公务员行测:“0”型数字推理解题思路
公务员行测中的数字推理与解题技巧

公务员行测中的数字推理与解题技巧数字推理是公务员行测中的重要内容之一,它需要考生运用逻辑思维和数学知识进行推理和解题。
本文将介绍一些数字推理的基本方法和解题技巧,帮助考生更好地应对公务员行测中的数字推理题。
一、数字推理的基本方法在解决数字推理题时,考生首先需要明确题目给出的数字序列或者关系,并找到其中的规律。
下面介绍几种常见的数字推理方法。
1. 数列推理数列推理题是公务员行测中常见的题型,它要求考生根据已知的数字序列,推断出接下来的数字。
解决这类题目的关键在于找到数列中数字的变化规律。
常见的数列规律有等差数列和等比数列。
其中,等差数列的每个数字之间的差值相等,等比数列的每个数字之间的比值相等。
通过观察数列中数字间的关系,找出变化规律,即可准确推测出下一个数字。
2. 数字关系推理数字关系推理题要求考生从一组数字中找出相互之间的关系,进而推断出缺失的数字。
解决这类题目需要考生具备较强的逻辑思维能力。
常见的数字关系有加减乘除、平方立方等运算关系;还有数字的奇偶、大小关系等。
考生需要仔细观察数字间的变化规律,找出其中的逻辑关系,才能正确推断出缺失的数字。
3. 数字排列与组合推理数字排列与组合推理题要求考生从一组数字排列或者组合中找出符合一定条件的数字。
解决这类题目需要考生熟练掌握排列组合的知识。
在排列与组合的题目中,数字的顺序、重复与否等都可能是解题的关键。
考生需要根据题目给出的条件,灵活运用排列组合的规则,准确地确定符合条件的数字。
二、数字推理解题技巧除了掌握数字推理的基本方法,考生还可以借助一些解题技巧,提高解决数字推理题的效率。
1. 注意整体和局部在解决数字推理题时,考生既要关注数字序列的整体规律,又要注意其中的局部规律。
有时候,数字序列的整体规律并不明显,但是通过观察数字间的局部规律,也可以推断出接下来的数字。
2. 多角度观察考生要习惯从不同的角度观察数字推理题。
有时候,单一的数学运算规律并不能完全解释题目中的数字关系,此时考生可以从逻辑思维、几何形状等其他角度出发,寻找隐藏的规律。
行测数字推理中特殊题型的解题技能

在近两年的国考和局部省份的考试中没有出现,但专家告知你,这并非意味着此后就不会考察数字推理的试题,因为在国家和各个省份的考试大纲中,仍是能发现有关于行测数字推理的表述,且仍有局部省份考察数字推理,这就要引发咱们必然的重视。
其实行测数字推理并非像咱们相像的那么难,它仍是有必然的规律可循的,同时,咱们按照数字推理中数列的特殊表现形式仍是能找到一些的,在此,就总结了数字推理中的特殊题型以供大家学习。
特殊题型一:0、0型所谓“0、0〞型指的是数列的最前面两个数值为0,此种数列实际上是从阶乘数列或是幂次数列变形过来的,在解答这种类型的数列时,主要有两种方式:各项加1;数列加上自然数列。
***********************************************************************************例:0,0,6,24,60,120,〔〕A.180 B.196 C.210 D.216【分析】数列的前两项为“0〞,尝试加“1〞,有数列变成一、一、7、2五、6一、121,没有规律,所以加上各自的项数有:0、一、八、27、64、125,显然这是一个立方数列,故下一项为216-6=210。
***********************************************************************************特殊题型二:峰谷交替型所谓峰谷交替型指的是数列呈现“大、小〞或“小、大〞交替出现的形式,此种数列是由公比为负值的等比数列、正负交替的数列和周期数列等变形而来,在解答这种数列时,主要有两种方式:两两做差;两两做和。
************************************************************************************例:0,16,8,12,10,〔〕A.11 B.13 C.14 D.18【分析】数列呈现“小大〞的规律,所以优先做差,做差后有1六、-八、4、-2,是公比为-1/2的等比数列,所以有10+1=11。
公务员行测数字推理快速解题四种思路

09山西公务员行测数字推理快速解题四种思路在日常的复习备考中,考生的主要任务不是看自己做了多少道题,而是熟悉各种题型,明晰解题思路,总结解题技巧,提高解题速度,提升应试能力。
在此过程中,形成适合自己的便捷有效的解题技巧应该是重中之重。
因此,总结并掌握一定的解题思路对我们复习数量关系模块有很大帮助。
通过对历年真题的分析总结,我们可以总结出数字推理以下四种解题思路:一、从题干数列里看规律通过分析数列中所给数字的多少,根据数字大小变化的趋势,分析数列是不是常用的数列,如加法数列、减法数列、乘法数列、除法数列、分数数列、小数数列、等差数列、等比数列、平方数列、立方数列、开方数列、偶数数列、奇数数列、质数数列、合数数列,或者是复合数列、混合数列、隔项数列、分组数列等。
为了解题方便,可以借助于题后答案所提供的信息,或是数列本身的变化趋势,初步确定是哪一种数列,然后调整思路进行解题。
具体方法如下:(1)先考察前面相邻的两三个数字之间的关系,在大脑中假设出一种符合这个数字关系的规律,如将相邻的两个数相加或相减,相乘或相除之后,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。
另外,有时从后往前推,或者从中间向两边推导也是较为有效的。
例:150,75,50,37.5,30,()A. 20B. 22.5C. 25D. 27.5——『2009年北京市公务员录用考试真题』【答案:C】前项除以后项后得到:2;3\2;4\3;5\4;(),分子是2,3,4,5,(6 ),分母是1,2,3,4,(5 ),所以()与前一项30的倍数是6/5;则()×6/5=30,()=25。
(2)观察数列特点,如果数列所给数字比较多,数列比较长,超过5个或6个,就要考虑数列是不是隔项数列、分组数列、多级数列或常规数列的变式。
公务员行政职业能力测验数字推理的解题方法

在数字推理题型中,每道试题中呈现⼀组按某种规律排列的数字,但这⼀数列中有意地空缺了⼀项,要求考⽣仔细观察这⼀组数列,找出数列的排列规律,从⽽根据规律推导出空缺项应填的数字,然后⽤户答题区提供的四个选项中选出你认为最合理、最适合的选项。
⽤户可⾸先通过选择数字推理训练界⾯左上⽅的“选择练习题”处的下拉列表框,选取需要训练的练习题。
在答题时,反应要快,要有⼀种直观⼒,还要掌握恰当的⽅法。
⾸先找出相邻两个(特别是第⼀、第⼆个)数字间的关系,迅速将这种关系推到下⼀个数字相邻间的关系,若得到验证,说明找到了规律,就可以直接推出答案;若被否定,马上改变思考⽅向和⾓度,提出另⼀种数量关系假设。
如此反复,直到找到规律为⽌。
有时也可以从后⾯往前推,或者“中间开花”向两边推,都可能是较为有效的。
解答此类试题的关键是找出数字排列时所依据的某种规律,通过相邻两数字间关系的两两⽐较就会很快的找到共同特征,即规律。
规律被找出来,答案⾃然就出来了。
在进⾏此项测验时要善于总结经验前应加强练习,了解有关出题形式,考试时就能得⼼应⼿。
当然,在推导数量关系时,必然会涉及到许多计算,但你尽量不⽤笔算或少⽤笔算,⽽多⽤⼼算,这样可以缩短做题时间,⽤更多的时间做其他题⽬。
例题:1、 2,5,8,11,()A.12B.13C.14D.152、 1,5,6,11,17,()A.24B.28C.31D.333、 6,10,18,34,()A.64B.66C.68D.704、 3,4,6,9,(),18A.11B.12C.13D.155、 1,4,9,16,(),36A.23B.25C.27D.316、 6,24,60,120,()A.186B.200C.210D.2207、 345,268,349,264,354,259,360,()A. 366B.255C.370D.253解答:题1中,规律:前⼀个数加3等于后⼀个数,答案为C。
题2中,规律:前⾯相邻两数的和等于下⼀个数,答案为B。
公务员行测:“0”型数字推理解题思路

公务员行测:“0”型数字推理解题思路华图教育在近几年的各省公务员行测考试试题中,对数字推理部分的考查,除了沿用以往的考查形式之外,出现了越来越多的特殊题型,这些特殊题型的题目本身就暗含着独特的解题技巧,考生如果单纯的解析,往往会事倍功半,浪费宝贵的考试时间。
因此,本文将讲解一种特殊题型——带“0”型,给考生提供一些解题思路,帮助大家在备考、应试过程中驾轻就熟。
所谓带“0”型,就是指原数列中出现“0”这个特殊数字。
对近几年的公务员考试试题分析发现,特殊数字“0”在原数列中的位置主要有两种情况:(1)位于原数列的起始位置;(2)位于原数列的中间。
当原数列中的特殊数字“0”出现的位置、个数不同时,与之相应的数列规律不同,以下将详细讲解此种特殊数列及其常用解法。
1.起始位置出现“0”型对于以“0”开头的数列,通常可以先将原数列的各项加上“1”、进行因数分解或者是幂次修正数列的解题方法,然后再寻找新数列的规律,进而推出原数列的规律。
【真题解析】例1:0,0,1,5,23,()A.119B.79C.63D.47【答案】A【解析】将原数列的各项加上1,得到:1,1,2,6,24.通过观察发现新数列存在明显的倍数关系,故使用做商多级数列的方法来解题。
新数列:1 1 2 6 24 (120)做商: 1 2 3 4 (5)做商得到的二级数列为等差数列。
如上所显示,故原数列未知项120-1=119. 因此,选A.例2:0,4,16,48,128,()A.280B.320C.350D.420【答案】B【解析】数列中每个数字都含有4这个因子,故先提取公约数4,得到:0, 1,4,12,32。
通过观察可以对这个简化的数列进行因数分解,化出两个子数列。
新数列: 0 1 4 12 32 ( 80 )子数列一: 0 1 2 3 4 ( 5 )子数列二: 0 1 2 4 8 ( 16 )因数分解后得到子数列一为等差数列,子数列二为除了首项0外的数字组成 的数列为等比数列。
行政职业能力测试中数字推理的答题技巧

行政职业能力测试中数字推理的答题技巧数字推理是行政职业能力测试中的一个重要部分,它考察了考生的逻辑思维和数学能力。
在数字推理题目中,考生需要根据给定的数字序列或图形规律,推断出下一个数字或图形是什么。
下面是一些数字推理的答题技巧,希望对考生有所帮助。
1. 观察数字序列的规律数字推理题目中最常见的是数字序列题目,考生需要根据给定的数字序列推断出下一个数字是什么。
在解决这类题目时,考生需要仔细观察数字序列中的规律,找出其中的规律和特点。
例如,数字序列中是否存在递增或递减的趋势,是否存在重复的数字或数字组合,是否存在数字之间的乘法或加法关系等等。
只有找到了数字序列中的规律,才能准确地推断出下一个数字是什么。
2. 注意数字序列中的异常数字在数字序列中,有时会出现一些异常数字,这些数字与其他数字不符合规律,容易让考生产生困惑。
因此,考生需要注意数字序列中的异常数字,并尝试找出它们的特点和规律。
有时,这些异常数字可能是为了干扰考生而故意设置的,因此考生需要保持警惕,不要被这些数字所迷惑。
3. 观察图形的形状和颜色除了数字序列题目外,数字推理题目中还有一类是图形题目。
在这类题目中,考生需要根据给定的图形规律,推断出下一个图形是什么。
在解决这类题目时,考生需要仔细观察图形的形状和颜色,并找出它们之间的规律和特点。
例如,图形中是否存在对称或旋转的关系,是否存在颜色的变化或重复,是否存在图形之间的大小或位置关系等等。
只有找到了图形中的规律,才能准确地推断出下一个图形是什么。
4. 利用排除法在数字推理题目中,有时候考生无法准确地推断出下一个数字或图形是什么。
这时,考生可以利用排除法来缩小答案的范围。
例如,在数字序列中,如果考生无法找到数字之间的规律,可以先排除一些不可能的答案,例如数字太大或太小,或者不符合数字序列中其他数字的规律。
这样可以缩小答案的范围,提高答题的准确性。
5. 多做练习题最后,要想在数字推理题目中取得好成绩,考生需要多做练习题,熟练掌握数字推理的答题技巧。
公务员行政能力测试数字推理答题技巧(非常有用)

公务员行政能力测试数字推理答题技巧(非常有用)数字推理一、基本要求熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。
自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400……自然数立方数列:-8,-1,0,1,8,27,64,125,216,343,512,729,1000质数数列:2,3,5,7,11,13,17……(注意倒序,如17,13,11,7,5,3,2)合数数列:4,6,8,9,10,12,14…….(注意倒序)二、解题思路:1 基本思路:第一反应是两项间相减,相除,平方,立方。
所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。
相减,是否二级等差。
8,15,24,35,(48)相除,如商约有规律,则为隐藏等比。
4,7,15,29,59,(59*2-1)初看相领项的商约为2,再看4*2-1=7,7*2+1=15……2 特殊观察:项很多,分组。
三个一组,两个一组4,3,1,12,9,3,17,5,(12)三个一组19,4,18,3,16,1,17,(2)2,-1,4,0,5,4,7,9,11,(14)两项和为平方数列。
400,200,380,190,350,170,300,(130)两项差为等差数列隔项,是否有规律0,12,24,14,120,16(7^3-7)数字从小到大到小,与指数有关1,32,81,64,25,6,1,1/8每个数都两个数以上,考虑拆分相加(相乘)法。
87,57,36,19,(1*9+1)256,269,286,302,(302+3+0+2)数跳得大,与次方(不是特别大),乘法(跳得很大)有关1,2,6,42,(42^2+42)3,7,16,107,(16*107-5)每三项/二项相加,是否有规律。
1,2,5,20,39,(125-20-39)21,15,34,30,51,(10^2-51)C=A^2-B及变形(看到前面都是正数,突然一个负数,可以试试)3,5,4,21,(4^2-21),4465,6,19,17,344,(-55)-1,0,1,2,9,(9^3+1)C=A^2+B及变形(数字变化较大)1,6,7,43,(49+43)1,2,5,27,(5+27^2)2/3,1/3,2/9,1/6,(2/15)3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。
行测解答数字推理的四种思维方式

行测解答数字推理的四种思维方式数字推理是行测中常见的题型之一,它要求考生根据一组数字或数列的规律进行推理,以确定下一个数或者找出规律。
在解答数字推理题目时,可以运用四种不同的思维方式来帮助我们更有效地解题。
本文将介绍这四种思维方式,并提供相应的解题技巧。
1. 逻辑思维方式逻辑思维方式在解答数字推理题目中非常重要。
这种思维方式要求我们注意观察数字之间的逻辑关系和规律。
通过分析数列中的数字之间的关系,我们可以发现一些规律或者模式。
例如,我们可以观察数字之间的差异,看是否有等差或等比的关系。
此外,我们还可以观察数字中的重复、倒序、对称等特征,从而推测出下一个数字。
2. 数学思维方式在解答数字推理题目时,数学思维方式也是很重要的。
数学思维方式要求我们运用数学知识来解决问题。
例如,在一组数字中,我们可以进行加减乘除等运算,从而找出规律,进而预测下一个数字。
此外,我们还可以运用数学公式来辅助解题,例如,斐波那契数列、等差数列、等比数列等。
3. 模式识别思维方式模式识别思维方式是指通过发现和识别数字之间的模式来解答数字推理题目。
我们可以观察一组数字中的特征、形态或者规律,从而找出其中的模式。
例如,我们可以观察数字的位置、大小、形状等特征,推测下一个数字。
此外,我们还可以观察数字的排列顺序、颜色等属性来发现规律。
4. 综合思维方式综合思维方式是指将多种思维方式结合起来来解答数字推理题目。
综合思维方式要求我们同时运用逻辑思维、数学思维和模式识别思维来解决问题。
通过将不同的思维方式综合应用,我们可以更全面地分析数字之间的关系和规律,从而得出正确答案。
在解答数字推理题目时,我们需要根据题目的要求和条件来选择合适的思维方式。
有时候,一种思维方式可能无法解答问题,而另一种思维方式可能能够给出正确答案。
因此,灵活运用不同的思维方式是非常重要的。
此外,为了提高解答数字推理题目的能力,我们还可以多做练习题,加强对数字规律的观察和分析能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公务员行测:“0”型数字推理解题思路
华图教育
在近几年的各省公务员行测考试试题中,对数字推理部分的考查,除了沿用以往的考查形式之外,出现了越来越多的特殊题型,这些特殊题型的题目本身就暗含着独特的解题技巧,考生如果单纯的解析,往往会事倍功半,浪费宝贵的考试时间。
因此,本文将讲解一种特殊题型——带“0”型,给考生提供一些解题思路,帮助大家在备考、应试过程中驾轻就熟。
所谓带“0”型,就是指原数列中出现“0”这个特殊数字。
对近几年的公务员考试试题分析发现,特殊数字“0”在原数列中的位置主要有两种情况:(1)位于原数列的起始位置;(2)位于原数列的中间。
当原数列中的特殊数字“0”出现的位置、个数不同时,与之相应的数列规律不同,以下将详细讲解此种特殊数列及其常用解法。
1.起始位置出现“0”型
对于以“0”开头的数列,通常可以先将原数列的各项加上“1”、进行因
数分解或者是幂次修正数列的解题方法,然后再寻找新数列的规律,进而推出原数列的规律。
【真题解析】
例1:0,0,1,5,23,()
A.119
B.79
C.63
D.47
【答案】A
【解析】将原数列的各项加上1,得到:1,1,2,6,24.通过观察发现新数列存在明显的倍数关系,故使用做商多级数列的方法来解题。
新数列:1 1 2 6 24 (120)
做商: 1 2 3 4 (5)
做商得到的二级数列为等差数列。
如上所显示,故原数列未知项120-1=119. 因此,选A.
例2:0,4,16,48,128,()
A.280
B.320
C.350
D.420
【答案】B
【解析】数列中每个数字都含有4这个因子,故先提取公约数4,得到:0, 1,4,12,32。
通过观察可以对这个简化的数列进行因数分解,化出两个子数列。
新数列: 0 1 4 12 32 ( 80 )
子数列一: 0 1 2 3 4 ( 5 )
子数列二: 0 1 2 4 8 ( 16 )
因数分解后得到子数列一为等差数列,子数列二为除了首项0外的数字组成 的数列为等比数列。
故新数列中的未知项为80,从而得到原数列中的数字为80x4=320.因此,选B
例3:0 ,9, 26, 65, 124, ( )
A .165 B.193 C.217 D.239
【答案】C
【解析】数字变化幅度较大,而且原数列中每个数字周围都有熟悉的幂次数,故考察数字之间的平方或立方关系。
0 ,9, 26, 65 都在完全平方数附近摆动,但是124与121相差3。
因此不考察平方关系,而考察立方关系。
规律:1-13,123+,1-33,143+,1-53,(163+)。
因此,选C
2. 中间带“0”型
中间出现“0”型,是指在原数列的中间位置出现特殊数字“0”。
一般来说, “0”的个数是一个或两个。
当数列中间带有一个“0”,且“0”前后的数值正负相反时,一般情况下优先考虑采用因数分解方法。
当数列中间带有两个“0”时,一般情况下优先考虑采用幂指数拆分法。
例4:(2006国考)-2,-8,0,64,( )
A.-64
B.128
C.156
D.250
【答案】D
【解析】通过观察可以对这个数列进行因数分解,化出两个子数列。
原数列: -2 -8 0 64 ( 250 )
子数列一: -2 -1 0 1 ( 2 )
子数列二: 1 8 27 64 ( 125 )
因数分解后得到子数列一为等差数列,子数列二为立方数列。
故原数列中的
未知项为250.因此,选B
例5:(2010江苏)6,8,8,0,-32,( )
A.-128
B.64
C.-64
D.-96
【答案】A
【解析】通过观察可以对这个数列进行因数分解,化出两个子数列。
原数列: 6 8 8 0 -32 (-128)
子数列一: 3 2 1 0 -1 ( -2 )
子数列二: 2 4 8 16 32 ( 64 )
因数分解后得到子数列一为等差数列,子数列二为公比为2的等比数列。
故 原数列中的未知项为-128.因此,选B
例6:-2,0,0,4,18,( )
A.30
B.36
C.42
D.48
【答案】D
【解析】此题的突破口建立在“数字敏感”的基础之上,由数字“0”在数 列中间以及4和18这两个具有明显幂指数特征的数字,优先考虑幂指数拆分法。
原数列: -2 0 0 4 18 ( 48 )
变形为:21-2-)(⨯
201-⨯210⨯221⨯232⨯ ( 243⨯ ) 如上所示,因此,选D
通过以上题目的总结及解析,在应对此类带“0”型数字推理的题目时,有针对性的解题方法。
使得考生有侧重点的复习备考,进而达到事半功倍的效果。