人教版初一数学下册平行的判定一

合集下载

七年级数学下《平行线及其判定》笔记

七年级数学下《平行线及其判定》笔记

七年级数学下《平行线及其判定》笔记
一、平行线的定义
平行线是指在同一平面内,两条直线没有交点,或者说两条直线之间的距离处处相等。

二、平行线的判定定理
1.同位角相等:当两条直线被第三条直线所截,如果同位角相等,则这两条直线
平行。

2.内错角相等:当两条直线被第三条直线所截,如果内错角相等,则这两条直线
平行。

3.同旁内角互补:当两条直线被第三条直线所截,如果同旁内角互补(即角度和
为180°),则这两条直线平行。

三、应用实例
1.交通标志:在公路上,车道线通常都是平行的,这些线可以帮助驾驶员判断车
辆是否在正确的车道上行驶。

2.建筑设计:在建筑设计中,为了确保建筑物的稳定性,通常会使用平行线来构
建平行的梁和柱子。

3.机械制造:在机械制造中,为了确保机器的精确度,常常需要使用平行线来检
测和调整机器的部件。

四、注意事项
1.平行线必须在同一平面内定义。

2.平行线的判定定理必须同时满足,不能只满足其中一条。

3.在实际应用中,要结合具体情境判断两条线是否平行。

五、练习与巩固
1.判断题:给出一些线段的图片,判断它们是否平行。

2.选择题:给出一些关于平行线的描述,选择正确的判定定理。

3.应用题:结合实际问题,例如计算平行线的距离、判断两条线是否平行等。

人教版七年级数学课件《平行线的判定》

人教版七年级数学课件《平行线的判定》
A.①②
B.①③
C.①④
D.③④
2.如图,下列条件中,能判断直线.l1//l2的是( B )
A.∠2=∠3
C.∠4+∠5=180°
B.∠1=∠3
D.∠2=∠4
达标检测
人教版数学七年级下册
3.如图,下列条件中,能判断直线l1//l2的是( C )
A.∠1=∠2
C.∠1+∠3=180°
B.∠1=∠5
D.∠3=∠5
得∠1=∠2(等量代换),
内错角相等,两直线平行
所以_________(________________________).
AE∥GF
针对练习
人教版数学七年级下册
已知如图所示,∠ = ∠,点、、在同一条直线上,
∠ = ∠ + ∠,且平分∠,试说明 ∥ 的理由.
复习回顾
人教版数学七年级下册
如何用直尺和三角板过直线AB外一点P做AB的平行线CD.
知识精讲
人教版数学七年级下册
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
起着什么样的作用?
知识精讲
人教版数学七年级下册
可以看出,画直线AB的平行线CD,实际上就是过点P画与∠2
在用直尺和三角尺画平行线的过程中,直尺和三角尺分别
4.如图,下列结论中正确的是( C)
A.若∠1=∠4,则m//c
B.若∠1=∠2,则a//b
C.若∠1+∠3=180,则n//c
D.若∠2+∠3=180°,则m//n
达标检测
人教版数学七年级下册
5.如图(1),光线AB,CD被一个平面镜反射,此时

CD
∠1=∠3,∠2=∠4,则AB // _____,BE_____DF.

人教版数学七年级下册5.3.1 第1课时 平行线的性质 -课件

人教版数学七年级下册5.3.1 第1课时 平行线的性质 -课件

4
b
2
∴ 2+ 4=180°
线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补.
应用格式:
∵a∥b(已知)
∴∠2+∠4=180 °
a
1
4
b
2
(两直线平行,内错角相等)
c
典例精析
例 如图,是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,梯形的另外两个角分别是多少度?
解:因为梯形上、下底互相平行,所以
∠A与∠D互补, ∠B与∠C互补. D
C
于是∠D=180 °-∠A=180°-
100°=80°
A
B
∠所C以=梯18形0的°另-∠外B两=1个80角°分-1别15是°8=06°5°、 65°.
四、平行线的判定与性质 讨论:平行线三个性质的条件是什么?结论是
什么?它与判定有什么区别?(分组讨论)
如图,已知a//b,那么2与3相等吗?为什么?
解 ∵ a∥b(已知),
∴∠1=∠2(两直线平行,同位角相等).
a
1
又∵ ∠1=∠3(对顶角相等),
3
b
2
∴ ∠2=∠3(等量代换).
c
总结归纳
性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
应用格式:
∵a∥b(已知)
解: ∠A =∠D.理由:
∵ AB∥DE( 已知 )
D
∴∠A=_∠__C_P_E__ ( 两直线平行,同位角相等)
A
∵AC∥DF( 已知 )
F C
P E
图1 B
∴∠D=_∠__C_P_E_ ( 两直线平行,同位角相等 )

【人教版数学七年级下册】《5.2.2 平行线的判定(第1课时)》教学设计教学反思

【人教版数学七年级下册】《5.2.2 平行线的判定(第1课时)》教学设计教学反思

5.2.2 平行线的判定第1课时一、教学目标【知识与技能】1.通过用直尺和三角尺画平行线的方法理解平行线的判定方法1。

2.能用平行线的判定方法1来推理判定方法2和判定方法3。

3.能够根据平行线的判定方法进行简单的推理。

【过程与方法】经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.【情感态度与价值观】经历探究直线平行的判定方法的过程,掌握直线平行的判定方法,领悟归纳和转化的数学思想方法.二、课型新授课三、课时第1课时共2课时四、教学重难点【教学重点】探索并掌握直线平行的判定方法.【教学难点】直线平行的判定方法的应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)图1, 图2中的直线平行吗?你是怎么判断的?相交在同一平面内平行同一平面内,不相交的两直线叫做平行线.判定两条直线平行的方法有两种:定义:在同一平面内,不相交的两条直线叫平行线.平行公理的推论(平行线的传递性):如果两条直线平行于同一条直线,那么两条直线平行.同学们想一想:除应用以上两种方法以外,是否还有其它方法呢?(二)探索新知1.出示课件5-7,探究同位角相等两直线平行教师问:我们已经学习过用三角尺和直尺画平行线的方法.如何画平行线呢?学生答:一、放;二、靠;三、推;四、画.教师问:画图过程中,你发现什么角始终保持相等?学生答:同位角始终保持相等.教师问:直线a,b位置关系如何?学生答:直线a,b位置关系是平行.教师问:将其最初和最终的两种特殊位置抽象成几何图形,你能画出来吗?学生答:如下图所示:教师问:由上面的操作过程,你能发现判定两直线平行的方法吗?师生一起解答:同位角相等,两直线平行.总结点拨:(出示课件8)判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法1吗?学生答:∵∠1=∠2,∴l1∥l2.教师总结如下:几何语言:∵∠1=∠2 (已知),∴l1∥l2 (同位角相等,两直线平行).考点1:利用同位角相等判定两直线平行下图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程.(出示课件9)师生共同讨论解答如下:解:∵∠1=∠7(已知),∠1=∠3 (对顶角相等)∴∠7=∠3(等量代换)∴AB∥CD (同位角相等,两直线平行 .)总结点拨:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.出示课件10,学生自主练习后口答,教师订正.2.出示课件11,探究内错角相等两直线平行教师问:两条直线被第三条直线所截,同时得到同位角、内错角和同旁内角.由同位角相等可以判定两直线平行,那么,能否利用内错角来判定两直线平行呢?学生答:猜想可以利用内错角来判断两直线平行.教师问:如图,由∠3=∠2,可推出a//b吗?如何推出?师生一起解答:解:∵∠2=∠3(已知),∠3=∠1(对顶角相等),∴∠1=∠2.(等量代换)∴ a//b(同位角相等,两直线平行).总结点拨:(出示课件12)判定方法2:两条直线被第三条直线所截 ,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法2吗?学生答:几何语言:∵∠3=∠2(已知),∴a∥b(内错角相等,两直线平行).考点2:利用内错角相等判定两直线平行完成下面证明:如图所示,CB平分∠ACD,∠1=∠3. 求证:AB∥CD. (出示课件13)学生独立思考后,师生共同解答.证明:∵CB平分∠ACD,∴∠1=∠2(角平分线的定义).∵∠1=∠3,∴∠2=∠3.∴AB∥CD(内错角相等,两直线平行).总结点拨:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.出示课件14,学生自主练习后口答,教师订正.3.出示课件15,利用同旁内角互补判定两直线平行教师问:如图,如果∠1+∠2=180°,你能判定a//b吗?学生答:能判定a//b.教师问:请写出解答过程.学生答:证明:∵∠1+∠2=180°(已知),∠1+∠3=180°(邻补角的性质),∴∠2=∠3(同角的补角相等) .∴a//b(同位角相等,两直线平行) .总结点拨:(出示课件16)判定方法3:两条直线被第三条直线所截 ,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法2吗?学生答:几何语言:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).考点3:利用同旁内角互补判定两直线平行如图:直线AB、CD都和AE相交,且∠1+∠A=180º .求证:AB//CD .(出示课件17)学生独立思考后,师生共同解答.证明:∵∠1+∠A=180º(已知),∠1=∠2 (对顶角相等),∴∠2+∠A=180º(等量代换)∴AB∥CD.(同旁内角互补,两直线平行).师生共同归纳:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)相等,从而可以应用“同旁内角互补,两直线平行”.出示课件18,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧.(三)课堂练习(出示课件19-26)练习课件第19-26页题目,约用时20分钟.(四)课堂小结(出示课件27) ),),(五)课前预习预习下节课(5.2.2第2课时)的相关内容.知道判定平行线的方法,会灵活应用平行线的判定方法解决问题.七、课后作业1、教材第14页练习第1,2题.2、七彩课堂第18-19页第5、6、9题.八、板书设计:1.知识梳理平行线的判定⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补两直线平行2.考点讲解考点1 考点2 考点3教学反思:成功之处:1.本节课从学生所熟悉的知识----平行线的画法入手,引入平行线的判定方法1,在此基础上提出:两条直线被第三条直线所截形成的内错角相等时,是否两直线也平行?同旁内角之间又分别有怎样的关系时两直线平行呢?由此激发学生求知的欲望,也给学生提供了探索所学内容的平台,鼓励学生大胆猜想、积极思考,培养学生主动参与的热情。

新人教版七年级数学下册平行线及判定

新人教版七年级数学下册平行线及判定

③过一点可以而且只可以画一条直线与已知直线
平行。
(╳)
D 2、用符号“∥”表示图中平行四
C
边形的两组对边分别平行。
AB∥ CD,AD∥ BC。 A
B
巩固练习
下列说法正确的是( D )
A、在同一平面内,两条直线的位置关系有相交, 垂直,平行三种。
B、在同一平面内,不垂直的两直线必平行。 C、在同一平面内,不平行的两直线必垂直。 D、在同一平面内,不相交的两直线一定不垂直。
5.2 平行线及其判定 5.2.2 平行线的判定
平行线的画法
一放 二靠 三移 四画
从画图过程,三角板起到什么作用?
要判断直线a //b,你有办法了吗?
平行线的判定定理1: 两条直线被第三条直线所截, 如果同位角相等,那么两直线 平行。简单地说: 同位角相等,两直线平行。 如图: ∵ ∠1=∠2(已知)
C
相交的两
Hale Waihona Puke 条直线。 abB
直线AB平行
AB D
CD 于直线CD
a b 直线a平行
于直线b
平面内的两条直线除平行 外还有什么位置关系?
同一平面内的两条不重 合的直线的位置关系只有两种:
相交或平行
课内练习
1、判断下列说法是否正确,并说明理由。
①不相交的两条直线是平行线。
(╳)
②在同一平面内,两条不相交的线段是平行线。(╳)
E
A
B
4
C
7
D
F
两条直线被第三条直线所截, 如果同旁内角互补,那么这两条直线平行.
简单地说:同旁内角互补,两直线平行.
判定两条直线平行的方法
文字叙述
符号语言

人教版七年级数学下册《平行线的判定》教案

人教版七年级数学下册《平行线的判定》教案

七年级下册数学教案:平行线的判定(第一课时)【教学目标】知识与技能目标:了解推理、证明的格式,掌握平行线判定方法过程与方法目标:能运用所学过的平行线的判定方法进行简单的推理论证.情感与态度目标:通过教学演示,即“运动—变化”的数学思想方法的运用,培养学生的“观察—分析”和“归纳—总结”的能力.【任务分析】1、学习结果:本课属于智慧技能的规则学习。

2、学习条件:( 1)必要性条件:规则学习的先决条件是概念,此处要学习的四个概念是“同位角” ,“内错角”,“同旁内角”和“平行线” ,四个都属于定义性概念。

概念的先决条件是辨别。

(因而决定教学的顺序为辨别—概念学习—规则学习)。

( 2)支持性条件:两直线平行可用推平行线法来检测,同位角相等,内错角相等和同旁内角互补都可以用量角器测得。

学生学习用具:两把尺子或三角板。

本节分两个课时讲,第一课时介绍前两个判定方法,课时二再介绍判定方法三。

3、学生的起点能力:学生已经掌握“同位角” ,“内错角”,“同旁内角”和“平行线”的概念。

学生会具有辨别能力,会使用几何工具辅助学习,具备一般的推理能力。

起点能力使能目标一使能目标二终点能力学生已经掌握“同位角”,“内错角”,“同旁内角”和作图在平行线和结合图形学生自知道两角关系运用判定“平行线”的概念非平行线上找到己归纳出平行线方法来证明,并使用正学生会使用几何这几对角判定方法确的证明格式工具辅助学习,具发现这些角的关备一般的推理能系力。

4、教学重点:对判定方法的概括与推导5、教学难点:方法的归纳与综合运用【教学内容】教学教师活动过程1、?本堂课分五块讲解习得1、回顾三线八角阶段2、平行线概念3、平行线判定方法4、本课重难点5、总结与练习(一)创设情景,激发求知欲望1、回顾上节课所学习的“三线八角”a314a12358a267问那些角是“同位角” ,“内错角”,“同旁内角”让学生在自己纸上也画一下,或者用手势比一下。

学生活动看 PPT个别举手回答大部分学生跟着老师用手势表示各种角学生回答平行线的概念,一部分学生会把在同一2、平行线概念:在同一平面内,不相交的两条直线叫做平行线。

人教版数学七年级下册 5.2.2 平行线的判定 课件

人教版数学七年级下册 5.2.2 平行线的判定 课件

为什么?
解:直线与平行. 理由如下:
∵∠1 + ∠ = 180°, ∠1 + ∠ = 180°,
∴∠ = ∠.
∵∠ = ∠,
∴∠ = ∠.
∴∥(同位角相等,两直线平行).
【例题2】如图,∠ + ∠ = 180°,∠ = ∠,试说明∥.



∠ + ∠ = ∠
∠ = ∠ − ∠
∠ = ∠
∠ = ∠ − ∠ = ∠
【例题3】如图,∠ + ∠ = ∠,试说明∥.
解: 如图,作∠ = ∠.
∵∠ = ∠
∴∥.
又∵∠ + ∠ = ∠,
解: ∵∠1=∠2, ∴AB∥CD.
∵∠3+∠4=180°,∴CD∥EF,
∴AB∥EF.
3.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你
∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°
所添加的条件是___________________________________________(不允许添加
任何辅助线).
4.如图,下列条件不能判断直线a∥b的是( D
).
A. ∠1=∠4 B. ∠3=∠5 C. ∠2+∠5=180° D. ∠2+∠4=180°
平行线的判定方法
1. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
2. 同位角相等,两直线平行.
3. 内错角相等,两直线平行.
4. 同旁内角互补,两直线平行.
∠1 = ∠2

判定方法2
线平行.
两条直线被第三条直线所截,如果内错角相等,那么这两条直

平行线的判定 课件2022-2023学年 人教版七年级数学下册

平行线的判定 课件2022-2023学年 人教版七年级数学下册
难点:正确使用推理的基本格式.
复习回顾
1.平行线的定义
在同一平面内,不相交的两条直线叫做平行线.
2.画平行线的方法:
已知点P是直线a外一点,画出经过点P且直线a平行的直线的作图过程.
P

一落
二靠
三移
四画
a
根据平行线的定义,如果平面内的两条直线不相交,就可以判断这
两条直线平行.
但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直
课堂练习
3.如图,下列判断正确的是( D ).
A.若∠1+∠2=180°,则 //
B.若∠2=∠3,则 //
C.若∠1+∠2+∠3=180°,则 //
D.若∠2+∠4=180°,则 //
课堂练习
4. 在一次数学活动课上,老师让同学们用两个大小、形状都相同的
三角板画平行线AB , CD , 贝贝、晶晶、欢欢三位同学的做法如
行?根据是什么?
新知讲解
利用同旁内角互补判定两条直线平行
平行线的判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条
直线平行.
简单可以说成:同旁内角互补,两条直线平行
几何语言:
∵∠1+∠2=180° (已知)
∴a//b (同旁内角互补,两直线平行)
c
3
b
1
2
a
练一练
如图,BE 平分 ∠ABC,CE 平分 ∠DCB,∠1+ ∠2=90°,能
AB//CE . 请完成下列推理过程:
证明:∵CD 平分∠ECF
∴∠ECD= ∠FCD (
角平分线的定义
∵∠ACB=∠FCD( 对顶角相等
∴∠ECD=∠ACB( 等量代换
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版《义务教育课程标准实验教科书·数学》(七年级下册第五章5.2节)一、内容和内容解析本节课内容是人教版≤义务教育课程标准实验教科书·数学≥七年级下册“5.2.2平行线的判定”(第1课时).教科书要求学生能初步应用本章所学的知识(如平行线的判定)解释生活中的现象及解决简单的实际问题,体会研究几何图形的意义;整套教科书是按照“说点儿理”“说理”“推理”“用符号表示推理”等不同层次,分阶段逐步加深地安排的.本章的重点是垂线的概念与平行线的判定和性质,因为这些知识是空间与图形领域的基础知识,在以后的学习中经常要用到,这部分内容掌握不好,将会影响后续内容的学习.1.关于平行线的判定方法1、判定方法2、判定方法3(1)学生们已经学过了平行线的概念,但是,平行线是用“不相交”这种否定方式来定义的,这种否定的方式包含了对空间的想象.因为在实际生活中只有平行线段的形象,学生理解平行线是无限延伸着的,无论怎样延伸也不会相交是学生理解的一个难点;如果有第三条直线存在的情况下,学生已经掌握了平行公理(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)判断两条直线平行;对于画平行线,用直尺和三角板辅助画平行线的方法实际上就是画相等的同位角,因为直尺和三角板靠着的角度是不变的.让学生多做几遍,找到这个过程中的不变量,这样学生就欣然地接受这样画出的两条直线是互相平行的.这样学生就很容易接受平行线的判定方法1.在进行简单说理训练过程中引出平行线的判定方法2和平行线的判定方法3.(2)结合两条直线被第三条直线所截的基本图形引导学生用几何语言准确表述平行线的判定方法1、判定方法2、判定方法3,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的,这是学生本节课学习的难点,也是学生进行几何推理的基础.2.关于简单说理训练整套教科书是按照“说点儿理”“说理”“推理”“用符号表示推理”等不同层次、分阶段逐步加深地安排的.通过本节课的学习,学会用几何语言准确表述平行线的判定方法1、2、3,逐步向推理和用符号表示推理过渡,将实验几何与论证几何相结合,进一步培养学生几何推理的能力,为后面学生进行几何证明做好准备.教学重点:探索平行线的判定方法1、判定方法2、判定方法3.二、目标和目标解析(一)教学目标1.会识别同位角、内错角、同旁内角,探索平行线的判定方法1、2、3;2.会用符号语言表示平行线的判定方法1、判定方法2、判定方法3, 培养学生转化的数学思想和运用几何语言表述问题的能力.3.在观察、操作、想象、说理、交流的过程中,发展空间观念和和抽象概括能力,初步形成积极参与数学活动、与他人合作交流的意识,激发学生学习几何图形的兴趣.4.能初步应用本节所学的知识解释生活中的现象及解决简单的实际问题,体会研究几何图形的意义.(二)目标解析1.使学生能准确识别同位角、内错角、同旁内角,通过用直尺和三角板辅助画平行线,找到这个过程中的不变量,给出平行线的判定方法1,在进行简单说理训练过程中引出平行线的判定方法2和平行线的判定方法3.2.根据两条直线被第三条直线所截的基本图形,会用符号语言表示平行线的判定方法1、判定方法2、判定方法3, 培养学生转化的数学思想和运用几何语言表述问题的能力.3.通过动手操作、观察、思考,积累数学活动经验,感受数学思考过程的条理性,发展空间观念;在观察、操作、想象、说理、交流的过程中,发展空间观念和和抽象概括能力,初步形成积极参与数学活动、与他人合作交流的意识,激发学生学习几何图形的兴趣.4.能初步应用本节所学的知识解释生活中的现象及解决简单的实际问题,体会研究几何图形的意义,符合“数学教学应从生活经验出发”的新课程标准要求,调动学生学习几何的积极性,激发学生的求知欲.三、教学问题诊断分析画平行线实际就是画相等的同位角,因为直尺和三角板靠着的角度是不变的.让学生多做几遍,找到这个过程中的不变量.这样画出的两条直线是互相平行的,也为后面学习判定方法1作铺垫.教师创设情境引导学生观察与猜想,都是一些视错觉的问题,这时学生观察得到的结论,由于视错觉原因经常不正确,安排这些观察与猜想,目的是培养学生的观察能力,激发学生的求知欲;同时也提醒学生观察要认真、仔细,有时观察得到的猜想不一定正确,还要借助于实验进行检验;观察、实验、猜想是科学技术创新过程中的一个非常重要的方法,通过观察和实验提出问题,再提出猜想和假设,然后通过说理、推理去证明假设和猜想,也是本章教学呈现内容的一个重要方式.安排学生动手实验检验四边形小纸板对边是否平行的数学活动中,教师要求同学们分组检验并作详细的记录,学生亲自动手实验,能亲身感受结论的真实性,让学生通过度量(或测量)四边形小纸板相对的两条边是否平行,探索发现几何结论,然后再对结论进行说明、解释或论证,为由实验几何到论证几何的过渡做好铺垫;几何图形是从实际中抽象出来的,所以几何图形的定义、性质都是比较抽象的,这一点对于学生来说有一定的困难.为了减少学生学习的困难,在教学安排时,注意根据七年级学生认知特点,加强了直观教学,使教学内容尽量贴近学生的生活.采用探讨问题的方式,引导学生去发现利用内错角和同旁内角判定两条直线平行.课堂上教师有意识的引导学生这样分析和思考,根据平行线的判定方法1推出平行线的判定方法2、平行线的判定方法3,对学生进行说理训练,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的.包括后面的例题的设计都是要求学生能进行一些简单推理,而不仅仅是观察、实验、探究得出一些结论,循序渐进的突破难点.本节课的重点是要研究平行线的判定方法,不作严格的形式化的要求.由于内容较多,因此,教学时都要突出这个重点,课堂活动也要围绕这个重点进行.在课堂上识图、画图、几何语言表述训练、例题、练习,都主要围绕如何判断两条直线平行来进行,反复利用平行线的判定方法1, 平行线的判定方法2,平行线的判定方法3.教学难点会用符号语言表示平行线的判定方法1、判定方法2、判定方法3, 培养学生转化的数学思想和运用几何语言表述问题的能力.四、教学支持条件分析根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现为主、多媒体演示为辅的教学组织方式.在教学过程中,通过设置带有启发性和思考性的问题,创设问题情境,启发学生思考.利用计算机和《几何画板》软件,并结合学生亲自动手操作测量,让学生亲身体验知识的产生、发展和形成的过程.五、教学过程设计活动一:复习1.直线AB、CD与EF相交,构成八个角,(1)∠1与∠3是对顶角,图中具有这种位置关系的角还有;(2)∠1与∠2是邻补角,图中具有这种位置关系的角还有;(3)∠1与∠5是同位角,图中具有这种位置关系的角还有;(4)∠3与∠5是内错角,图中具有这种位置关系的角还有;(5)∠3与∠6是同旁内角,图中具有这种位置关系的角还有.2.在同一个平面内,两条直线除了相交之外还有其他位置关系吗?3.什么叫做平行线?请你用三角板和直尺辅助画出两条平行的直线.(教师用电脑展示,学生观察和思考)【设计意图】复习三线八角,为课上由角去推得直线平行做好准备;平行线是学生已有的概念,一般地,平行线是用“不相交”这种否定方式来定义的,这种否定的方式包含了对空间的想象.因为在实际生活中只有平行线段的形象,学生理解平行线是无限延伸着的,无论怎样延伸也不会相交是学生理解的一个难点;用直尺和三角板辅助画出平行线的方法实际上就是画相等的同位角,因为直尺和三角板靠着的角度是不变的.让学生多做几遍,找到这个过程中的不变量.学生欣然接受这样画出的两条直线是互相平行的,也为学习平行线判定方法1作好了铺垫.活动二:引入(老师用计算机辅助)1.你看到的图1中的六条红色线段是否平行?2.你看到的图2,图3中的四边形是正方形吗?图1图2图33.你看到的图4中的十条线段是否平行?【设计意图】教学时用一些实物或计算机进行演示,先让学生观察,然后再回答问题,调动学生主体参与,激发学生学习兴趣,尽而引出课题,也为课上通过测量检验直线平行作好了铺垫.图4活动三:新课1.方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(简单说成:同位角相等,两直线平行)∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行).【设计意图】利用同位角相等判定两条直线平行的方法是结合平行线的画法给出的,在画平行线时,三角板在移动时紧靠直尺,显然,三角板的角的大小不变,也就是同位角相等,进而引出判定直线平行的方法1.图52.解决引入的视错觉问题(老师用几何画板辅助解决问题)图6【设计意图】在这个观察与猜想中,都是一些视错觉的问题,这时学生观察得到的结论,由于视错觉原因经常不正确.安排这些观察与猜想,一方面,培养学生的观察能力,激发学生的求知欲;另外,提醒学生观察要认真、仔细,不能粗枝大叶、马马虎虎,有时观察得到的猜想不一定正确,还要借助于实验进行检验;第三,观察、实验、猜想是科学技术创新过程中的一个非常重要的方法,通过观察和实验提出问题,再提出猜想和假设,然后运用说理、推理去证明假设和猜想,也是本章教学呈现内容的一个重要方式(通过后续学习,学生还将认识到,观察、实验得出的结论都不一定正确,还要经过推理来证明结论,使推理证明成为学生观察、实验得出结论的自然延续,逐步培养学生在观察、实验得出结论后还要问个为什么,自然而然地引入证明).3.根据图7中标注的角练习填空,∵∠=∠(已知),∴AB∥CD(同位角相等,两直线平行).解答:∠1=∠5;∠2=∠6;∠3=∠7;∠4=∠8.(计算机辅助进行说理训练)【设计意图】练习题的答案不唯一,强调两条直线被第三条直线所截,如果有一组同位角相等,那么这两条直线平行.通过此练习对平行线判定方法1进行复习巩固.4.学生每2~4人一组,每人发一个四边形小纸板,检验四边形的小纸板相对的两条边是否平行,学生亲自动手测量并做记录,得出结论小组内进行交流,最后全班交流.5.最后利用实物投影分组展示学生的活动成果.【设计意图】在这个数学活动中,学生亲自动手实验,能亲身感受结论的真实性;动手实验,动脑思索,是我们探索图形世界的关键.若他们放弃了自己动手,轻易地接受别人给出的结论,那么就会慢慢的放弃了珍贵的好奇与探索精神,渐渐的舍弃了质疑研究的品质;动手实验为观察思考提供了良好的基础,没有思考,观察的各种现象都是孤立的,动手不动脑,数学学习就成了盲目的游戏;另外,通过分组活动可以创设合作学习的情境,培养团队协作的精神,在合作学习的过程中,教师引领学生大胆发表自己的见解,同时又要学会倾听、欣赏,理解他人好的见解,从中获益.上述学习活动的设计,一方面在内容呈现上充分体现认知过程,给学生提供探索与交流的时间和空间,将实验几何与论证几何有机结合;另一方面,几何图形是从实际中抽象出来的,所以几何图形的定义、性质都是比较抽象的,这一点对于学生来说有一定的困难.为了减少学生学习的困难,在教学安排时,我注意根据七年级学生认知特点,加强了直观教学,使教学内容尽量贴近学生的生活;第三,论证几何在培养人的逻辑思维能力方面起着重要作用,而实验几何则是发现几何命题和定理的有效工具,在培养人的直觉思维和创造性思维方面起着重大的作用.让学生通过度量(或测量)四边形小纸板相对的两条边是否平行,探索发现几何结论,然后再对结论进行说明、解释或论证,为由实验几何到论证几何的过渡做好铺垫.图76.问题:如图8,如果∠1=∠3,那么直线a∥b吗?图8∵∠1=∠3(已知),∠2=∠3(对顶角相等),∴∠1=∠2.〖∵∠1=∠2(已证),〗(这一步是上一步刚刚得到的,可以省略)∴a∥b(同位角相等,两直线平行).7.方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(简单说成:内错角相等,两直线平行.)∵∠1=∠3(已知),∴a∥b(内错角相等,两直线平行).8.问题:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行吗?方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单说成:同旁内角互补,两直线平行.)∵∠1+∠4=180°(已知),∴a∥b(同旁内角互补,两直线平行)图9【设计意图】采用探讨问题的方式,引导学生去发现利用内错角和同旁内角判定两条直线平行;课堂上教师有意识的引导学生这样分析和思考,根据平行线的判定方法1推出平行线的判定方法2、平行线的判定方法3.对学生进行说理训练,包括后面的例题的设计都是要求学生能进行一些简单推理,而不仅仅是观察、实验、探究得出一些结论.循序渐进的突破难点.活动四:举例例题、如图10,已知∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,填空:⑴∵∠1=∠ABC(已知),∴AD∥().⑵∵∠3=∠5(已知),∴AB∥().⑶∵∠2=∠4(已知),∴∥().⑷∵∠1=∠ADC(已知),∴∥().图10【设计意图】本节课的重点是要研究平行线的判定方法,不作严格的形式化的要求.由于内容较多,因此,教学时都要突出这个重点,课堂活动也要围绕这个重点进行.在课堂上识图、画图、几何语言表述训练、例题、练习,都主要围绕如何判断两条直线平行来进行,反复利用平行线的判定方法1、判定方法2、判定方法3.活动五:小结,布置作业1.会识别同位角、内错角、同旁内角,学会了平行线的判定方法1、判定方法2、判定方法3;2.能用平行线的判定方法1、方法2、方法3进行一些说理、简单的推理;3.观察要认真、仔细,有时观察得到的猜想不一定正确,还要借助于实验进行检验,利用几何推理进行严谨的证明.布置作业:1.在本节最后,教科书安排了一个练习,判断英语抄写纸的横格线是否平行.学习了平行线的判定方法,学生判断直线平行的方法就很多了.这里还可以结合课前的“看图时的错觉”,应用你所学的平行线的判定方法解决这个问题;2.教科书第16页,第1、2、4、5、7题.【设计意图】师生讨论、交流本节课的收获,进一步完善学生的认知结构.通过习题,总结回顾本节内容,培养学生的概括表达能力并巩固知识、提高发展.六、目标检测设计1.根据图11中标注的角练习填空(1)∵∠=∠(已知),∴AB∥CD(内错角相等,两直线平行).(2)∵∠ +∠ =180°(已知),∴AB∥CD().图11【设计意图】练习1.(!)题答案不唯一,强调两条直线被第三条直线所截,如果有一组内错角相等,那么这两条直线平行.练习1.(2)题是对平行线判定方法3进行复习巩固.2.根据图12中标注的角和字母填空∵_____________ (已知),∴BC∥AD (_________________ ).【设计意图】再次强化平行线的判定方法,并培养学生的说理习惯,发展符号感,逐步培养学生用几何语言交流的能力.图12。

相关文档
最新文档