第三章函数
高中数学新教材必修第一册第三章 函数的概念与性质基础知识

第三章 函数的概念与性质1函数的概念:一般地,设B A ,是非空的实数集,如果对于集合A 中的 x ,按照某种 f ,在集合B 中都有 y 与它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作A x x f y ∈=),(,其中,x 叫做 ,x 的取值范围A 叫做函数的 ,与x 的值相对应的y 值叫做 ,函数值的集合}|)({A x x f ∈叫做函数的 ,值域是集合B 的子集.2函数的三要素: 、 、 . 求函数定义域的原则:(1)若()f x 为整式,则其定义域是 ;(2)若()f x 为分式,则其定义域是 ;(3)若()f x 是二次根式(偶次根式),则其定义域是 ;(4)若()0f x x =,则其定义域是 ;(5)若()()0,1x f x a a a =>≠,则其定义域是 ;(6)若()()log 0,1a f x x a a =>≠,则其定义域是 ;(7)若f (x )=sinx,g (x )=cosx ,则其定义域是 ;(8)若x x f tan )(=,则其定义域是 ;求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数.6函数的单调性:(1)单调递增:设任意 ,当 时,有 .特别的,当函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意 ,当 时,有 特别的,当函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间.8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足: ,都有 ; 使得 ,那么称M 是函数的最大(小)值.10函数的奇偶性:偶函数:一般地,设函数)(x f y =的定义域为I ,如果 ,都有 ,且 ,那么函数叫做 ;偶函数的图象关于 对称;奇函数:一般地,设函数)(x f y =的定义域为I ,如果 ,都有 ,且 ,那么函数叫做 ;奇函数的图象关于 对称;若奇函数)(x f y =的定义域中有零,则其函数图象必过原点,即(0)0f =.11幂函数:一般地,函数 叫做幂函数,其中 是自变量, 是常数. 12幂函数()f x x α=的性质:①所有的幂函数在 都有定义,并且图象都通过点 ; ①如果0α>,则幂函数的图象过原点,并且在区间[)0,+∞上是 ; ①如果0α<,则幂函数的图象在区间()0,+∞上是 ,①幂函数图象不出现于第四象限.。
高中数学必修一-第三章-3.1 函数的概念及其表示

第三章函数3.1 函数的概念及其表示知识点一:函数的概念1.函数的有关概念2.函数的三要素一个函数的构成要素:定义域、对应关系和值域.因为值域是由定义域和对应关系决定的,所以两个函数的定义域和对应关系相同时,它们是同一个函数.3.区间的概念:设a,b∈R,a<b.实数集R可以用区间表示为(-∞,+∞).知识点二:函数的表示法1.函数的三种表示法2.分段函数已知函数y=f(x),x∈A,如果自变量x在不同的取值范围内,函数有着不同的对应关系,那么我们称这样的函数为分段函数.【思考】1.函数的定义域和值域是否一定是无限集?2.区间是数集的另一种表示方法,是否任何数集都能用区间表示?3.根据函数的定义,任何一个自变量x是否都有唯一的函数值y与之对应?任何一个函数值y 是否都有唯一的自变量x与之对应?4.如何确定分段函数的定义域和值域?【解析】1.不一定.函数的定义域和值域也可能是有限集,如f(x)=1,x∈{1,2,3}.2.不是.如集合{0,1}就不能用区间表示.3.任何一个自变量x都有唯一的函数值y与之对应,但是函数值y不一定有唯一的自变量x 与之对应。
如f(x)=x2中,函数值4有两个自变量2、-2与之对应。
函数中x,y的对应关系是“一对一”或“多对一”,不能“一对多”.4.分段函数的定义域是每一段自变量取值范围的并集,值域也是每一段函数值取值范围的并集.3.1.1 函数的概念基础练一函数的概念1.(多选题)下面选项中,变量y是变量x的函数的是()A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP(国内生产总值)C.x表示某地区学生的某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税2.下列四组函数中,表示同一个函数的是()3A.y=|x|与y=√x3B.y=√x2与s=(√t)2C.y=2t+1与y=2u+1D.y=1与y=x03.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示以集合M为定义域,集合N为值域的函数关系的有()A.①②③④B.①②③C.②③D.②④二函数的定义域4.函数f(x)=√x−1的定义域为() x−2A.[1,+∞)B.[1,2)C.[1,2)∪(2,+∞)D.(1,2)∪(2,+∞)5.已知某矩形的周长为定值a,若该矩形的面积S是这个矩形的一边长x的函数,则这个函数的定义域是.6.已知函数y=f(x)的定义域为[-2,3],则函数y=f(2x+1)的定义域为.x+1三函数值及函数的值域7.已知集合P={x|y=√x−1},集合Q={y|y=√x−1},则()A.P=QB.P⫋QC.Q⫋PD.P∩Q=⌀8.函数y=√x2−2x+3的值域为.,则f(x)的值域为.9.已知函数f(x)=1x2−2x10.已知函数f(x)的定义域是[0,1],值域是[1,2],则这样的函数可以是f(x)=.11.已知函数f(x)=x2+x-1.);(1)求f(2), f(1x(2)若f(x)=5,求x的值.3.1.2 函数的表示法基础练一 函数的表示法及其应用 1.函数y =x x+1的图象大致是 ( )A B C D2.某同学从家里到学校,为了不迟到,先匀速跑一段时间,跑累了再匀速走余下的路,设在途中花费的时间为t ,离开家的距离为d ,则下面图象中,能正确表示d 与t 的关系的是( )A B C D3.已知函数y =f (x )的对应关系如表,函数y =g (x )的图象为如图所示的曲线ABC ,则g (f (3))的值为 .二 函数解析式的求法5.已知函数f (x +2)=x 2+6x +8,则函数f (x )的解析式为( ) A.f (x )=x 2+2x B.f (x )=x 2+6x +8 C.f (x )=x 2+4x D.f (x )=x 2+8x +66.函数f (x )满足f (1-2x )=-1x ,则f (2)=( )A.2B.-2C.12 D.-12 7.已知函数f (2x -1)=3x -5,若f (x 0)=4,则x 0= .8.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )= .9.(1)已知函数g (√x +1)=2x +1,求g (x )的解析式;(2)已知f (x )为二次函数,且f (0)=2, f (2)=f (-1)=0,求f (x )的解析式.三 分段函数问题10.已知函数f (x )={√x,x >0,|x +1|,x ≤0,则f (f (-3))=( )A.√3B.1C.2D.√2 11.已知f (x )={x +2,x ≤−1,x 2,−1<x <2,2x,x ≥2,若f (x )=3,则x 的值是( )A.1B.1或32C.1,32或±√3 D.√312.函数f (x )=x +|x |x 的图象是( )A B C D13.(2022山西大同期中)已知函数f (x )={x 2,x ≤0,4−2x,x >0.(1)画出函数f (x )的图象;(2)当f (x )≥2时,求实数x 的取值范围.。
高一上数学必修一第三章《3.1函数的概念与性质》知识点梳理

高一上必修一第三章《函数》知识点梳理3.1.1函数及其表示方法学习目标:(1)在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用;(2)了解构成函数的要素,能求简单函数的定义域、值域;(3)通过具体问题情境总结共性,抽象出函数概念,积累从具体到抽象的活动经验,发展数学抽象的核心素养。
【重点】1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).【难点】1、求函数的定义域和值域回顾初中所学的函数,在情境与问题中感受高中函数表达方式与初中的不同。
一、函数的概念我们已经学习过一些函数的知识,例如已经总结出:在一个变化过程中,数值发生变化的量称为变量;在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就称y是x的函数.再例如,我们知道y=2x是正比例函数,y=-3x-1是一次函数,y=-2是反比例函数,y=x2+2x-3是二次函数,等等。
【情境与问题】(1)国家统计局的课题组公布,如果将2005年中国创新指数记为100,近些年来中国创新指数的情况如下表所示。
以y表示年度值,i表示中国创新指数的取值,则i是y的的函数吗?如果是,这个函数用数学符号可以怎样表示?(2)利用医疗仪器可以方便地测量出心脏在各时刻的指标值,据此可以描绘出心电图,如下图所示。
医生在看心电图时,会根据图形的整体形态来给出诊断结果(如根据两个峰值的间距来得出心率等).初中实际上是用变量的观点和解析式来描述函数的,但从情境与问题中的两个实例可知,初中的方法有一定的局限性:情境与问题中的i是y的函数,v是t的函数,但是这两个函数与初中的函数有所不同,比如都很难用一个解析式表示,而且每个变量的取值范围也有了限制,等等。
高中数学新教材必修一第三章 《函数的概念与性质》全套课件

4、若函数的定义域只有一个元素,则值域也只有一
个元素 √
5、对于不同的x , y的值也不同
×
6、f (a)表示当x = a时,函数f (x)的值,是一个常量 √
巩固练习
判断下列对应能否表示y是x的函数
(1) y=|x|
(2)|y|=x
(3) y=x 2
(4)y2 =x
(5) y2+x2=1 (6)y2-x2=1
2x
0y 2
x
2
D
0
2x
学习新知
初中我们已知接触过函数的三种表示方法:解析法、列表法和图 象法
问题 2 某电气维修公司一个工人的工资关于天数 d 的函数 w=350d. ②定义域{1,2,3,4,5,6}
学习新知 这里的实数a与b都叫做相应区间的端点。
实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷 大”。满足x≥ a,x>a ,x ≤b, x<b的实数的集合分别表示 为[a, +∞)、(a, +∞)、(-∞,b]、(-∞,b).
集合表示 区间表示 数轴表示
{x a<x<b} (a , b)
我国某省城镇居民恩格尔系数变化情况
时间(年)y 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
恩格尔系数r(%) 36.69 36.81 38.17 35.69 35.15 33.53 33.87 29.89 29.35 28.57
请仿照前面的方法描述恩格尔系数r和时间(年)y的关系。
对于集合A中的任意一个数x,按照某种确定的对
应关系f,在集合B中都有唯一确定的数y和它对应, 那么就称f: A→B为从集合A到集合B的一个函数, 记作 y=f(x) , x∈A
第三章 函数

⑶ 在函数的定义中,如果集合 A 和 B 都是通常的数集, 则这里定义的函数就是数学中的函数,其中“自变量”、 “定义域”、“值域”等概念与数学中的函数一致。因此, 离散数学中的函数概念是通常函数概念的推广。 ⑷ 谈到函数,必须涉及两个集合:定义域 A、值域包 B。 在证明题中,需首先明确定义域 A 和值域包集合 B
成为一种特殊的“关系”。函数主要涉及把一个有限集合变换成
另一个有限集合的离散函数。例如,编译程序把一组高级语言命 令的集合变成机器语言指令的集合。
§3.1 函数的概念
一,基本概念
函数:设有集合 Biblioteka 、B,f 是一个由 A 到B 的关系,如果对于每
个 a∈A,存在唯一的 b∈B 使得 af b(或 f (a) = b),则
练习
有关习题:
12
作业
p112 习题 1、2、3
作业
有关习题:
13
二,函数相等
函数相等:设有函数 f:A→B 和 g:C→D,如果 A=C 和B =D , 并且对所有的 a∈A(或 a∈C )都有 f (a)= g (a), 则称函数 f 和 g 是相等 的,记为 f =g
思考:设有函数 f :A→B ,S A, 等式 f (A)-f (S) = f (A -S) 成立吗?为什么?
有关习题:
基本概念
4
我们从反面来理解函数,看什么样的关系 不是函数?
⑴ 在关系 f :A→B 中,若对于某个 a∈A,不存在 b∈B,
使得 a f b ,则 f 不是函数 例: f = {(n1,n2)︱n1,n2∈N,n2=小于 n1 的素数的个数} ⑵ 在关系 f :A→B 中,若对于某个 a∈A,存在 b1∈B 和 b2∈B ,且 b1≠b2,使得 af b1 和 af b2 同 时成立,则
第三章 函数的概念与性质(课堂笔记)

第三章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念1.概念的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合f x x ∈A }叫做函数的值域.2.函数三要素:定义域、对应关系、值域。
3.区间若a ,b ∈R ,且a <b ,则(1)x |a ≤x ≤b =a ,b 闭区间(2)x |a <x <b =a ,b 开区间(3)x |a ≤x <b =a ,b ) 半开半闭区间x |a <x ≤b =(a ,b ]半开半闭区间∞表示无穷大,R =-∞,+∞(4)x |x <a =-∞,a x |x ≤a =-∞,a ] (5)x |x >a =(a ,+∞)x |x ≥a =[a ,+∞)4.常见求函数定义域方法(1)分式的分母不等于零;(2)偶次根号下被开方数大于等于零;(3)零的零次方无意义;a 0=1,a ≠0(4)对数式的真数大于零;(5)定义域多个取值范围同时满足,求交集。
例:函数f (x )=-x 2+4x +12+1x -4的定义域是.解:要使函数有意义,需满足-x 2+4x +12≥0x -4≠0,即-2≤x ≤6x ≠4 .即-2≤x <4或4<x ≤6,故函数的定义域为[-2,4)⋃4,6 .5.判断函数为同一函数如果两个函数的定义域相同,并且对应关系也完全一致,那么这两个函数是同一个函数。
3.1.2函数的表示方法1.函数的表示方法:表格法、图像法、解析式法2.分段函数如果一个函数,在其定义域内,对于自变量x 的不同取值区间,有不同的对应关系,则称其为分段函数。
第三章 函数知识点

思维导图一.函数的概念1、函数的概念(1)函数的定义设集合A是一个非空_____集,按照某种确定的对应法则f对A中任意的实数x,都有___________的实数值y与它对应,则称这种对应法则为集合A 上的一个函数,记作________,其中x为________,y为________.(2)函数的三要素:_______、_______、(_______).(3)相同函数的判断方法:①____________;②____________2、函数的定义域:(1)定义域的定义:________________________叫做函数的定义域.(2)确定函数定义域的常见方法:①若)(xf是整式,则定义域为________②若)(xf是分式,则定义域为________例:求函数xy111+=的定义域。
③若)(xf是偶次根式,则定义域为________例1:求函数()21432-+--=xxxy的定义域。
例2:求函数()02112++-=xxy的定义域。
④若)(xf是偶次根式,则定义域为________⑤对数函数y=log a x的真数________⑥指数y=a x、对数式y=log a x的底为________⑦若)(xf为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑧函数y =[f(x)]0的定义域为__________⑨如果函数由一些基本函数通过有限次四则运算结合而成的,那么其定义域为这些基本函数定义域的_______.书写函数定义域时,要写成集合或_______的形式.⑩实际问题中的函数的定义域还要保证实际问题有意义 (3)求抽象函数(复合函数)的定义域例1:已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域例2:已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、函数的值域 :(1)值域的定义:____________________________叫做函数的值域. (2)常见基本初等函数值域: 一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(3)确定函数值域的常见方法(配方法):配方法是求“二次函数类”值域的基本方法。
第三章 函数的概念和性质(章末复习)高一数学(人教A版2019必修第一册)

练习
方法技巧:
1.利用函数的奇偶性可求函数值或参数的取值,求解的关键在于借助奇偶性转化
为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.
2.画函数图象:利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何
直观求解相关问题.
练习
变5.已知二次函数() = − 2 + + 2, ∈ .
D. − 2
).
练习
方法技巧:
1.对于幂函数图象的掌握只要抓住在第一象限内三条直线分第一象限为六个区域,
即=1,=1,=所分区域.根据<0,0<<1,=1,>1的取值确定位
置后,其余象限部分由奇偶性决定.
2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性
进行比较.
1
(4)方程思想:已知关于()与( )或(−)等的表达式,可根据已知条件再构造
出另外一个等式组成方程组,通过解方程组求出().
练习
变1.(1)已知()是一次函数,且满足2( + 3) − ( − 2) = 2 + 21,求()的解
析式;
(2)已知函数()满足2() + (−) = 3 + 2,求()的解析式;
(1)若()为偶函数,求的值.
(2)若()在[−1,2]上最大值为4,求.
答案:(1)0;(2) = −3或 = 2 2.
练习
题型六:幂函数
例6.若幂函数() = (2 − − 5) 在(0, +∞)单调递减,则 = (
A.3
答案:.
B.3 , − 2
C. − 3 ,2
为最大值
为最小值
知识梳理
7.函数的奇偶性:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 函数一、基础知识定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。
定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。
定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。
定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。
定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。
A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。
集合{f (x )|x ∈A }叫函数的值域。
通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}.定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A→B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。
例如:函数y =x -11的反函数是y =1-x1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。
定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。
定义7 函数的性质。
(1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)<f (x 2)(f (x )>f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。
(2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
(3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期。
定义8 如果实数a <b ,则数集{x |a <x <b , x ∈R}叫做开区间,记作(a ,b ),集合{x |a ≤x ≤b ,x ∈R}记作闭区间[a ,b ],集合{x |a <x ≤b }记作半开半闭区间(a ,b ],集合{x |a ≤x <b }记作半闭半开区间[a , b ),集合{x |x >a }记作开区间(a , +∞),集合{x |x ≤a }记作半开半闭区间(-∞,a ].定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域。
通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对称;(5)与函数y =-f (-x )的图象关于原点成中心对称;(6)与函数y =f -1(x )的图象关于直线y =x 对称;(7)与函数y =-f (x )的图象关于x 轴对称。
定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”。
例如y =x-21, u=2-x 在(-∞,2)上是减函数,y =u 1在(0,+∞)上是减函数,所以y =x-21在(-∞,2)上是增函数。
注:复合函数单调性的判断方法为同增异减。
这里不做严格论证,求导之后是显然的。
二、方法与例题 1.数形结合法。
例1 求方程|x -1|=x1的正根的个数. 【解】 分别画出y =|x -1|和y =x1的图象,由图象可知两者有唯一交点,所以方程有一个正根。
例2 求函数f (x )=113632424+--+--x x x x x 的最大值。
【解】 f (x )=222222)0()1()3()2(-+---+-x x x x ,记点P (x , x -2),A (3,2),B (0,1),则f (x )表示动点P 到点A 和B 距离的差。
因为|PA |-|PA |≤|AB |=10)12(322=-+,当且仅当P 为AB 延长线与抛物线y =x 2的交点时等号成立。
所以f (x )m ax =.10 2.函数性质的应用。
例3 设x , y ∈R ,且满足⎪⎩⎪⎨⎧=-+--=-+-1)1(1997)1(1)1(1997)1(32y y x x ,求x +y . 【解】 设f (t )=t 3+1997t ,先证f (t )在(-∞,+∞)上递增。
事实上,若a <b ,则f (b )-f (a )=b 3-a 3+1997(b -a )=(b -a )(b 2+ba +a 2+1997)>0,所以f (t )递增。
由题设f (x -1)=-1=f (1-y ),所以x -1=1-y ,所以x +y =2.例4 奇函数f (x )在定义域(-1,1)内是减函数,又f (1-a )+f (1-a 2)<0,求a 的取值范围。
【解】 因为f (x ) 是奇函数,所以f (1-a 2)=-f (a 2-1),由题设f (1-a )<f (a 2-1)。
又f (x )在定义域(-1,1)上递减,所以-1<1-a <a 2-1<1,解得0<a <1。
例5 设f (x )是定义在(-∞,+∞)上以2为周期的函数,对k ∈Z , 用I k 表示区间(2k -1,2k +1],已知当x ∈I 0时,f (x )=x 2,求f (x )在I k 上的解析式。
【解】 设x ∈I k ,则2k -1<x ≤2k +1,所以f (x -2k )=(x -2k )2.又因为f (x )是以2为周期的函数,所以当x ∈I k 时,f (x )=f (x -2k )=(x -2k )2.例6 解方程:(3x -1)(15692++-x x )+(2x -3)(131242+-x x +1)=0. 【解】 令m=3x -1, n =2x -3,方程化为m(42+m +1)+n (42+n +1)=0. ①若m=0,则由①得n =0,但m, n 不同时为0,所以m ≠0, n ≠0.ⅰ)若m>0,则由①得n <0,设f (t )=t (42+t +1),则f (t )在(0,+∞)上是增函数。
又f (m)=f (-n ),所以m=-n ,所以3x -1+2x -3=0,所以x =.54ⅱ)若m<0,且n >0。
同理有m+n =0,x =54,但与m<0矛盾。
综上,方程有唯一实数解x =.54 3.配方法。
例7 求函数y =x +12+x 的值域。
【解】 y =x +12+x =21[2x +1+212+x +1]-1 =21(12+x +1)-1≥21-1=-21. 当x =-21时,y 取最小值-21,所以函数值域是[-21,+∞)。
4.换元法。
例8 求函数y =(x +1+x -1+2)(21x -+1),x ∈[0,1]的值域。
【解】令x +1+x -1=u ,因为x ∈[0,1],所以2≤u 2=2+221x -≤4,所以2≤u ≤2,所以222+≤22+u ≤2,1≤22u ≤2,所以y =22+u ,u 2∈[2+2,8]。
所以该函数值域为[2+2,8]。
5.判别式法。
例9 求函数y =434322+++-x x x x 的值域。
【解】由函数解析式得(y -1)x 2+3(y +1)x +4y -4=0. ① 当y ≠1时,①式是关于x 的方程有实根。
所以△=9(y +1)2-16(y -1)2≥0,解得71≤y ≤1. 又当y =1时,存在x =0使解析式成立, 所以函数值域为[71,7]。
6.关于反函数。
例10 若函数y =f (x )定义域、值域均为R ,且存在反函数。
若f (x )在(-∞,+ ∞)上递增,求证:y =f -1(x )在(-∞,+ ∞)上也是增函数。
【证明】设x 1<x 2, 且y 1=f -1(x 1), y 2=f -1(x 2),则x 1=f (y 1), x 2=f (y 2),若y 1≥y 2,则因为f (x )在(-∞,+ ∞)上递增,所以x 1≥x 2与假设矛盾,所以y 1<y 2。
即y =f -1(x )在(-∞,+ ∞)递增。
例11 设函数f (x )=42314++x x ,解方程:f (x )=f -1(x ).【解】 首先f (x )定义域为(-∞,-32)∪[-41,+∞);其次,设x 1, x 2是定义域内变量,且x 1<x 2<-32;231422++x x 231411++-x x =)23)(23()(51212++-x x x x >0, 所以f (x )在(-∞,-32)上递增,同理f (x )在[-41,+∞)上递增。
在方程f (x )=f -1(x )中,记f (x )=f -1(x )=y ,则y ≥0,又由f -1(x )=y 得f (y )=x ,所以x ≥0,所以x ,y ∈[-41,+∞). 若x ≠y ,设x <y ,则f (x )=y <f (y )=x ,矛盾。
同理若x >y 也可得出矛盾。
所以x =y .即f (x )=x ,化简得3x 5+2x 4-4x -1=0,即(x -1)(3x 4+5x 3+5x 2+5x +1)=0,因为x ≥0,所以3x 4+5x 3+5x 2+5x +1>0,所以x =1.三、基础训练题1.已知X ={-1, 0, 1}, Y ={-2, -1, 0, 1, 2},映射f :X →Y 满足:对任意的x ∈X ,它在Y 中的象f (x )使得x +f (x )为偶数,这样的映射有_______个。