=112.5°.当BF1在BC的下方时,同法可得∠CBD1=45°.故答案为:112.5°或45°.【点评】本题考查作图﹣旋转变换,解题的关键是理解题意,学会用分类讨论的射线思考问题.三、简答题(本大题共6题,每题4分,满分24分)19.(4分)计算:(a+1)2﹣(a+4)(a﹣4).【分析】利用完全平方公式及平方差公式计算即可.【解答】解:原式=a2+2a+1﹣a2+16=2a+17.【点评】本题考查完全平方公式及平方差公式,此为基础且重要知识点,必须熟练掌握.20.(4分)计算:a2•a4+(﹣2a2)3+a8÷a2.【分析】根据幂的运算法则计算求值即可.【解答】解:原式=a6+(﹣8a6)+a6=﹣6a6.【点评】本题考查了幂的运算法则:同底数幂相乘(除),底数不变指数相加(减);幂的乘方,底数不变指数相乘;积的幂等于幂的积.掌握幂的运算法则是解题的关键.21.(4分)因式分解:a2﹣2ab+b2﹣1.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2﹣2ab+b2可组成完全平方公式,可把前三项分为一组.【解答】解:a2﹣2ab+b2﹣1,=(a﹣b)2﹣1,=(a﹣b+1)(a﹣b﹣1).【点评】本题主要考查了非负数的性质和分组分解法分解因式,用分组分解法进行因式分解的难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组.22.(4分)因式分解:(x2﹣2x)2﹣2(x2﹣2x)﹣3.【分析】把x2﹣2x看成一个整体,利用十字相乘法分解,然后利用十字相乘法和完全平方公式分解即可.【解答】解:原式=(x2﹣2x﹣3)(x2﹣2x+1)=(x﹣3)(x+1)(x﹣1)2.【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行多次因式分解,分解因式一定要彻底.23.(4分)计算:.【分析】根据零指数幂,负整数指数幂,有理数的乘方运算求解即可.【解答】解:=﹣1+1+4=4.【点评】本题考查了零指数幂,负整数指数幂,有理数的乘方,有理数的混合运算,熟练掌握这些知识是解题的关键.24.(4分)解方程:=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+2=x2+2x,解得:x=1,经检验x=1是分式方程的解,∴分式方程的解为x=1.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.四、解答题(本大题共4题,第25、26题每题6分,第27、28题每题8分,满分28分)25.(6分)化简:(1﹣a+)÷,然后从﹣1,1,﹣2,2中取一个你认为合适的数作为a的值,再代入求值.【分析】先利用异分母分式加减法法则计算括号里,再算括号外,然后把a的值代入化简后的式子进行计算,即可解答.【解答】解:原式=[﹣(a﹣1)]•=•=•=•=﹣(a+1)=﹣a﹣1,∵a+1≠0,a+2≠0,a﹣2≠0,∴a≠﹣1,a≠﹣2,a≠2,∴当a=1时,原式=﹣1﹣1=﹣2.【点评】本题考查了分式的化简求值,准确熟练地进行计算是解题的关键.26.(6分)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)画出△AB1C1,使△AB1C1与△ABC关于直线MN成轴对称;画出△AB2C2,使△AB2C2与△ABC关于点A成中心对称.(2)在第(1)小题的基础上,联结B1B2,四边形AC1B1B2的面积为13.(直接写出答案)【分析】(1)根据轴对称的性质和中心对称的性质作图即可.(2)利用割补法求四边形的面积即可.【解答】解:(1)如图,△AB1C1和△AB2C2即为所求.(2)四边形AC1B1B2的面积为=13.故答案为:13.【点评】本题考查作图﹣轴对称变换、中心对称,熟练掌握轴对称的性质、中心对称的性质是解答本题的关键.27.(8分)金秋时节,七年级的同学组织去公园秋游,从景区A出发到相距15千米的景区B,公园有脚踏车和电瓶车两种交通工具可供租用,一部分学生骑脚踏车从A景区先出发,过了半小时后,其余学生乘电瓶车出发,结果他们同时到达B景区.假设他们全程都保持匀速前行,且已知乘电瓶车学生的速度是骑脚踏车的2倍,请问骑脚踏车学生的速度为每小时多少千米?【分析】设骑脚踏车学生的速度为每小时x千米,则乘电瓶车学生的速度为每小时2x千米,利用时间=路程÷速度,结合乘电瓶车学生比骑脚踏车学生少用半小时,可列出关于x的分式方程,解之经检验后,即可得出结论.【解答】解:设骑脚踏车学生的速度为每小时x千米,则乘电瓶车学生的速度为每小时2x千米,根据题意得:﹣=,解答:x=15,经检验,x=15是所列方程的解,且符合题意.答:骑脚踏车学生的速度为每小时15千米.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.28.(8分)阅读下列材料,并完成相应任务.教材第九章探索整式乘法法则时,我们用不同方法表示同一个图形的面积,直观地理解乘法法则.如图1,现有4张大小形状相同的直角三角形纸片,三边长分别是a、b、c,将它们拼成如图2的大正方形.(1)观察:图2中,大正方形的面积可以用(a+b)2表示,也可以用含a、b、c的代数式表示为4×ab+c2,那么可以得到等式:(a+b)2=4×ab+c2.整理后,得到a、b、c之间的数量关系:a2+b2=c2,这就是著名的“勾股定理”,它反映了直角三角形的三边关系,即直角三角形的两直角边a、b与斜边c所满足的关系式.(2)思考:爱动脑的小明通过图2得到启示,发现其它图形也能验证“勾股定理”,请你帮助小明画出该图形.(画出一种即可)(3)应用:如图3,在直角三角形ABC中,∠C=90°,AC=3,BC=4,那么AB=5,点D为射线BC上一点,将△ACD沿AD所在直线翻折,点C的对应点为点C1,如果点C1在射线BA上,那么CD=或6.(直接写出答案)【分析】(1)将正方形的面积表示成4个直角三角形的面积加中间小正方形的面积,即可用含a、b、c的代数式表示出大正方形的面积;根据同一个图形用不同方法表示出其面积,面积不变即可得到等式;(2)此题的方法很多,这里只举一种例子即可,比如把两个直角三角形和一个等腰直角三角形组成一个梯形;(3)分两种情况:点D在BC上和点D在BC延长线上,并分别画出图形,在Rt△BDC'中利用勾股定理列方程解出即可.【解答】解:(1)由图形可知:正方形的面积也可表示成4个直角三角形的面积加中间小正方形的面积,即4×ab+c2,∵用不同的方法表示同一个图形的面积,面积不变,∴(a+b)2=4×ab+c2,故答案为:4×ab+c2,(a+b)2=4×ab+c2;(2)答案不唯一,比如:(3)在直角三角形ABC中,∠C=90°,AC=3,BC=4,由勾股定理,得AB===5,点D为射线BC上一点,分两种情况:①点D在BC上时,如图,设CD=x,由翻折可知C'D=x,BD=BC﹣CD=4﹣x,BC'=AB﹣AC'=AB﹣AC=5﹣3=2,在Rt△BDC'中,由勾股定理,得BD2=BC'2+DC'2,即(4﹣x)2=22+x2,解得x=;②点D在BC的延长线上时,如图,设CD=y,由翻折可知C'D=y,BD=BC+CD=4+y,BC'=AB+AC'=AB+AC=5+3=8,在Rt△BDC'中,由勾股定理,得BD2=BC'2+DC'2,即(4+y)2=82+y2,解得y=6.故答案为:或6.【点评】本题考查勾股定理的证明,以及勾股定理的灵活运用,解答时涉及列代数式,等式变形,熟练运用数形结合思想,灵活运用勾股定理是解题的关键。
上海市七年级上册数学期末试卷(带答案)-百度文库

上海市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.在数3,-3,-2/3,0.5中,最小的数为()答案:B。
-3最小。
2.-2的倒数是()答案:C。
-1/2.3.A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是(。
)答案:D。
4x*(5/4) * (t+0.5) = 160,解方程得x=40.4.探索规律:右边是用棋子摆成的“H”字,第一个图形用了7个棋子,第二个图形用了12个棋子,按这样的规律摆下去,摆成第20个“H”字需要棋子()答案:A。
第n个“H”字需要的棋子数为n^2 + 1.5.已知点A、B、C在一条直线上,线段AB=5cm,BC=3cm,那么线段AC的长为()答案:C。
线段AC=AB+BC=5+3=8cm。
6.化简(2x-3y)-3(4x-2y)的结果为()答案:B。
-10x+3y。
7.方程3x-1=2的解是()答案:A。
x=1.8.如果方程组{2x+y=5,x-2y=3}的解为{x=2,y=1},那么“口”和“△”所表示的数分别是(。
)答案:C。
口表示2x+y=7,△表示x-2y=-3.9.观察一行数:-1,5,-7,17,-31,65,则按此规律排列的第10个数是()答案:B。
-511.10.如图,两块直角三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD=()答案:B。
120度。
11.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了()答案:C。
44分钟。
12.关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=b/a;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解。
2023-2024学年上海市崇明区七年级上学期期末数学试卷及参考答案

上海市崇明区2023-2024学年第一学期教学质量调研测试卷七年级数学(完卷时间90分钟,满分100分)一、选择题(本大题共4题,每小题3分,满分12分)1.下列运算结果正确的是……………………………………………………………………( ) A .3332x x x += B .236a a a ⋅= C .()22436a a = D .()223161a a a -=-2.下列各式因式分解正确的是………………………………………………………………( ) A .222()x a x a -=-B .24414(1)1a a a a ++=++C .24(4)x x x x -+=-+D .224(2)(2)x y x y x y -=-+ 3.下列说法正确的是…………………………………………………………………………( ) 二、填空题(本大题共14题,每小题2分,满分28分)① ② ③16题 第17如图,在正方形网格中,图②是由图19.计算:()()223223x y x x y +-⋅-.20.计算:()()3233242622x x x x x ⎡⎤--÷⎢⎥⎣⎦.26.春天正值放风筝的美好时节,为了丰富同学们的校园生活,某校七年级开展了“万物…筝‟春·逐梦远方”的风筝节比赛,要求同学们自制风筝积极参赛.如何设计与制作风筝呢?请同学们阅读“勤学小组”的项目实施过程,帮助他们解决项目实施过程中遇到的问题.项目主题:设计与制作风筝.项目实施:任务一:了解风筝“勤学小组”的同学查阅了有关风筝的历史,种类,结构,制作等方面的资料,同时还收集到如下图的风筝图案,请你帮助他们从中选出不是轴对称图形的风筝图案________.A. B. C. D.任务二:设计风筝设计风筝时主要进行风筝面与风筝骨架的设计.“勤学小组”的同学设计好了风筝面,接下来在正方形网格中进行风筝骨架的设计,请你帮助他们以直线l为对称轴画出风筝骨架的另一半.任务二用图任务三用图任务三:制作风筝传统风筝的技艺概括起来四个字:扎、糊、绘、放,简称“四艺”.“勤学小组”的同学准备用竹条扎制如图所示的风筝骨架,已知该图形是轴对称图形,AD所在的直线是该图形的对称轴,BD ,则竹条BC的长为________cm.30cm任务四:放飞风筝同学们拿着自己设计与制作的风筝进行了试飞,并根据试飞结果对风筝进行了修改完善.项目反思:同学们对项目学习的整个过程进行反思,并编写了“简易风筝制作说明书”.请你写出一条在项目实施的过程中用到的数学知识_______________________________________________________.27.列分式方程解应用题:刘峰和李明相约周末去野生动物园游玩,根据他们的谈话内容,求李明乘公交车、刘峰骑自行车每小时分别行多少千米.所示,若1COD AOB,则2(1)如图①所示,已知70∠=︒,15AOB∠=︒,CODAOC∠是∠(2)如图②,已知63∠绕点O按顺时针方向旋转一个角度∠=︒,将AOBAOB当旋转的角度α为______时,COB∠的内半角;∠是AOD参考答案一、选择题(本大题共4题,每小题3分,满分12分)1.A;2.D;3.C;4.A;二、填空题(本大题共14题,每小题2分,满分28分)73.610;。
上海市七年级上册数学期末试卷及答案-百度文库

上海市七年级上册数学期末试卷及答案-百度文库上海市七年级上册数学期末试卷及答案一、选择题1.将384 000用科学记数法表示为()。
A。
3.84×10^3 B。
3.84×10^4 C。
3.84×10^5 D。
3.84×10^62.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()。
A。
两点之间线段最短 B。
两点确定一条直线 C。
垂线段最短 D。
两点之间直线最短3.下列日常现象中,可以用“两点确定一条直线”来解释的现象是()。
A。
①④ B。
②③ C。
③ D。
④4.已知单项式2x^3y+2m与3xn+1y^3的和是单项式,则m-n的值是()。
5.下列各数中,绝对值最大的是()。
6.按如图所示图形中的虚线折叠可以围成一个棱柱的是()。
7.点M(5,3)在第()象限。
A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限8.如图,能判定直线a∥b的条件是(。
)。
A。
∠2+∠4=180° B。
∠3=∠4 C。
∠1+∠4=90° D。
∠1=∠49.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是()。
10.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为()。
A。
150×10^4 B。
15×10^5 C。
0.15×10^7 D。
1.5×10^611.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()。
A。
8 B。
12 C。
18 D。
2012.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN的长度为()cm。
二、填空题13.已知方程2x+a=ax+2的解为x=3,则a的值为__________。
14.若x=2是关于x的方程5x+a=3(x+3)的解,则a的值是_____。
2022-2023学年上海市闵行区七年级(下)期末数学试卷答案解析

2022-2023学年上海市闵行区七年级(下)期末数学试卷一、选择题:(本大题共6题,每题2分,满分12分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(2分)下列各数中,无理数是()A.B.C.πD.2.0232.(2分)下列说法正确的是()A.4的平方根是2B.1的立方根是±1C.﹣3没有五次方根D.0的任何次方根都是03.(2分)已知:如图,点A、D、B、E在同一直线上,且AC∥DF,AD=BE,增加下列条件不能推导出△ABC≌△DEF的是()A.BC=EF B.BC∥EF C.AC=DF D.∠C=∠F 4.(2分)在平面直角坐标系xOy中,点M与点N(3,4)关于原点对称,那么点M的坐标为()A.(3,4)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)5.(2分)下列说法错误的是()A.等腰三角形两腰上的高相等B.等腰三角形两腰上的中线相等C.等腰三角形两底角的平分线相等D.等腰三角形高、中线和角平分线重合6.(2分)已知:如图,∠AOB=45°,点P在∠AOB的内部,OP=4,点P1与点P关于OB对称,点P2与点P关于OA对称,那么以P1、O、P2三点为顶点的三角形面积是()A.4B.8C.16D.无法确定二、填空题:(本大题共12题,每题2分,满分24分)7.(2分)计算:2=.8.(2分)比较大小:﹣﹣2.(填“>”、“=”或“<”)9.(2分)点A和点B是数轴上的两点,点A表示的数为,点B表示的数为,那么A、B两点间的距离为.10.(2分)利用计算器计算:≈(保留两个有效数字).11.(2分)用分数指数幂表示:=.12.(2分)已知:如图,a∥b,三角尺的直角顶点在直线b上,∠1=49°,∠2的度数为.13.(2分)在平面直角坐标系xOy中,已知点P(﹣2,﹣3)向上移动4个单位后得到点Q,那么点Q的坐标是.14.(2分)已知等腰三角形的周长为10,一边长为2,那么它的腰长为.15.(2分)如图:将正方形纸片ABCD先对折,得折痕EF后展开,然后再将AB沿BG翻折,使点A落在折痕EF上的点P,联结PC得△PBC,那么△PBC的形状为.16.(2分)在平面直角坐标系xOy中,已知点A关于x轴的对称点落在第二象限,那么它关于y轴的对称点落在第象限.17.(2分)已知∠AOB与∠CDE的两边分别平行,∠AOB=34°,∠CDE的度数是.18.(2分)我们规定车辆在转弯时的转弯角是车辆原行驶路线与转弯后路线所成的角的外角.如图:一辆车在一段绕山公路行驶(沿箭头方向)时,在点B、C和D处的转弯角分别是α、β和θ,且AB∥DE,则α、β和θ之间的数量关系是.三、解答题(本大题共8题,满分64分)19.(6分)计算:.20.(6分)计算:.21.(6分)计算:=.22.(6分)已知:如图,平面直角坐标系xOy中的△ABC.(1)写出△ABC三个顶点的坐标;(2)画出△ABC关于y轴的对称图形.23.(6分)已知:如图,在△ABC中,已知BD平分∠ABC,DE∥BC,点M是BD的中点.请说明EM⊥BD.解:因为BD平分∠ABC(已知),所以∠CBD=(角平分线的意义).因为DE∥BC(已知),所以∠CBD=∠BDE().所以∠BDE=().所以EB=ED().因为点M是BD的中点(已知),所以EM⊥BD().24.(8分)已知:如图,点C、D在AB的异侧,AC=AD,BC=BD,请说明△ABC与△ABD全等的理由.25.(8分)已知在等腰三角形ABC中,AC=BC,∠C=2∠B.求∠B的度数.26.(8分)已知在等边△ABC中,点D是边AB上一点,点E是CB延长线上一点,DC=DE.(1)如图1,如果点D是AB的中点,说明BE=AD;(2)如图2,如果点D是AB上任意一点(不与点A、B重合),BE=AD还成立吗?请说明理由.27.(10分)如图:在平面直角坐标系xOy中,已知点P(4,4),点A是x轴的正半轴上一点,横坐标为a(4<a<8),联结AP,将线段AP绕点P顺时针旋转90°,点A的对应点为点B.(1)在图中描出点P和点B;(不写结论)(2)点B的坐标为(用含a的代数式表示),四边形OAPB的面积为;(3)联结OP.i)∠POA=°;ii)说明点A和点B到线段OP的距离之和等子线段OP的长.2022-2023学年上海市闵行区七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题2分,满分12分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.【分析】整数和分数统称为有理数,无理数即无限不循环小数;据此进行判断即可.【解答】解:是分数,=2是整数,2.023是有限小数,它们均为有理数,则A,B,D均不符合题意;π是无限不循环小数,也是无理数,则C符合题意;故选:C.【点评】本题考查无理数的识别,其相关定义是基础且重要知识点,必须熟练掌握.2.【分析】分别根据平方根、立方根和n次方根的定义进行判断即可.【解答】解:4的平方根是±2,故A不符合题意;1的立方根是1,故B不符合题意;﹣3有五次方根,故C不符合题意;0的任何次方根都是0,故D符合题意;故选:D.【点评】本题考查平方根、立方根和n次方根的定义,此为基础且重要知识点,必须熟练掌握.3.【分析】根据全等三角形的判定定理求解即可.【解答】解:∵AC∥DF,∴∠A=∠FDE,∵AD=BE,∴AD+DB=BE+DB,即AB=DE,A、∵AB=DE,BC=EF,∠A=∠FDE,不能判定△ABC≌△DEF,故此选项符合题意;B、∵BC∥EF,∴∠ABC=∠DEF,∵∠A=∠FDE,AB=DE,∠ABC=∠DEF,∴△ABC≌△DEF(ASA),故此选不项符合题意;C、∵AC=DF,∠A=∠FDE,AB=DE,∴△ABC≌△DEF(SAS),故此选项不符合题意;D、∵∠C=∠F,∠A=∠FDE,AB=DE,∴△ABC≌△DEF(AAS),故此选项不符合题意;故选:A.【点评】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.4.【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O 的对称点是P′(﹣x,﹣y),即可得出答案.【解答】解:∵点M与点N(3,4)关于原点对称,∴点M的坐标为(﹣3,﹣4).故选:B.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.5.【分析】根据等腰三角形的性质,逐一判断即可解答.【解答】解:A、等腰三角形两腰上的高相等,故A不符合题意;B、等腰三角形两腰上的中线相等,故B不符合题意;C、等腰三角形两底角的平分线相等,故C不符合题意;D、等腰三角形底边上的高、底边上的中线和顶角的角平分线互相重合,故D符合题意;故选:D.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.6.【分析】由对称的性质证∠P2OP1=90°,再根据三角形面积计算即可.【解答】解:如图,∵OP=4,点P1与点P关于OB对称,点P2与点P关于OA对称,∴OP1=OP2=OP=4,∠P2OA=∠AOP,∠POB=∠BOP1,∵∠AOB=45°,∴∠P2OA+∠AOP+∠POB+∠BOP1=90°,即∠P2OP1=90°,∴.故选:B.【点评】本题考查了轴对称的性质和三角形的面积,熟练掌握并运用轴对称的性质是解题的关键.二、填空题:(本大题共12题,每题2分,满分24分)7.【分析】根据二次根式的乘方法则计算即可.【解答】解:()2=3,故答案为:3.【点评】本题考查的是二次根式的乘方,掌握二次根式的乘方法则是解题的关键.8.【分析】求出2=<,再根据实数的大小比较法则比较即可.【解答】解:∵2=,∴﹣<﹣2,故答案为:<.【点评】本题考查了实数的大小比较法则的应用,注意:两个负数比较大小,其绝对值大的反而小.9.【分析】根据数轴上两点间的距离公式AB=|a﹣b|,代入A点和B点表示的数,求解即可.【解答】解:∵点A表示的数为,点B表示的数为,∴.故答案为:.【点评】此题主要是考查了数轴上两点间的距离,能够熟练运用公式是解答此题的关键.10.【分析】利用计算器分别计算出各数,再根据有理数的减法进行计算即可.【解答】解:原式≈2.449﹣1.414=1.035≈1.0.故答案为:1.0.【点评】本题考查的是计算器﹣数的开方,能熟练利用计算器计算数的开方是解答此题的关键.11.【分析】直接化根式为分数指数幂得答案.【解答】解:原式=.故答案为:.【点评】本题考查根式与分数指数幂的互化,是基础的计算题.12.【分析】由a∥b,得到∠3=∠1=49°,由平角定义得到∠2=180°﹣90°﹣49°=41°.【解答】解:∵a∥b,∴∠3=∠1=49°,∴∠2=180°﹣90°﹣49°=41°.故答案为:41°.【点评】本题考查平行线的性质,关键是由平行线的性质得到∠3=∠1=49°.13.【分析】根据向上平移横坐标不变,纵坐标加进行计算即可得解.【解答】解:∵将点P(﹣2,﹣3)向上移动4个单位后得到点Q,∴点Q的纵坐标为﹣3+4=1,∴点Q的坐标为(﹣2,1).故答案为:(﹣2,1).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.【分析】首先设等腰三角形的另一边为x,再分两种情况讨论:①当x为等腰三角形的腰长时,底边为2,根据等腰三角形的周长为10可求出x=4,然后根据“三角形任意两边之和大于第三边”进行检验即可得出答案;②当2为等腰三角形的腰长时,底边为x,根据等腰三角形的周长为10可求出x=4,然后根据“三角形任意两边之和大于第三边”进行检验即可得出答案.【解答】解:设等腰三角形的另一边为x,∵等腰三角形的周长为10,一边长为2,∴有以下两种情况:①当x为等腰三角形的腰长时,底边为2,依题意得:2x+2=10,解得:x=4,∵2+4>5,故符合三角形任意两边之和大于第三边,∴腰长为4,②当2为等腰三角形的腰长时,底边为x,依题意得:2+2+x=10,解得:x=6,∵2+2<6,故不符合三角形任意两边之和大于第三边,此种情况不存在.综上所述:该等腰三角形的腰长为4.故答案为:4.【点评】此题主要考查了等腰三角形的概念,三角形三边之间的关系,解答此题的关键是理解三角形任意两边之和大于第三边,进行分类讨论是解答此题的难点,也是易错点.15.【分析】由轴对称可知BA=BP=PC,再由正方形的边长相等可知BP=PC=BC,从而判断形状.【解答】解:等边三角形.证明如下,由题意知,EF垂直平分线段BC,∴PB=PC,∵△ABG和△PBG关于BG对称,∴PB=PC=BA,∵四边形ABCD是正方形,∴PB=PC=BA=BC,∴△PBC是等边三角形.故答案为:等边三角形.【点评】本题主要考查了轴对称的性质.本题的关键是将轴对称转化为线段相等.16.【分析】由已知可得点A位于第三象限,可求点A关于y轴的对称点的坐标,根据点的坐标特点可得答案.【解答】解:∵点A关于x轴的对称点落在第二象限,∴A点在第三象限,∴它关于y轴的对称点落在第四象限.故答案为:四.【点评】此题考查的是关于x轴、y轴对称的点的坐标,关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).17.【分析】由平行线的性质得到∠CDE=∠AOB或∠CDE+∠AOB=180°,即可得到答案.【解答】解:如图1,∵OA∥DC,OB∥DE,∴∠AOB=∠CEB,∠CDE=∠CEB,∴∠CDE=∠AOB=34°°.如图2,∵OA∥CD,DE∥OB,∴∠AOB=∠DNB,∠DNB+∠CDE=180°,∴∠AOB+∠CDE=180°,∵∠AOB=34°,∴∠CDE=146°,∴∠CDE=34°或146°.故答案为:34°或146°.【点评】本题考查平行线的性质,关键是由平行线的性质得到∠CDE=∠AOB或∠CDE+∠AOB=180°.18.【分析】根据题意画出图形,然后根据平行线的性质证得∠DFC=α,再根据三角形外角的性质解答即可.【解答】解:如图,∵AB∥DE,∴∠DFC=α,∵θ=∠DFC+β,∴θ=α+β.故答案为:θ=α+β.【点评】本题考查的是平行线的性质以及三角形外角的性质,解题的关键是熟练掌握平行线的性质并灵活运用;平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.三、解答题(本大题共8题,满分64分)19.【分析】利用二次根式的乘除计算得出答案.【解答】解:原式=(5﹣2)÷=3÷=3.【点评】本题考查了二次根式的混合运算,题目难度较小,明确二次根式乘除法的性质是解决问题的关键.20.【分析】利用完全平方公式,平方差公式进行计算,即可解答.【解答】解:=(4+2)×(4﹣2)=16﹣12=4.【点评】本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.21.【分析】先计算同底数幂的除法,再计算幂的乘方即可.【解答】解:原式=()6=3﹣1=.故答案为:.【点评】本题考查了分数指数幂,熟练掌握运算法则是关键.22.【分析】(1)根据图形直接写出点的坐标即可;(2)根据轴对称变换的性质找出对应点即可求解.【解答】解:(1)A(﹣1,2),B(﹣2,﹣2),C(1,﹣1);(2)如图所示,△DEF即为所求.【点评】本题考查了轴对称变换的性质,熟练掌握轴对称变换的性质是解题的关键.23.【分析】由角平分线的定义和平行线的性质得到∠BDE=∠ABD,由等腰三角形的判定得到EB=ED,根据等腰三角形的性质即可证得EM⊥BD.【解答】解:因为BD平分∠ABC(已知),所以∠CBD=∠ABD(角平分线的意义).所以∠CBD=∠BDE(两直线平行,内错角相等).所以∠BDE=∠ABD(等量代换).所以EB=ED(等角对等边).因为点M是BD的中点(已知),所以EM⊥BD(等腰三角形的性质).【点评】本题主要考查了平行线的性质,等腰三角形的性质和判定等知识,灵活运用相关知识是解决问题的关键.24.【分析】由SSS即可证明两三角形全等.【解答】证明:在△ABC和△ABD中,∴△ABC≌△ABD(SSS).【点评】本题考查了三角形全等的判定.本题的关键是发掘公共边相等这一条件.25.【分析】根据等腰三角形的性质得∠A=∠B,设∠A=∠B=x,则∠C=2∠B=2x,由三角形的内角和定理得到关于x的方程,即可求解.【解答】解:∵AC=BC,∴∠A=∠B,设∠A=∠B=x,则∠C=2∠B=2x,∴x+x+2x=180°,∴x=45°,∴∠B=45°.【点评】本题考查了等腰三角形的性质以及三角形的内角和定理等知识,熟练掌握等腰三角形的性质是解题的关键.26.【分析】(1)根据等边三角形的性质可得∠ABC=∠ACB=60°,AC=BC,再利用等腰三角形的三线合一性质可得∠CDB=90°,∠DCB=30°,然后利用等腰三角形的性质可得∠E=∠DCB=30°,再利用三角形的外角性质可得∠EDB=∠E=30°,从而可得BE=BD,最后利用等量代换即可解答;(2)过点D作DF∥CB,交AC于点F,根据等边三角形的性质可得∠ABC=∠ACB=∠A=60°,从而可得∠ABE=120°,再根据平行线的性质可得∠ADF=∠ABC=60°,∠AFD=∠ACB=60°,从而可得∠CFD=120°,然后根据等边三角形的判定可得△ADF是等边三角形,从而可得AD=DF,再根据等腰三角形的性质可得∠E=∠DCE,最后根据平行线的性质可得∠DCB=∠FDC,从而可得∠E=∠FDC,进而利用AAS证明△DBE≌△CFD,再利用全等三角形的性质可得BE=DF,从而利用等量代换即可解答.【解答】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AC=BC,∵点D是AB的中点,∴∠CDB=90°,∠DCB=∠ACB=30°,∵DC=DE,∴∠E=∠DCB=30°,∵∠EDB=∠ABC﹣∠E=30°,∴∠EDB=∠E=30°,∴BE=BD,∵BD=AD,∴BE=AD;(2)BE=AD还成立,理由:过点D作DF∥CB,交AC于点F,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,∴∠ABE=180°﹣∠ABC=120°,∵DF∥BC,∴∠ADF=∠ABC=60°,∠AFD=∠ACB=60°,∴∠CFD=180°﹣∠AFD=120°,∴∠ABE=∠CFD=120°,∵∠A=∠ADF=∠AFD=60°,∴△ADF是等边三角形,∴AD=DF,∵DE=DC,∴∠E=∠DCE,∵DF∥BC,∴∠DCB=∠FDC,∴∠E=∠FDC,∴△DBE≌△CFD(AAS),∴BE=DF,∴BE=AD.【点评】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.27.【分析】(1)根据题目中的要求画出图形;(2)根据图形的特征,通过旋转,构造全等三角形,观察图形中线段间的数量关系即得答案;(3)i)正方形的对角线平分每一组对角得的角pop等45度,正方形的对角线平分每一组对角得的角POA等于45°,ii)利用割补法来证明A点B点到OP的距离的和等于OP的长.见解答.【解答】解:(1)如下图:(2)如图:作AN⊥x轴,BM⊥y轴,∵P(4,4)、A(a,0),∴PM=4,PN=4,∵∠MPN=∠BPA=90°,∴∠MPB=∠NPA,又∵∠PMB=∠PNA=90°,∴△PBM≌△PAN(AAS),=S△PNA,AN=BM=a﹣4,∴S△PMB=S四边形ONPB+S△PNA=S△四边形ONPB+S△PMB=S正方形PMON=PM2=16,∴S四边形OAPB∵OM=4,∴OB=OM﹣BM=4﹣(a﹣4)=8﹣a,∴B(0,8﹣a),故答案为:B(0,8﹣a),16;(3)连接OP,作BE⊥OP,AF⊥OP,i)由(2)知四边形PMON为正方形,所以OP为正方形PMON的对角线,∴∠PON=∠POA=45°,故答案为:∠POA=45°;ii)由图知S四边形OAPB=S△PBO+S△P AO=16,∴,∵P(4,4),∴OP=,∴BE+AF=,∴点A和点B到线段OP的距离之和等于线段OP的长.【点评】本题考查坐标与图形的变化——旋转,四边形的面积等知识解题的,关键是理解题意学会利用参数构建方程解决问题属于中考中常考的题型。
2023-2024学年上海市长宁区七年级(下)期末数学试卷及答案解析

2023-2024学年上海市长宁区七年级(下)期末数学试卷一、选择题(本大题共6小题,每题2分,满分12分)1.(2分)下列各数中,是无理数的是()A.B.C.D.2.(2分)下列运算正确的是()A.B.C.D.3.(2分)下列图中,∠1、∠2是对顶角的是()A.B.C.D.4.(2分)已知a为实数,那么在平面直角坐标系中,下列各点中一定位于第四象限的点是()A.(4,﹣a2)B.(a+1,﹣4)C.(a2+1,﹣4)D.(a2,﹣4)5.(2分)已知等腰三角形的周长为16,其底边长为a,那么a的取值范围是()A.a>0B.0<a<8C.0<a<16D.a<166.(2分)如图,直线a⊥b,在平面直角坐标系中,x轴∥a,y轴∥b,已知点A(﹣1,4)、点B(2,﹣1),那么坐标原点是点()A.O1B.O2C.O3D.O4二、填空题(本大题共12小题,每空3分,满分36分)7.(3分)49的平方根是.8.(3分)比较大小:﹣π﹣3.14(选填“>”、“=”、“<”).9.(3分)计算:=.10.(3分)近似数﹣0.040有个有效数字.11.(3分)把表示成幂的形式是.12.(3分)在△ABC中,已知∠A:∠B:∠C=1:2:1,那么△ABC是三角形.13.(3分)如图,AB∥CD,BF交CD于点E,AE⊥BF,∠CEF=34°,则∠A的度数是.14.(3分)在梯形ABCD中,AD∥BC,联结AC、BD,已知梯形ABCD的面积为16,△BDC的面积为12,那么△ADC的面积.15.(3分)一个三角形的三边长为x,5,7,另一个与它全等的三角形的三边长为3,y,5,那么以x、y 为腰长和底边长的等腰三角形的周长等于.16.(3分)平面直角坐标系中有点P、Q(2,﹣3)、M(﹣1,2).如果PQ∥x轴,PM∥y轴,那么点P 关于原点O对称的点的坐标是.17.(3分)如图,E、B、C三点在一条直线上,AD∥BC,AD=BC,点F是AE的中点,如果BD=EC,那么∠BFD=度.18.(3分)如图,在长方形ABCD中,AB=12厘米,AD=16厘米,点E为AD中点,已知点P在线段AB上以2厘米/秒的速度由点A向点B运动,同时点Q在线段BC上由点C向点B运动,如果△AEP 与△BPQ恰好全等,那么点Q的运动速度是厘米/秒.三、简答题(本大题共4题,第19、20题每题6分,第21、22题每题7分,满分26分)19.(6分)计算:.20.(6分)利用幂的运算性质计算:.21.(7分)如图,已知AB∥CD,BE∥DF,∠B=30°,试求∠CDH的度数.22.(7分)如图,已知AC∥DE,AC=DE,BD=FC,说明△ABC≌△EFD.请填写说理过程或理由.解:因为AC∥DE(已知),所以∠ACB=∠EDF().因为BD=FC(已知),所以﹣BD=﹣FC(),即BC=FD.在△ABC与△EFD中,,所以△ABC≌△EFD().四、解答题(本大题共3题,第23题6分,第24题10分,第25题10分,满分26分)23.(6分)如图,直角坐标平面上有边长为1的正方形网格,已知点A的坐标为(3,4),点B的坐标为(4,1),点C的坐标为(﹣2,4).(1)平移线段AB得到线段CD,此时点A与点C重合,点B与点D重合,直接写出点D的坐标是;(2)顺次连接点A、B、D、C,那么四边形ABDC的面积是;(3)再次平移线段CD,使得其两个端点都落在坐标轴上,此时点C与点P重合,那么点P与坐标原点O的距离=.24.(10分)如图,△ABC和△AED都是等腰直角三角形,∠ACB=∠AED=90°,点D在AB上,点M(1)联结DM,延长DM与AC相交于点F,请根据要求画出图形,并说明AE=CF.(2)再联结BF,已知BF=12,求CM的长.25.(10分)在锐角三角形ABC中,点D、E分别在边AB、AC上,联结DE,将△ADE沿DE翻折后,点A落在BC边上的点P,当△BDP和△CEP都为等腰三角形时,我们把线段DE称为△ABC的完美翻折线,P为完美点.(1)如图1,在等边三角形ABC中,边BC的中点P是它的完美点,已知其完美翻折线DE的长为4,那么等边三角形ABC的周长=.(2)如图2,已知DE为△ABC的完美翻折线,P为完美点,当∠B、∠C恰为等腰三角形的顶角时,求此时∠A的度数.(3)如图3,已知DE为△ABC的完美翻折线,P为完美点,当∠B、∠EPC恰为等腰三角形的顶角时,请判断点P到边AB、AC的距离是否相等?并说明你的判断理由.2023-2024学年上海市长宁区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每题2分,满分12分)1.【分析】无理数即无限不循环小数,据此即可求得答案.【解答】解:是无限不循环小数,它是无理数;=4,﹣=﹣3是整数,是分数,它们不是无理数;故选:A.【点评】本题考查无理数的识别,熟练掌握其定义是解题的关键.2.【分析】根据算术平方根的定义依次计算即可求解.【解答】解:A、无意义,故错误,不符合题意;B、﹣=﹣5,故错误,不符合题意;C、=9,故错误,不符合题意;D、=3,故正确,符合题意.故选:D.【点评】本题考查了算术平方根,解题的关键是熟练运用算术平方根的定义,本题属于基础题型.3.【分析】根据对顶角的定义逐项判断即可.【解答】解:由一个公共端点,并且一个角的两边分别与另一个角的两边互为反向延长线,具有这种位置关系的两个角即为对顶角,则A,B,C中的图形不符合此定义;D中的图形符合此定义;故选:D.【点评】本题考查对顶角的识别,熟练掌握其定义是解题的关键.4.【分析】A.先判断a2的大小,从而判断﹣a2的大小,最后根据点的坐标判断其所在位置即可;B.先根据a的大小,从而判断a+1的大小,最后根据点的坐标判断其所在位置即可;C.先判断a2的大小,从而判断a2+1大小,后根据点的坐标判断其所在位置即可;D.先判断a2的大小,然后根据点的坐标判断其所在位置即可.【解答】解:A.∵a2≥0,∴﹣a2≤0,∴(4,﹣a2)在第四象限或x轴的正半轴上,故此选项不符合题意;B.∵a为实数,∴a+1>0或a+1≤0,∴(a+1,﹣4)可能在第四象限,也可能在第三象限,也可能在y轴的负半轴上,故此选项不符合题意;C.∵a2≥0,∴a2+1>0,∴(a2+1,﹣4)一定在第四象限.故此选项符合题意;D.a2≥0,∴(a2,﹣4)在第四象限或y轴的负半轴上,故此选项不符合题意,故选:C.【点评】本题主要考查了点的坐标,解题关键是熟练掌握各个象限和坐标轴上点的坐标特征.5.【分析】根据已知易得:腰长为,然后根据三角形的三边关系可得,从而进行计算即可解答.【解答】解:∵等腰三角形的周长为16,其底边长为a,∴腰长为,由题意得:,解得:0<a<8,故选:B.【点评】本题考查了等腰三角形的性质,解一元一次不等式组,三角形的三边关系,准确熟练地进行计算是解题的关键.6.【分析】根据题意和点A和点B的坐标,可以画出相应的坐标系,然后即可得哪个点为原点.【解答】解:由题意可得,平面直角坐标系如图所示,故坐标原点是点O2,故选:B.【点评】本题考查坐标与图形的性质,解答本题的关键是明确题意,画出相应的平面直角坐标系.二、填空题(本大题共12小题,每空3分,满分36分)7.【分析】根据平方根的定义解答.【解答】解:49的平方根是±7.故答案为:±7.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.【分析】先比较π和3.14的大小,再根据“两个负数,绝对值大的反而小”即可比较﹣π<﹣3.14的大小.【解答】解:因为π是无理数所以π>3.14,故﹣π<﹣3.14.故填空答案:<.【点评】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.9.【分析】根据分数指数幂的定义和运算性质计算即可.【解答】解:原式====8,故答案为:8.【点评】本题考查的是分数指数幂,熟练掌握分数指数幂的定义和运算性质是解题的关键.10.【分析】根据有效数字的定义即一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字,即可得出答案.【解答】解:近似数﹣0.040有4,0两个有效数字.故答案为:2.【点评】此题考查近似数和有效数字,注意有效数字即从左边不是0的数字起所有的数字.中间的0和末尾的0都是有效数字.11.【分析】根据分数指数幂的定义即可求出答案.【解答】解:=.故答案为:.【点评】本题考查分数指数幂的公式,=.12.【分析】根据三角形内角和、三个内角比计算出每个内角度数即可判断.【解答】解:设∠A=x,则∠B=2x,∠C=x,∵∠A+∠B+∠C=180°,∴x+2x+x=180°,∴x=45°,∴∠A=45°,∠B=90°,∠C=45°,所以△ABC是等腰直角三角形.故答案为:等腰直角.【点评】本题考查了三角形内角和定理,运用方程思想是解本题的关键.13.【分析】先根据垂直的定义得到∠AEF=90°,进而求出∠AEC=56°,再由两直线平行,内错角相等可得∠A=∠AEC=56°.【解答】解:∵AE⊥BF,∴∠AEF=90°,∵∠CEF=34°,∴∠AEC=∠AEF﹣∠CEF=56°,∵AB∥CD,∴∠A=∠AEC=56°,故答案为:56°.【点评】本题考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解题的关键.14.【分析】根据题意求出△BDA的面积,再根据三角形的面积公式求出△ADC的面积.【解答】解:∵梯形ABCD的面积为16,△BDC的面积为12,∴△BDA的面积为:16﹣12=4,∵AD∥BC,∴△ADC的面积=△BDA的面积=4,故答案为:4.【点评】本题考查的是梯形的性质、三角形的面积计算,掌握三角形的面积公式是解题的关键.15.【分析】根据全等三角形的对应边相等可得x=3,y=7,根据三角形的三边关系求出等腰三角形的三边,即可求得答案.【解答】解:∵三角形的三边长为x,5,7的三角形,与另一个三边长为3,y,5的三角形全等,∴x=3,y=7,当以x为腰时,∴三角形的三边为3,3,7,∵3+3<7,∴不能够组成三角形,当以y为腰时,∴三角形的三边为7,7,3,∵3+7>7,∴能组成三角形,∴三角形的周长=3+7+7=17,故答案为:17.【点评】此题考查全等三角形的性质、等腰三角形的性质,三角形的三边关系,熟记性质准确找出对应边得到x、y的值是解题的关键.16.【分析】根据关于原点对称的点的坐标:横纵坐标互为相反数解答即可.【解答】解:由题意得:Q(2,﹣3)、M(﹣1,2),PQ∥x轴,PM∥y轴,∴P(﹣1,﹣3),∴点P关于原点O对称的点的坐标是(1,3).故答案为:(1,3).【点评】本题主要考查了关于原点对称的点的坐标特点,熟练掌握关于原点对称的点的坐标:横纵坐标互为相反数是解题关键.17.【分析】延长BF、DA交于点G,可证明△AFG≌△EFB,得AG=EB,GF=BF,而AD=BC,可推导出GD=EC,因为BD=EC,所以GD=BD,即可根据等腰三角形的“三线合一”证明DF⊥BG,则∠BFD=90°,于是得到问题的答案.【解答】解:延长BF、DA交于点G,∵AD∥BC,∴∠G=∠EBF,∵点F是AE的中点,∴AF=EF,在△AFG和△EFB中,,∴AG=EB,GF=BF,∵AD=BC,∴AG+AD=EB+BC,∴GD=EC,∵BD=EC,∴GD=BD,∴DF⊥BG,∴∠BFD=90°,故答案为:90.【点评】此题重点考查平行线的性质、线段的中点的定义、全等三角形的判定与性质、等腰三角形的“三线合一”等知识,正确地作出辅助线是解题的关键.18.【分析】根据△AEP与△BPQ全等,得到AE=PB,可计算出运动时间,再根据BQ=AP,即可计算出点Q的运动速度.【解答】解:设运动时间为t s,Q的运动速度x cm/s,由题意得AP=2t cm,QC=xt cm,∴BQ=(16﹣xt)cm,PB=(12﹣2t)cm,∵△AEP与△BPQ全等,∴BQ=AP,AE=PB或BP=AP,AE=BQ,当BQ=AP,AE=PB时,∵AE=8cm,∴12﹣2t=8cm,∴t=2,∴AP=2t=4cm,∴16﹣xt=4,∴x=6;当BP=AP,AE=BQ时,,解方程组得t=3,x=,故点Q的运动速度是6cm/s或cm/s.故答案为:6或.【点评】本题考查矩形的性质和全等三角形的性质,根据三角形全等对应的边相等建立等式是解本题的关键.三、简答题(本大题共4题,第19、20题每题6分,第21、22题每题7分,满分26分)19.【分析】根据立方根、平方根以及零次幂、负整数指数幂的意义计算.【解答】解:原式=+2﹣1+=3.【点评】本题考查了二次根式的混合运算及立方根、平方根以及零次幂、负整数指数幂的运算,正确理解平方根与立方根的意义是解题的关键.20.【分析】直接利用分数指数幂的性质分别化简得出答案.【解答】解:原式====22=4.【点评】本题考查分数指数幂、实数的运算,熟练掌握运算法则是解题的关键.21.【分析】先根据BE∥DF,∠B=30°得出∠FMA=∠B=30°,再由AB∥CD即可得出∠CDM的度数,再由平角的定义即可得出结论.【解答】解:∵BE∥DF,∠B=30°,∴∠FMA=∠B=30°,∵AB∥CD,∴∠CDM=∠FMA=30°,∴∠CDH=180°﹣∠CDM=180°﹣30°=150°.【点评】本题考查的是平行线的性质,熟知两直线平行,同位角相等是解题的关键.22.【分析】根据平行线的性质及线段的和差求出∠ACB=∠EDF,BC=FD,利用SAS证明△ABC≌△EFD 即可.【解答】解:因为AC∥DE(已知),所以∠ACB=∠EDF(两直线平行,内错角相等),因为BD=FC(已知),所以BF﹣BD=BF﹣FC(等式性质),即BC=FD.在△ABC与△EFD中,,所以△ABC≌△EFD(SAS).故答案为:两直线平行,内错角相等;BF;BF;等式性质;SAS.【点评】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.四、解答题(本大题共3题,第23题6分,第24题10分,第25题10分,满分26分)23.【分析】(1)根据点A和点C的坐标得出平移的方向和距离,再结合点B的坐标即可解决问题.(2)画出示意图,结合所画图形即可解决问题.(3)根据题意,画出示意图,结合图形平移的性质即可解决问题.【解答】解:(1)因为点A坐标为(3,4),点C坐标为(﹣2,4),且平移后点A与点C重合,所以3﹣(﹣2)=5,4﹣4=0,又因为点B的坐标为(4,1),所以4﹣5=﹣1,1﹣0=1,则点D的坐标为(﹣1,1).故答案为:(﹣1,1).(2)如图所示,连接AD,则,同理可得,,∴.故答案为:15.(3)如图所示,当点C在x轴上,点D在y轴上时,点P的坐标为(﹣1,0),所以点P与坐标原点的距离为1.当点C在y轴上,点D在x轴上时,点P′的坐标为(0,3),所以点P′与坐标原点的距离为3.故答案为:1或3.【点评】本题主要考查了坐标与图形变化﹣平移及三角形的面积,熟知图形平移的性质及三角形的面积公式是解题的关键.24.【分析】(1)由△ABC和△AED都是等腰直角三角形,∠ACB=∠AED=90°,得AC=CB,AE=ED,则∠CAB=∠EDA=45°,所以AC∥DE,则∠FCM=∠DEM,而∠FMC=∠DME,CM=EM,即可证明△FCM≌△DEM,得CF=ED,则AE=CF;(2)由∠CAB=∠EAD=45°,得∠EAC=90°,则∠EAC=∠FCB,即可证明△EAC≌△FCB,得CE=BF=12,则CM=CE=6.【解答】解:(1)联结DM,延长DM与AC相交于点F,∵△ABC和△AED都是等腰直角三角形,∠ACB=∠AED=90°,∴AC=CB,AE=ED,∴∠CAB=∠CBA=45°,∠EDA=∠EAD=45°,∴∠CAB=∠EDA,∴AC∥DE,∴∠FCM=∠DEM,∵点M为CE的中点,∴CM=EM,在△FCM和△DEM中,,∴△FCM≌△DEM(AAS),∴CF=ED,∴AE=CF.(2)联结BF,∵∠CAB=∠EAD=45°,∴∠EAC=2×45°=90°,∴∠EAC=∠FCB,在△EAC和△FCB中,,∴△EAC≌△FCB(SAS),∴CE=BF=12,∴CM=EM=CE=×12=6,∴CM的长为6.【点评】此题重点考查等腰直角三角形的判定与性质、平行线的判定与性质、线段的中点的定义、全等三角形的判定与性质等知识,证明△FCM≌△DEM是解题的关键.25.【分析】(1)根据翻折的性质可得△ADE≌△PDE,根据等边三角形的性质可得∠B=∠C=60°,则△BDP和△PEC是等边三角形,最后证明△ADE是等边三角形即可求解;(2)连接AP,设∠DAP=α,∠EAP=β,根据三角形的外角定理和等腰三角形的性质可得∠BPD=∠BDP=2α,∠CPE=∠PEC=2β,最后根据∠BPD+∠DPE+∠CPE=180°即可求解;(3)连接AP,过P作PH⊥AB于点H,PN⊥AC于点N,设∠DAP=α,∠EAP=β,根据∠BPD+∠DPE+∠CPE=180°可得α=β,则AP为∠BAC的平分线,PH=PN,即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=AC,∵P为△ABC的完美点,∴△ADE≌△PDE,△BDP和△PEC是等腰三角形,∵∠B=∠C=60°,∴△BDP和△PEC是等边三角形,∴BD=DP,PE=CE,又∵AD=DP,AE=PE,∴,,∴AD=AE,∴△ADE是等边三角形,∵DE=4,∴AD=AE=4,∴AB=AC=BC=8,∴等边三角形ABC的周长=8+8+8=24,故答案为:24;(2)连接AP,如图2,设∠DAP=α,∠EAP=β,∵DE为△ABC的完美翻折线,∴△ADE≌△PDE,∴AD=DP,AE=PE,∴∠DPA=∠DAP=α,∠EPA=∠EAP=β,∴∠BDP=2α,∠PEC=2β,∵△BDP和△PEC是等腰三角形,且∠B,∠C都为顶角,∴BD=BP,CP=CE,∴∠BPD=∠BDP=2α,∠CPE=∠PEC=2β,∵∠BPD+∠DPE+∠CPE=180°,∴3α+3β=180°,∴α+β=60°,即∠BAC=60°;(3)点P到边AB、AC的距离相等;理由如下:连接AP,过P作PH⊥AB于点H,PN⊥AC于点N,如图3,∵DE为△ABC的完美翻折线,∴△ADE≌△PDE,△BDP和△PEC是等腰三角形,设∠DAP=α,∠EAP=β,∴∠DPA=∠DAP=α,∠EPA=∠EAP=β,∴∠BDP=2α,∠PEC=2β,∵∠B,∠EPC为顶角,∴BD=BP,PE=PC,∴∠BPD=∠BDP=2α,∠PEC=∠PCE=2β,∴∠EPC=180°﹣4β,∵∠BPD+∠DPE+∠EPC=180°,∴2α+α+β+180°﹣4β=180°,∴α=β,AP为∠BAC的平分线,∴PH=PN,.【点评】本题主要考查了三角形的折叠问题,等腰三角形的性质,等边三角形的性质,角平分线的性质定理,解题的关键是掌握相关内容,根据三角形的内角和定理和外角定理构造等量关系求解。
上海市七年级第一学期数学期末考试(共三套-含答案)

上海市2021学年七年级第一学期数学期末试卷2021.1.14〔测试时间90分钟, 总分值100 分〕一、填空题〔每题1分,共18分〕1、多项式9753+-x x 是________次________项式2、多项式13691124--+-x x x 的最高次项是___________,最高次项的系数是____________,常数项是______3、_______________•(24a -)=23441612a a a +-5.从整式π、2、3+a 、3-a 中,任选两个构造一个..分式 . 6.如果多项式62-+mx x 在整数范围内可以因式分解,那么m 可以取的值是______________. 7.假设m +n =8,mn =14,那么=+22n m ;8.当x 时,分式242--x x 有意义;9.如果分式522-+x x 的值为1,那么=x ; 10.计算:x x x x 444122-⋅+-=______________;11、假设关于x 的方程221=-x 与23-=+a x x 的解相等,那么a 的值为_____________12. 如图,将△AOC 绕点O 顺时针旋转90°得△BOD ,3=OA ,1=OC ,那么图中阴影局部的面积为 .13.:如图,在正方形ABCD 中,点E 在边BC 上,将△DCE 绕点D 按顺时针方向旋转,与△DAF 重合,那么旋转角等于_________度.14. 在线段、角、正三角形、长方形、正方形、等腰梯形和圆中,共ABC DEF〔第13题图〕有 个为旋转对称图形.15.如图,一块等腰直角的三角板ABC ,在水平桌面上绕点C 按顺时针方向旋 转到A ′B ′C ’的位置,使A 、C 、B ′三点共线,那么旋转角的大小是 度.16、正三角形是旋转对称图形,绕旋转中心至少旋转 度,可以和原图形重合。
17.长、宽分别为a 、b 的长方形硬纸片拼成一个“带孔〞正方形〔如右图所示〕,试利用面积的不同表示方法,写出一个等式______________________.18.为确保信息平安,信息需要加密传输,发送方由明文→明文〔解密〕.加密规那么为:明文a ,b ,c 对应的密文1-a ,12+b ,23-c .如果对方收到的密文为2,9,13,那么解密后得到的明文为 . 二、选择题(本大题共13小题,每题2分,总分值26分)1.以下运算中,正确的选项是 …………………………………—………………………〔 〕(A) 532)(a a =; (B) 532a a a =⋅; (C) 532a a a =+; (D) 236a a a =÷. 2.()()c b a c b a --+-的计算结果是………………………………………………〔 〕(A)222c b a -+; (B)222c b a +-;(C) 2222b c ac a -+-; (D) 2222c b ab a -+-. 3.如果22423y xy x M --=,2254y xy x N -+=,那么2215138y xy x --等于…〔 〕 〔A 〕N M -2 〔B 〕N M -4 〔C 〕N M 32- 〔D 〕N M 23- 4.如果分式yx x +-22的值为0,那么y 的值不能等于……………………………〔 〕 〔A 〕2 〔B 〕-2 〔C 〕4 〔D 〕-4 5.小马虎在下面的计算中只做对了一道题,他做对的题目是 ( 〕〔A 〕 222()a b a b +=+ 〔B 〕 432101102-⨯⨯⨯=〔C 〕 3252a a a += 〔D 〕 326(2)4a a -=6.甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调, 两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安 装x 台,根据题意,下面所列方程中正确的选项是 〔 〕(A)26066-=x x ; (B) x x 60266=-; (C)26066+=x x ; 〔D 〕xx 60266=+ 7.如果将分式yx y x +-22中的x 和y 都扩大到原来的3倍,那么分式的值〔 〕〔A 〕扩大到原来的3倍; 〔B 〕扩大到原来的9倍;〔C 〕缩小到原来的31; 〔D 〕不变.8、以下各式正确的选项是………………………………………………………………〔 〕 〔A 〕422x x x =+ 〔B 〕9336)2(x x-=-〔C 〕22)21x (41x x+=++ 〔D 〕)0(21222≠=-x x x9.在以下图右侧的四个三角形中,由ABC △既不能经过旋转也不能经过平 移得到的三角形是 〔 〕10.以下图形中,是中心对称图形的是〔 〕11.从甲到乙的图形变换,判断全正确的选项是〔A 〕〔1〕翻折,〔2〕旋转,〔3〕平移; 〔B 〕〔1〕翻折,〔2〕平移,〔3〕旋转; 〔C 〕〔1〕平移,〔2〕翻折,〔3〕旋转; 〔D 〕〔1〕平移,〔2〕旋转,〔3〕翻折。
沪教版(上海)数学七年级第二学期期末数学考试试卷及参考答案

沪教版(上海)数学七年级第二学期期末数学考试试卷及参考答案-CAL-FENGHAI.-(YICAI)-Company One1七年级数学第二学期期末考试题 号 一 二 三 四 总 分 得 分1. 下列实数中,有理数是( )(A )0.2525525552……(相邻的两个“2”之间每次增加一个“5”); (B )π3-; (C )8; (D )722. 2. 若三角形的两边长分别为3和6,则第三边的长不可能是( ) (A )3; (B ) 4; (C )5; (D )6. 3. 如图1,能推断AD//BC 的是( ) (A )43∠=∠; (B ); (C )345∠=∠+∠ ; (D )213∠+∠=∠.4.平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标相比 ( ) (A )横坐标不变,纵坐标加3 (B ) 纵坐标不变,横坐标加3 (C )横坐标不变,纵坐标乘以3 (D )纵坐标不变,横坐标乘以35. 若点()b a P ,到y 轴的距离为2,则( )(A )2=a ; (B )2±=a ; (C )2=b ; (D ) 2±=b .6.如图2,已知两个三角形全等,那么∠1的度数是( ) (A )72°;(B )60°; (C )58°; (D )50°.二、填空题(本大题共12题,每题2分,共24分) 7. 827-的立方根等于. 8. 比较大小:3-2-.9. 用幂的形式表示:37=.10.计算:51515÷⨯= .11. 位于浦东的“中国馆”总建筑面积约为1601000平方米,这个数字保留两个有效数字可写为平方米.12. 经过点P ()1,3-且垂直于y 轴的直线可表示为直线_________.24∠=∠EDCBA54321图1(图2)13.若三角形三个内角的比为2︰3︰4,则这个三角形是三角形(按角分类). 14. 如图3,已知△ABC ,ACB ∠的平分线CD 交AB 于点D ,//DE BC ,且8AC =,如果点E 是边AC 的中点,那么DE 的长为.15. 如图4,在△ABC 中,︒=∠70A ,如果ABC ∠与ACB ∠的平分线交于点D ,那么BDC ∠=度.16. 如图5,如果AB ∥CD ,∠1 = 30º,∠2 = 130º,那么∠BEC =度.17.如图6,将Rt △ABC 绕点O 顺时针旋转90º,得到Rt △A ´OB ´,已知点A 的坐标为(4,2),则点A ´的坐标为____________. 18.已知三角形ABC 是一个等腰三角形,其中两个内角度数之比为1:4,则这个等腰三角形顶角的度数为.三、简答题(本大题共6小题,每小题6分,共36分) 19. 计算:()49813310-++ 20. 计算:3+21.计算:))2222- 22.利用幂的性质进行计算:633326⨯÷23. 如图,在直角坐标平面内,点A 的坐标是(0,3),点B 的坐标是(3,2)-- (1)图中点C 关于x 轴对称的点D (2)如果将点B 沿着与x E CB AD CB AD图3 图421D C BA E 图5 图6平移3个单位得到点B ',那么A 、B ' 两点之间的距离是.(3)求四边形ABCD 的面积24. 说理填空:如图,点E 是DC 的中点,EC=EB ,∠CDA=120°,DF//BE ,且DF 平分∠CDA ,求证:△BEC 为等边三角形. 解: 因为DF 平分∠CDA (已知)所以∠FDC=21∠________. ( )因为∠CDA=120°(已知)所以∠FDC=______°. 因为DF//BE (已知)所以∠FDC=∠_________.(____________________________________)所以∠BEC = 60°,又因为EC=EB,(已知) 所以△BCE 为等边三角形.(_____________________________)三、解答题(25题8分、26题8分,27题12分,共28分)25. 如图,在ABC △中,点D 、E 分别在边AB 、AC 上,CD 与BE 交于点O ,且满足CE B D =,21∠=∠.试说明ABC △是等腰三角形的理由.FBC ED A26.如图,已知AB =CD ,点E 是AD 的中点,EB =EC. 试说明AD //BC 的理由.27. 如果一个三角形能用一条直线将其分割出两个等腰三角形,那么我们称这个三角形为“活三角形”,这条直线称为该“活三角形”的“生命线”. (1)小明在研究“活三角形”问题时(如图),他发现,在△ABC 中,若∠BAC = 3∠C 时,这个△ABC 一定是“活三角形”.点D 在BC 边上一点,联结AD ,他猜测:当∠DAC = ∠C 时,AD 就是这个三 角形的“生命线”,请你帮他说明AD 是△ABC 的“生命线”的理由.A B C D E(2)如小明研究结果可以总结为:有一个内角是另一个内角的3倍时, 该三角形是一个“活三角形”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012上海七年级第一学期期末考试数学练习试卷(1)
(考试时间90分钟,满分100分)
一、填空题(本大题15小题,每小题2分,满分30分) 1.计算:3
2)(a -= 。
2.计算:))((y x y x +-+= 。
3.用科学记数法表示:000102.0-= 。
4.计算:)3()1215(2
2
3
3
4
a b a b a -÷-= 。
5.分解因式:652--a a = 。
6.分解因式:331227a b a b -=_________________________.
7.计算:3
21-⎪
⎭
⎫
⎝⎛= 。
8.当x ___________时,分式2
-x x
有意义. 9.计算:
2222a b b
b a a -+
-= 。
10.方程
11
2
=-x 的解是 。
11.计算:x y ax y 4232
÷⎪⎭
⎫
⎝⎛-= 。
12.已知:如图,在正方形ABCD 中,点E 在边BC 上,将△DCE 绕点D 按顺时针方向
旋转,与△DAF 重合,那么旋转角等于_________度.
13.五角星是一个旋转对称图形,它至少旋转_______度后,能与自身重合. 14.在所学过的图形中,请你写出一个是旋转对称而不是中心对称的图形。
这个图形的名称是: 。
15.长、宽分别为a 、b 的长方形硬纸片拼成一个“带孔”正方形(如右图所示),
试利用面积的不同表示方法,写出一个等式______________________. 二、选择题(本大题5小题,每小题2分,满分10分) 16.下列等式中,从左到右的变形是因式分解的是( )
(A )253(5)3x x x x -+=-+;
(B )2(2)(5)310x x x x -+=+-;
A
B
C D E
F
(第12题图)
(C )22(23)4129x x x +=++; (D )243(1)(3)x x x x -+=--.
17.分式
x y 2,2
3y
x ,xy 41的最简公分母是( ) (A )2
6xy
(B )2
24xy
(C )2
12xy
(D )xy 12
18.下列图形中,是中心对称图形的是( )
19.从甲到乙的图形变换,判断全正确的是
(A )(1)翻折,(2)旋转,(3)平移;
(B )(1)翻折,(2)平移,(3)
旋转;
(C )(1)平移,(2)翻折,(3)旋转;
(D )(1)平移,(2)旋转,(3)翻折。
20.下列图案都是由字母“m ”经过变形、组合而成的.其中不是中心对称图形的是( )
(A ) (B ) (C ) (D )
三、简答题(本大题6题,每小题6分,满分36分)
21.计算:2(21)2(2)(6)x x x ---+. 22.因式分解:2
2
12y x x -+-
23.计算:)()(22b a a a a b b b a --÷--+ 24.解方程:x
x x x x 3
1552--=-+ 25.已知:0231
=+-a
)0(≠a ,把
2
2
121-÷
--a a a 化简后求值。
26.如图,正六边形ABCDEF 是由边长为2厘米的六个等
边三角形拼成,那么图中
(1) 三角形AOB 沿着___________方向平移_________厘米能与三角形FEO 重
合;
(2) 三角形AOB 绕着点______顺时针旋转________度后能与三角形EOF 重合; (3) 三角形AOB 沿着BE 所在直线翻折后能与________重合; (4) 写一对中心对称的三角形:_________________________.
正三角形
等腰梯形
正五边形
正六边形
(A )
(C ) (D )
(B ) (1)
甲 乙 甲
乙
乙
甲 (2)
(3)
E
四 作图题(本题共2题,每小题8分,满分16分) 27.请把图中的中心对称图形补画完整。
28.已知四边形ABCD ,如果点D 、C 关
于直线MN 对称, (1) 画出直线MN ;
(2) 画出四边形ABCD 关于直线MN 的对称图形. 五、解答题(本题满分8分)
29.如图,已知Rt △ABC 中,∠C=90°,BC=4,AC=4,现将△ABC 沿CB 方向平移到△A ’B ’C ’的位
置,若平移距离为3。
(1)求△ABC 与△A ’B ’C ’的重叠部分的面积;
(2)若平移距离为x (0≤x ≤4),求△ABC 与△A ’B ’C ’的重叠部分的面积y ,则y 与x
有怎样关系式。
附加题:
28.如图,已知等腰直角三角形ACB 的边AC=BC=a ,等腰直角三角形BED 的边BE=DE=b ,且
b a ,点C 、B 、E 放置在一条直线上,联结AD .
(1)求三角形ABD 的面积.
(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积. (3)(2)中的三角形APD 与三角形ABD 面积那个较大?大多少? (结果都可用a 、b 代数式表示,并化简.)
D
B
a a
b
b A
C
2012上海七年级第一学期期末考试数学练习试卷(1)
参考答案
一、1.6
a -; 2.2
2
x y -; 3.4
10
02.1-⨯-; 4.2
3245ab b a +-;
5.)1)(6(+-a a ; 6.)32)(32(3b a b a ab -+; 7. 8;
8.2≠x ; 9.
b
a +1
; 10.3=x ; 11.xy a 21;
12.︒90; 13.︒72; 14.等边三角形(或五角星等); 15.ab b a b a 4)()(2
2
=--+; 【注:其合理变形均正确。
】 二、16.D ; 17.C ; 18.D ; 19.A ; 20. B. 三、21. 解:原式=)152(21442
2
---+-x x x x …(3分)
= 304214422++-+-x x x x …(1分) =3122
+x . ……(2分)
22. 解:原式=2
2
)12(y x x -+-…(1分)=2
2
)1(y x -- …(2分)
=)1)(1(y x y x --+-. ……(3分)
23. 解:原式=
)(2b
a ab
b a a --÷-…(2分+2分) =ab b
a b a a -⋅
--2 …(1分) = b
a -. …(1分) 24.解:方程化为:)1(355--=+x x x …(2分)
325+=+x x …(1分) 2-=-x …(1分)
2=x .…………………(1分)
经检验,是原方程的根。
…………………(1分)
25.解:原式=
)2(2121-⋅--a a a …(1分)=)2(2--a a a …(1分)=a
1
. …(1分)
由已知,32
1
-=-a
…(2分)
所以,原式=3
2
1-=a . …(1分)
26.(1)BO (或AF 、BE 、OE ); 2; (2)O ; 120; (3)△COB ;
(4)略。
【注:每空1分。
】 四、27.略 。
【补画正确即可。
】
28.(1) 略(2分) (2) 略(4分)
五、29.解:(1)由题意,CC ’=3, 所以 C ’B=4-3=1 ……(1分+1分) 从而重叠部分面积为
2
1
1121=⨯⨯ ……(1分) (2)由题意,CC ’=x , 所以 C ’B=4-x ……(1分)
从而重叠部分面积为
22
1
48)4)(4(21x x x x y +-=--=
……(2分) 30.解:(1)△ABD 的面积为
的面积△的面积△的面积梯形BED ACB ACED -- ……(1分)
=DE BE CB AC CE DE AC ⋅-⋅-⋅+2121)(21
=2222121)(21b a b a --+ = ab ……(2分) (2)△APD 的面积为
的面积△的面积△的面积梯形PED ACP ACED --
=DE PE CP AC CE DE AC ⋅-⋅-⋅+2
121)(21 =)(2121)(2121)(212b a b b a a b a +⋅-+⋅-+……(2分) = 2)(4
1b a + ……(1分) 【注:展开也对。
】 (3)△APD 的面积比△ABD 的面积大, ……(1分) 2222)(41)2(41)(41b a b ab a ab b a -=+-=-+ ……(1分)
【注:结果展开也对。
】
第一课件网系列资料。