人教A版高中数学必修1第三章 函数的应用3.1 函数与方程教案(2)

合集下载

高中数学第三章函数的应用第1节函数与方程(2)教案新人教A版必修1

高中数学第三章函数的应用第1节函数与方程(2)教案新人教A版必修1

第一节函数与方程第二课时教学设计(一)整体设计教学内容分析本节课选自《普通高中课程标准实验教科书数学1必修本(A版)》的第三章3.1.2用二分法求方程的近似解.本节课要求学生根据具体的函数图象能够借助计算机或信息技术工具计算器用二分法求相应方程的近似解,这种方法是求方程近似解的常用方法,从中体会函数与方程之间的联系;它既是本册书中的重点内容,又是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位.学生学习情况分析学生已经学习了函数,理解函数零点和方程根的关系,初步掌握了函数与方程的转化思想.但是对于求函数零点所在区间,只是比较熟悉求二次函数的零点,对于高次方程和超越方程对应函数零点的寻求会有困难.另外算法程序的模式化和求近似解对他们是一个全新的问题.设计理念倡导积极主动、勇于探索的学习精神和合作探究式的学习方式;注重提高学生的数学思维能力,发展学生的数学应用意识;与时俱进地认识“双基”,强调数学的内在本质,注意适度形式化;在教与学的和谐统一中体现数学的文化价值;注重信息技术与数学课程的合理整合.教学目标通过具体实例理解二分法的概念,掌握运用二分法求简单方程近似解的方法,从中体会函数的零点与方程根之间的联系及其在实际问题中的应用;能借助计算器用二分法求方程的近似解,让学生能够初步了解逼近思想;体会数学逼近过程,感受精确与近似的相对统一;通过具体实例的探究,归纳概括所发现的结论或规律,体会从具体到一般的认知过程.教学重点与难点教学重点:用“二分法”求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学难点:方程近似解所在初始区间的确定,恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.教学过程(一)创设情境,提出问题问题1:在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障.这是一条10 km长的线路,如何迅速查出故障所在?如果沿着线路一小段一小段查找,困难很多.每查一个点要爬一次电线杆.10 km长,大约有200多根电线杆呢.想一想,维修线路的工人师傅怎样工作最合理?以实际问题为背景,以学生感觉较简单的问题入手,激活学生的思维,形成学生再创造的欲望.注意学生解题过程中出现的问题,及时引导学生思考,从二分法查找的角度解决问题.学情预设学生独立思考,可能出现以下解决方法:思路1:直接一个个电线杆去寻找.思路2:通过先找中点,缩小范围,再找剩下的一半的中点.老师从思路2入手,引导学生解决问题:如图,维修工人首先从中点C检查.用随身带的话机向两个端点测试时,发现AC段正常,断定故障在BC段,再到BC段中点D查,这次发现BD段正常,可见故障在CD段,再到CD 段中点E 来查.每查一次,可以把待查的线路长度缩减一半,如此查下去,不用几次,就能把故障点锁定在一两根电线杆附近.师:我们可以用一个动态过程来展示一下(展示多媒体课件).在一条线段上找某个特定点,可以通过取中点的方法逐步缩小特定点所在的范围(即二分法思想).设计意图从实际问题入手,利用计算机演示用二分法思想查找故障发生点,通过演示让学生初步体会二分法的算法思想与方法,说明二分法原理源于现实生活,并在现实生活中广泛应用.(二)师生探究,构建新知问题2:假设电话线故障点大概在函数f (x )=ln x +2x -6的零点位置,请同学们先猜想它的零点大概是什么?我们如何找出这个零点?1.利用函数性质或借助计算机、计算器画出函数图象,通过具体的函数图象帮助学生理解闭区间上的连续函数,如果两个端点的函数值是异号的,那么函数图象就一定与x 轴相交,即方程f (x )=0在区间内至少有一个解(即上节课的函数零点存在性定理,为下面的学习提供理论基础).引导学生从“数”和“形”两个角度去体会函数零点的意义,掌握常见函数零点的求法,明确二分法的适用范围.2.我们已经知道,函数f (x )=ln x +2x -6在区间(2,3)内有零点,且f (2)<0,f (3)>0.进一步的问题是,如何找出这个零点?合作探究:学生先按四人小组探究.(倡导学生积极交流、勇于探索的学习方式,有助于发挥学生学习的主动性)生:如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.师:如何有效缩小根所在的区间?生1:通过“取中点”的方法逐步缩小零点所在的范围.生2:是否也可以通过“取三等分点或四等分点”的方法逐步缩小零点所在的范围? 师:很好,一个直观的想法是:如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,可以得到零点的近似值.其实“取中点”和“取三等分点或四等分点”都能实现缩小零点所在的范围.但是在同样可以实现缩小零点所在范围的前提下,“取中点”的方法比取“三等分点或四等分点”的方法更简便.因此,为了方便,下面通过“取中点”的方法逐步缩小零点所在的范围.引导学生分析理解求区间(a ,b )的中点的方法x =a +b 2. 合作探究:(学生2人一组互相配合,一人按计算器,一人记录过程.四人小组中的两组比较缩小零点所在范围的结果.)步骤一:取区间(2,3)的中点2.5,用计算器算得f (2.5)≈-0.084<0.由f (3)>0,得知f (2.5)·f (3)<0,所以零点在区间(2.5,3)内.步骤二:取区间(2.5,3)的中点 2.75,用计算器算得f (2.75)≈0.512>0.因为f (2.5)·f (2.75)<0,所以零点在区间(2.5,2.75)内.结论:由于(2,3)(2.5,3)(2.5,2.75),所以零点所在的范围确实越来越小了.如果重复上述步骤,在一定精确度下,我们可以在有限次重复上述步骤后,将所得的零点所在区间内的任一点作为函数零点的近似值.特别地,可以将区间端点作为函数零点的近似值.引导学生利用计算器边操作边认识,通过小组合作探究,得出教科书上的表3—2,让学生有更多的时间来思考与体会二分法实质,培养学生合作学习的良好品质.学情预设学生通过上节课的学习知道这个函数的零点就是函数图象与x 轴的交点的横坐标,故它的零点在区间(2,3)内.进一步利用函数图象通过“取中点”逐步缩小零点的范围,利用计算器通过将自变量改变步长很快得出表3—2,找出零点的大概位置.设计意图从问题1到问题2,体现了数学转化的思想方法,问题2有着承上启下的作用,使学生更深刻地理解二分法的思想,同时也突出了二分法的特点.通过问题2让学生掌握常见函数零点的求法,明确二分法的适用范围.问题3:对于其他函数,如果存在零点是不是也可以用这种方法去求它的近似解呢?引导学生把上述方法推广到一般的函数,经历归纳方法的一般性过程之后得出二分法及用二分法求函数f(x)的零点近似值的步骤.对于在区间[a,b]上连续不断且满足f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.注意引导学生分化二分法的定义:一是二分法的适用范围,即函数y=f(x)在区间[a,b]上连续不断;二是用二分法求函数的零点近似值的步骤.给定精确度ε,用二分法求函数f(x)的零点近似值的步骤如下:1.确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;2.求区间(a,b)的中点c;3.计算f(c):(1)若f(c)=0,则c就是函数的零点;(2)若f(a)·f(c)<0,则令b=c〔此时零点x0∈(a,b)〕;(3)若f(c)·f(b)<0,则令a=c〔此时零点x0∈(c,b)〕;4.判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤2~4.学情预设学生思考问题3举出二次函数外,对照步骤观察函数f(x)=ln x+2x-6的图象去体会二分法的思想.结合二次函数图象和标有a、b、x0的数轴理解二分法的算法思想与计算原理.设计意图以问题研讨的形式替代教师的讲解,分化难点、解决重点,给学生“数学创造”的体验,有利于学生对知识的掌握,并强化对二分法原理的理解.学生在讨论、合作中解决问题,充分体会成功的愉悦.让学生归纳一般步骤有利于提高学生自主学习的能力,让学生尝试由特殊到一般的思维方法.利用二分法求方程近似解的过程,用图表示,既简约又直观,同时能让学生初步体会算法的思想.(三)例题剖析,巩固新知例借助计算器或计算机用二分法求方程2x+3x=7的近似解.(精确度0.1)两人一组,一人用计算器求值,一人记录结果;学生讲解缩小区间的方法和过程,教师点评.本例鼓励学生自行尝试,让学生体验解题遇阻时的困惑以及解决问题的快乐.此例让学生体会用二分法来求方程近似解的完整过程,进一步巩固二分法的思想方法.思考问题1:用二分法只能求函数零点的“近似值”吗?问题2:是否所有的零点都可以用二分法来求其近似值?教师有针对性的提出问题,引导学生回答,学生讨论,交流.反思二分法的特点,进一步明确二分法的适用范围以及优缺点,指出它只是求函数零点近似值的“一种”方法.设计意图及时巩固二分法的解题步骤,让学生体会二分法是求方程近似解的有效方法.解题过程中也起到了温故转化思想的作用.(四)尝试练习,检验成果1.下列函数中能用二分法求零点的是( )设计意图让学生明确二分法的适用范围.2.用二分法求图象是连续不断的函数y=f(x)在x∈(1,2)内零点近似值的过程中得到f(1)<0,f(1.5)>0,f(1.25)<0,则函数的零点落在区间( )A.(1,1.25) B.(1.25,1.5)C.(1.5,2) D.不能确定设计意图让学生进一步明确缩小零点所在范围的方法.3.借助计算器或计算机,用二分法求方程x=3-lg x在区间(2,3)内的近似解.(精确度0.1)设计意图进一步加深和巩固对用二分法求方程近似解的理解.答案:略(五)课堂小结,回顾反思学生归纳,互相补充,老师总结:1.理解二分法的定义和思想,用二分法可以求函数的零点近似值,但要保证该函数在零点所在的区间内是连续不断的;2.用二分法求方程的近似解的步骤.设计意图帮助学生梳理知识,形成完整的知识结构.同时让学生知道理解二分法定义是关键,掌握二分法解题的步骤是前提,实际应用是深化.(六)课外作业1.[书面作业]课本习题3.1A组3、4、5;2.[知识链接]本节阅读与思考“中外历史上的方程求解”.3.[课外思考]:如果现在地处学校附近的地下自来水管某处破裂了,那么怎么找出这个破裂处,要不要把水泥板全部掀起?板书设计3.1.2 用二分法求方程的近似解1.二分法的定义2.用二分法求函数的零点近似值的步骤3.用二分法求方程的近似解教学反思这节课既是一堂新课又是一堂探究课.整个教学过程,以问题为教学出发点,以教师为主导,学生为主体,设计情境激发学生的学习热情,激励学生去取得成功,顺应合理的逻辑结构和认知结构,符合学生的认知规律和心理特点,重视思维训练,发挥学生的主体作用,注意数学思想方法的溶入渗透,满足学生渴望的奖励结构.整个教学设计中,特别注重以下几个方面:(1)重视学生的学习体验,突出他们的主体地位.训练了他们用从特殊到一般,再由一般到特殊的思维方式解决问题的能力.不断加强他们的转化类比思想.(2)注重将用二分法求方程的近似解的方法与现实生活中的案例联系起来,让学生体会数学方法来源于现实生活,又可以解决现实生活中的问题.(3)注重学生参与知识的形成过程,动手、动口、动脑相结合,使他们“听”有所思,“学”有所获,增强学习数学的信心,体验学习数学的乐趣.(4)注重师生之间、同学之间互动,注重他们之间的相互协作,共同提高.。

新人教A版高中数学(必修1)3.1《函数与方程》教案2篇

新人教A版高中数学(必修1)3.1《函数与方程》教案2篇

“方程的根与函数的零点”教学设计(1)一、内容和内容解析本节课是在学生学习了《基本初等函数(Ⅰ)》的基础上,学习函数与方程的第一课时,本节课中通过对二次函数图象的绘制、分析,得到零点的概念,从而进一步探索函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,利用计算机描绘函数的图象,通过对函数与方程的探究,对函数有进一步的认识,解决方程根的存在性问题,为下一节《用二分法求方程的近似解》做准备.从教材编写的顺序来看,《方程的根与函数的零点》是必修1第三章《函数的应用》一章的开始,其目的是使学生学会用二分法求方程近似解的方法,从中体会函数与方程之间的联系.利用函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求方程的近似解,是在建立和运用函数模型的大背景下展开的.方程的根与函数的零点的关系、用二分法求方程的近似解中均蕴涵了“函数与方程的思想”和“数形结合的思想”,建立和运用函数模型中蕴含的“数学建模思想”,是本章渗透的主要数学思想.从知识的应用价值来看,通过在函数与方程的联系中体验数学中的转化思想的意义和价值,体验函数是描述宏观世界变化规律的基本数学模型,体会符号化、模型化的思想,体验从系统的角度去思考局部问题的思想.基于上述分析,确定本节的教学重点是:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断.二、目标和目标解析1.通过对二次函数图象的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数零点与相应方程实数根之间的关系,2.零点知识是陈述性知识,关键不在于学生提出这个概念。

而是理解提出零点概念的作用,沟通函数与方程的关系。

3.通过对现实问题的分析,体会用函数系统的角度去思考方程的思想,使学生理解动与静的辨证关系.掌握函数零点存在性的判断.4.在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.三、教学问题诊断分析1.零点概念的认识.零点的概念是在分析了众多图象的基础上,由图象与轴的位置关系得到的一个形象的概念,学生可能会设法画出图象找到所有任意函数的可能存在的所有零点,但是并不是所有函数的图象都能具体的描绘出,所以在概念的接受上有一点的障碍.2.零点存在性的判断.正因为f(a)·f(b)<0且图象在区间[a,b]上连续不断,是函数f(x)在区间[a,b]上有零点的充分而非必要条件,容易引起思维的混乱就是很自然的事了.3.零点(或零点个数)的确定.学生会作二次函数的图象,但是要作出一般的函数图象(或图象的交点)就比较困难,而在这一节课最重要的恰恰就是利用函数图象来研究函数的零点问题.这样就在零点(或零点个数)的确定上给学生带来一定的困难.基于上述分析,确定本节课的教学难点是:准确认识零点的概念,在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点.四、教学支持条件分析考虑到学生的知识水平和理解能力,教师可借助计算机工具和构建现实生活中的模型,从激励学生探究入手,讲练结合,直观演示能使教学更富趣味性和生动性.通过让学生观察、讨论、辨析、画图,亲身实践,在函数与方程的联系中体验数形结合思想、转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.五、教学过程设计(一)引入课题问题引入:求方程3x2+6 x-1=0的实数根。

函数的应用教案(新人教必修1第三章)6个教案

函数的应用教案(新人教必修1第三章)6个教案

3.1.1方程的根与函数的零点教学目的:使学生了解零点的概念,理解方程的根与零点的关系,会利用函数的图象指出函数零点的大致区间。

教学重点:方程的根与函数的零点的关系。

教学难点:求函数零点的个数问题教学过程考察几个一元二次方程及其相应的二次函数的关系方程x2-2x-3=0与函数y=x2-2x-3;方程x2-2x+1=0与函数y=x2-2x+1 方程x2-2x+3=0与函数y=x2-2x+3,函数图象如上图,你能发现什么?二、新课(1)当△>0时,一元二次方程有两个不相等的实数根,相应的二次函数的图象与x 轴有两个交点。

(2)当△=0时,一元二次方程有两个相等的实数根,相应的二次函数的图象与x轴有唯一的一个个交点。

(3)当△<0时,一元二次方程没有实数根,相应的二次函数的图象与x轴无交点。

对于函数y=f(x),我们把使f(x)=0的实数x叫函数y=f(x)的零点。

方程f(x)=0有实数根二次函数在区间(2,4)上有零点x=3而f(2)<0,f(4)>0,即f(2)·f(4)<0一般地,函数f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。

例1、求函数f(x)=lnx+2x-6的零点的个数。

分析:用计算机辅助作图象,可得函数在区间(2,3)内有零点,再观察图象在(0,+∞)上是增函数,因此,该函数只有一个零点。

练习:P103作业:P1086B组 43.1.2用二分法求方程的近似解教学目的:使学生了解什么是二分法,会用二分法求一个函数在给定区间内的零点。

从而求得方程的近似解。

教学重点:用二分法求方程的近似解。

教学难点:二分法的理解。

教学过程一、复习提问什么是函数的零点?函数在区间(a ,b )内有零点,则有什么性质? 二、新课 1、新课引入中央电视台由李咏主持的节目《幸运52》中有一项猜商品价格的游戏,首先给出 了商品价格的范围,如果是你,你将用什么方法快速猜中商品的真实价格呢?现实中 还有这种方法运用的实例吗?一元二次方程可以用公式求根,但没有公式可用来求方程lnx +2x -6=0的根, 联系函数的零点与相应方程的关系,能否利用函数有关知识求出它的根呢? 2、取中点法求方程lnx +2x -6=0的根方程lnx +2x -6=0在区间(2,3)内有零点,21(2+3)=2.5 f (2.5)·f (3)<0,所以零点在区间(2.5,3)内,21(2.5+3)=2.75f (2.5)·f (2.75)<0,所以零点在区间(2.5,2.75)内。

新课标人教版高中数学必修一 3.1函数的应用---函数与方程 教学设计

新课标人教版高中数学必修一 3.1函数的应用---函数与方程 教学设计

3.1 函数与方程[教学目标]1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.2.根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解得常用方法.3.在用“二分法”求方程近似解的过程中,使学生进一步体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.[教学要求]教科书注重从学生已有的基础(一元二次方程及其根的求法,一元二次函数及其图象与性质)出发,从具体(一元二次方程的根与对应的一元二次函数的图象与x轴的交点的横坐标之间的关系)到一般,揭示方程的根与对应函数的零点之间的关系.在此基础上,再介绍求函数零点的近似值的“二分法”,并在总结“用二分法求函数零点的步骤”中渗透算法思想,为学生后续学习算法内容埋下伏笔.教科书不仅希望学生在数学知识上有所收获,而且希望学生感受到数学文化方面的熏陶,所以在“阅读与思考”中介绍中外数学家在方程求解中所取得的成就,特别是我国古代数学家对数学发展与人类文明的贡献,这一内容可以在教学过程中适当进行处理.由于方程的近似解一般都涉及较复杂的计算,在利用“二分法”求方程近似解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难,要解决这一困难,需要恰当地使用信息技术工具.建议在教学中要适时地使用计算器或者计算机,注意体现技术使用的必要性.多数函数应用问题也涉及较复杂的数据,因此,建议较多地运用信息技术工具,课本专门安排了两个“信息技术应用”,教师可适当地指导学生进行学习.教学中要加强知识间的联系,具体体现在结合函数的图象,判断方程根的存在性及根的个数,从而了解函数的零点与方程根的关系,提高学生对函数的广泛应用,以及函数与其他数学内容有机联系的认识.课本在3.1.1方程的根与函数的零点中,选取探究具体的一元二次方程的根与其对应的一元二次函数的图象与x轴的交点的横坐标之间的关系,作为本节内容的入口,其意图是让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系.实施教学时,应该给学生提供探究情境,让学生自己发现并归纳出结论“一元二次方程)0(02≠=++a c bx ax 的根就是相应的二次函数02=++=c bx ax y 的图象与x 轴的交点的横坐标”.给出函数零点的概念后,要让学生明确“方程的根”与“函数的零点”尽管有密切的联系,但不能将它们混为一谈.之所以介绍通过求函数的零点求方程的根,是因为函数的图象和性质,为理解函数的零点提供了直观的认识,并为判定零点是否存在和求出零点提供了支持,这就使方程的求解与函数的变化形成联系,有利于分析问题的本质.通过研究一元二次方程的根及相应的函数图象与x 轴交点的横坐标的关系,导出函数的零点的概念;以具体函数在某闭区间上存在零点的特点,探究在某区间上图象连续的函数存在零点的判定方法;以求具体方程的近似解介绍二分法并总结其实施步骤等,都体现了从具体到一般的认识过程.教学时,要注意让学生通过具体实例的探究,归纳概括所发现的结论或规律,并用准确的数学语言表达出来.这里要特别注意引导学生从联系的观点理解有关内容,沟通函数、方程、不等式以及算法等内容,使学生体会知识之间的联系.例如,结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根之间的关系;根据具体函数的图象,能借助计算器用二分法求相应方程的近似解,为算法的学习作准备,另外,还要特别注意信息技术的使用.课本通过第87页的“探究”,让学生观察对应的二次函数在区间端点上的函数值之积的特点,引导学生发现连续函数在某区间上存在零点的判定方法.教学时,可让学生多举一些例子加以认识,如用计算器或计算机多画一些函数(不一定是二次函数)的图象进行观察与概括.教科书上给出的下述结论,只要求学生理解并会应用,而不需给出证明.如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(<⋅b f a f ,那么,函数)(x f y =在区间),(b a 内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程0)(=x f 的根.[教学重点]用“二分法”求方程的近似解.[教学难点]如何处理复杂的数值计算;如何恰当使用计算器.[教学时数]3课时[教学过程]第一课时3.1.1方程的根与函数的零点(1)新课导入讨论:一元二次方程)0(02≠=++a c bx ax 的根与二次函数)0(2≠++=a c bx ax y 数的图象有什么关系?先观察几个具体的一元二次方程及其相应的二次函数,分别选取方程有两个不同的根、重根和无实数根三种类型.方程0322=--x x 与函数322--=x x y ;方程0122=+-x x 与函数122+-=x x y ;方程0322=+-x x 与函数322+-=x x y ; 再请同学们解方程,并分别画出三个函数的草图.通过讨论得出:(课本第87页)一元二次方程)0(02≠=++a c bx ax 有两不同根就是相应的二次函数02=++=c bx ax y 的图象与x 轴有两个不同交点,且其横坐标就是根;一元二次方程)0(02≠=++a c bx ax 有两个重根就是相应的二次函数02=++=c bx ax y 的图象与x 轴一个交点,且其横坐标就是根;一元二次方程)0(02≠=++a c bx ax 无实数根就是相应的二次函数02=++=c bx ax y 的图象与x 轴没有交点;总之,一元二次方程)0(02≠=++a c bx ax 的根就是相应的二次函数02=++=c bx ax y 的图象与x 轴的交点的横坐标.点明本节课题:方程的根与函数的零点新课进展一、函数的零点对于函数)(x f y =,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点(zero point ).显然,函数)(x f y =的零点就是方程0)(=x f 的实数根,也就是函数)(x f y =的图象与x 轴的交点的横坐标.方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.课堂例题例1 利用函数图象判断下列方程有没有根,有几个根:(1)0532=++-x x ;(2)3)2(2-=-x x ;课堂练习(课本第88页练习1)利用函数图象判断下列方程有没有根,有几个根:(3)442-=x x ; (4)532522+=+x x x .布置作业利用函数图象判断下列方程有没有根,有几个根:(1)0532=+--x x ;(2)03322=+-x x ;(3)1322-=x x .第二课时3.1.1方程的根与函数的零点(2)复习导入通过提问复习上节课主要学习内容.问:方程的根与函数的零点之间具有怎样的关系?答:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.问:如何用方程的根与函数的零点之间关系判断方程在某区间是否有根?参与讨论并阅读课本第91页《中外历史上的方程求解》.新课进展二、函数零点存在的条件1.探究观察二次函数32)(2--=x x x f 的图象(图:课本第87页图3.1-2),我们发现函数32)(2--=x x x f 在区间]1,2[-上有零点.计算)2(-f 与)1(f 的乘积,你能发现这个乘积有什么特点?在区间]4,2[上是否也具有这种特点呢?经过讨论,可以发现:0)1()2(<⋅-f f ,函数32)(2--=x x x f 在区间)1,2(-内有零点1-=x ,它是方程0322=--x x 的一个根.同样地,0)4()2(<⋅f f ,函数32)(2--=x x x f 在区间)4,2(内有零点3=x ,它是方程0322=--x x 的另一个根.课堂练习画出二次函数2)(2+--=x x x f 的图象,观察函数2)(2+--=x x x f 在区间]0,5[-上是否有零点.计算)5(-f 与)0(f 的乘积,你能发现这个乘积有什么特点?在区间]4,0[上是否也具有这种特点呢?2.概括一般地,我们有:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(<⋅b f a f ,那么,函数)(x f y =在区间),(b a 内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程0)(=x f 的根.3.应用课堂例题例1 (课本第88页例1)求函数62ln )(-+=x x x f 的零点的个数.解答:见课本第88页课堂练习1.课本第88页练习22.已知函数13)(3+-=x x x f ,问该函数在区间)1,2(--内是否有零点?解:因为01)2(<-=-f ,03)1(>=-f ,所以0)1()2(<-⋅-f f ,又函数13)(3+-=x x x f 是连续的曲线,所以)(x f 在区间)1,2(--内有零点.本课小结如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且在区间端点的函数值符号相反,那么,函数)(x f y =在区间),(b a 内至少有一个零点,即相应的方程0)(=x f 在区间),(b a 内至少有一个实数解.4.布置作业课本第92页习题3.1A 组第1、2题;课本第112页复习参考题A 组第1题.第三课时3.1.2用二分法求方程的近似解新课导入讨论:对于一元二次方程)0(02≠=++a c bx ax 可以用公式求根,但没有公式可用来求方程062ln =-+x x 的根.联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求它的根呢?上节课我们已经知道,函数62ln )(-+=x x x f 在区间(2,3)内有零点,问题是:如何找出这个零点呢?如果能够把零点所在的区间范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.下面介绍一种求近似解的方法.新课进展一、二分法我们知道,函数)(x f 的图象与直角坐标系中x 轴交点的横坐标就是方程0)(=x f的解,利用上节课学过的函数零点存在的条件,我们用逐步逼近的方法,来求方程的近似解.1.在区间(2,3)内,方程有解,取区间(2,3)中点2.5;2.用计算器计算084.0)5.2(-≈f ,因为0)3()5.2(<⋅f f ,所以零点在区间)3,5.2(内;3.再取区间)3,5.2(中点 2.75,用计算器计算512.0)75.2(≈f ,因为0)75.2()5.2(<⋅f f ,所以零点在区间)75.2,5.2(内.4.重复上面的过程,在有限次重复相同步骤后,零点所在区间长度在一定精度控制范围内,零点所在区间内的任意一点都可以作为函数零点的近似值,特别地,可以将区间端点作为零点的近似值.本例中,把取中点和判断零点的过程,用表格列出(课本第89页表3-2).当精确度为0.01时,由于0078125.053125.25390625.2=-01.0<,所以,我们可将53125.2=x 作为函数62ln )(-+=x x x f 零点的近似值,也即方程062ln =-+x x 根的近似值.对于在区间],[b a 上连续不断且0)()(<⋅b f a f 的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法(bisection ).二、二分法的计算步骤给定精确度ε,用二分法求函数)(x f 零点近似值的步骤如下:1.确定区间],[b a ,验证0)()(<⋅b f a f ,给定精确度ε;2.求区间),(b a 的中点c ;3.计算)(c f ;4.判断:(1)若0)(=c f ,则c 就是函数的零点;(2)若0)()(<⋅c f a f ,则令c b =(此时零点),(0c a x ∈);(3)若0)()(<⋅b f c f ,则令c a =(此时零点),(0b c x ∈).5.判断:区间长度是否达到精确度ε?即若ε<-b a ,则得到零点近似值;否则重复2——5.说明:由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解.由于都是重复性的工作,所以可以通过设计一定的计算程序,借助计算器或计算机完成计算.阅读课本第93页《借助信息技术求方程的近似解》.课堂例题例1 (课本第90页例2)例2 求方程03323=-+x x 的一个近似解(误差不超过0.1).课堂练习课本第91页练习1、2题本课小结1.二分法的理论依据是什么?二分法的理论依据是:如果函数)(x f 在闭区间],[b a 上连续不断,且0)()(<⋅b f a f ,那么一定存在),(b a c ∈,使0)(=c f .2.二分法的实施要点是什么?二分法寻找零点的过程是将一个含有零点的区间],[b a 平分为两个小区间,判断哪个小区间内含有零点,再将该小区间平分,……,通过n 次的平分、判断,使零点存在于一个长度na b l 2-=的小区间.当n 适当大时,l 满足精确度的允许范围,于是小区间内的值可作为函数零点的近似值.布置作业课本第92页习题3.1A 组3、4、5题;课本第92页习题3.1B 组1、2、3题.。

人教A版高中数学必修1第三章 函数的应用3.1 函数与方程教案(2)

人教A版高中数学必修1第三章 函数的应用3.1 函数与方程教案(2)

山东省泰安市肥城市第三中学高考数学一轮复习函数与方程教案学习内容学习指导即时感悟学习目标:1、结合二次函数的图像,了解函数的零点与方程的联系,判断一元二次方程根的存在性和根的个数。

2、根据函数的图像,能够用二分法求相应方程的近似解。

3、体会数形结合、函数与方程、分类讨论的数学思想。

学习重点:函数的零点与方程的联系,用二分法求相应方程的近似解。

学习难点:理解函数的零点与方程的联系,用二分法求相应方程的近似解。

回顾﹒预习1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使成立的实数x叫做函数y=f(x)(x∈D)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与有交点⇔函数y=f(x)有.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得,这个c也就是f(x)=0的根.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系⊿>0 ⊿=0 ⊿<0y=ax2+bx+c(a>0)的图像与x轴的交点零点个数3.二分法(1)二分法的定义对于在区间[a,b]上连续不断且的函数y=f(x),通过不断地把函数f(x)的零点所在的区间,使区间的两个端点逐步逼近,进而得到零点近似值的方法叫做二分法.(2)用二分法求函数零点近似值的步骤:课前自测1.若函数f (x )=ax -b (b ≠0)有一个零点3,那么函数g (x )=bx 2+3ax 的零点是 ( C )A .0B .-1C .0,-1D .0,1 2.函数图象与x 轴均有交点,但不宜用二分法求交点横坐标的是( B ) 3、方程125x x +-=的解所在区间( B )A (0,1)B (1,2)C (2,3) D(3,4) 4、函数()xx x f 1-=的零点个数 ( C ) A 0 B 1 C 2 D 无零点5、用二分法求方程0523=--x x 在区间[]3,2内的根,取区间的中点1x =2.5,则下一个有根区间是 (2,2.5)。

高中数学第三章函数的应用3.1函数与方程(2)教案新人教A版必修1(2021年整理)

高中数学第三章函数的应用3.1函数与方程(2)教案新人教A版必修1(2021年整理)

山西省平遥县高中数学第三章函数的应用3.1 函数与方程(2)教案新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山西省平遥县高中数学第三章函数的应用3.1 函数与方程(2)教案新人教A版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山西省平遥县高中数学第三章函数的应用3.1 函数与方程(2)教案新人教A版必修1的全部内容。

函数与方程【教学目标】①让学生学会用二分法求方程的近似解,知道二分法是科学的数学方法。

②了解用二分法求方程的近似解特点,学会用计算器或计算机求方程的近似解,初步了解算法思想。

【重点难点】用二分法求方程的近似解。

【教学过程】一、情景设置①有12个小球,质量均匀,只有一个球是比别的球重,你用天平称几次可以找出这个球,要求次数越少越好。

②我们通过前面知道,函数f(x)=Inx+2x6在区间(2,3)内有零点,进一步的问题是,如何找出这个零点的近似解.③什么叫二分法?见课本④用二分法求函数零点的近似值的步骤是什么?见课本二、教学精讲例1.见课本90页例2例2.借助计算机或计算器用二分法求方程Inx+x3=0的近似值(精确到0.1)注:两种精确度的把握:1.方程的近似解的精确度为ε,指所得到的满足|a b|〈ε的解值区间(a,b)内所有值都可作为方程的近似值,这样的近似值有无穷多个;2.方程的近似解精确到ε,是指所得到的解值区间(a,b)的a和b精确到ε的值都相同,且该值就是方程的惟一的近似值,但注意该值有可能不在该区间内.三、探索研究四、课堂练习①见课本92页习题第4题。

②求函数f(x)=3x+错误!在区间(0,1)内的零点(精确到0.1)。

新人教A版必修一第三章《 函数的应用》教案

新人教A版必修一第三章《 函数的应用》教案

§3.1.1 方程的根与函数的零点1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2. 掌握零点存在的判定定理.8688复习1:一元二次方程2ax +bx +c =0 (a ≠0)的解法. 判别式∆= .当∆ 0,方程有两根,为1,2x = ;当∆ 0,方程有一根,为0x = ; 当∆ 0,方程无实根.复习2:方程2ax +bx +c =0 (a ≠0)的根与二次函数y =ax 2+bx +c (a ≠0)的图象之间有什么关系?二、新课导学 ※ 学习探究探究任务一:函数零点与方程的根的关系 问题:① 方程2230x x --=的解为 ,函数223y x x =--的图象与x 轴有 个交点,坐标为 .② 方程2210x x -+=的解为 ,函数221y x x =-+的图象与x 轴有 个交点,坐标为 .③ 方程2230x x -+=的解为 ,函数223y x x =-+的图象与x 轴有 个交点,坐标为 .根据以上结论,可以得到:一元二次方程20(0)ax bx c a ++=≠的根就是相应二次函数20(0)y ax bx c a =++=≠的图象与x 轴交点的 .你能将结论进一步推广到()y f x =吗?新知:对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点(zero point ).反思:函数()y f x =的零点、方程()0f x =的实数根、函数()y f x = 的图象与x 轴交点的横坐标,三者有什么关系?试试:(1)函数244y x x =-+的零点为 ; (2)函数243y x x =-+的零点为 .小结:方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点.探究任务二:零点存在性定理 问题:① 作出243y x x =-+的图象,求(2),(1),(0)f f f 的值,观察(2)f 和(0)f 的符号② 观察下面函数()y f x =的图象,在区间[,]a b 上 零点;()()f a f b g 0; 在区间[,]b c 上 零点;()()f b f c g 0; 在区间[,]c d 上 零点;()()f c f d g 0.新知:如果函数()y f x =在区间[,]a b 上的图象是连续不断的一条曲线,并且有()()f a f b g <0,那么,函数()y f x =在区间(,)a b 内有零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根.讨论:零点个数一定是一个吗? 逆定理成立吗?试结合图形来分析.※ 典型例题例1求函数()ln 26f x x x =+-的零点的个数.变式:求函数()ln 2f x x x =+-的零点所在区间.小结:函数零点的求法.① 代数法:求方程()0f x =的实数根;② 几何法:对于不能用求根公式的方程,可以将它与函数()y f x =的图象联系起来,并利用函数的性质找出零点.※ 动手试试练1. 求下列函数的零点: (1)254y x x =--;(2)2(1)(31)y x x x =--+.练2. 求函数23x y =-的零点所在的大致区间.三、总结提升 ※ 学习小结①零点概念;②零点、与x 轴交点、方程的根的关系;③零点存在性定理※ 知识拓展图象连续的函数的零点的性质:(1)函数的图象是连续的,当它通过零点时(非偶次零点),函数值变号.推论:函数在区间[,]a b 上的图象是连续的,且()()0f a f b <,那么函数()f x 在区间[,]a b 上至少有一个零点..※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 函数22()(2)(32)f x x x x =--+的零点个数为( ).A. 1B. 2C. 3D. 42.若函数()f x 在[],a b 上连续,且有()()0f a f b >g .则函数()f x 在[],a b 上( ). A. 一定没有零点 B. 至少有一个零点 C. 只有一个零点 D. 零点情况不确定3. 函数1()44x f x e x -=+-的零点所在区间为( ).A. (1,0)- B. (0,1) C. (1,2) D. (2,3)4. 函数220=-++的零点为 .y x x5. 若函数()+∞上有一个零点.则()f x的零点个f x为定义域是R的奇函数,且()f x在(0,)数为 .1. 求函数32=--+的零点所在的大致区间,并画出它的大致图象.22y x x x2. 已知函数2=+++-.()2(1)421f x m x mx m(1)m为何值时,函数的图象与x轴有两个零点;(2)若函数至少有一个零点在原点右侧,求m值.§3.1.2 用二分法求方程的近似解1. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.8991复习1:什么叫零点?零点的等价性?零点存在性定理?对于函数()=的零点.y f xy f x=,我们把使的实数x叫做函数()方程()0=的图象与x轴⇔函数y f xf x=有实数根⇔函数()= .()y f x如果函数()y f x =在区间[,]a b 上的图象是连续不断的一条曲线,并且有 ,那么,函数()y f x =在区间(,)a b 内有零点.复习2:一元二次方程求根公式? 三次方程? 四次方程?二、新课导学 ※ 学习探究探究任务:二分法的思想及步骤问题:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好. 解法:第一次,两端各放 个球,低的那一端一定有重球; 第二次,两端各放 个球,低的那一端一定有重球;第三次,两端各放 个球,如果平衡,剩下的就是重球,否则,低的就是重球.思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求ln 26y x x =+-的零点所在区间?如何找出这个零点?新知:对于在区间[,]a b 上连续不断且()()f a f b g <0的函数()y f x =,通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).反思:给定精度ε,用二分法求函数()f x 的零点近似值的步骤如何呢?①确定区间[,]a b ,验证()()0f a f b <g ,给定精度ε; ②求区间(,)a b 的中点1x ;③计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <g ,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <g ,则令1a x =(此时零点01(,)x x b ∈); ④判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤②~④.※ 典型例题例1 借助计算器或计算机,利用二分法求方程237x x +=的近似解.变式:求方程237x x +=的根大致所在区间.※ 动手试试练1. 求方程3log 3x x +=的解的个数及其大致所在区间.练2.求函数32()22f x x x x =+--的一个正数零点(精确到0.1)练3. .三、总结提升 ※ 学习小结① 二分法的概念;②二分法步骤;③二分法思想.※ 知识拓展高次多项式方程公式解的探索史料在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(Abel )和伽罗瓦(Galois )的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点近似解.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 若函数()f x 在区间[],a b 上为减函数,则()f x 在[],a b 上( ).A. 至少有一个零点B. 只有一个零点C. 没有零点D. 至多有一个零点2. 下列函数图象与x 轴均有交点,其中不能用二分法求函数零点近似值的是( ).3. 函数()2ln(2)3f x x x =--的零点所在区间为( ). A. (2,3) B. (3,4) C. (4,5) D. (5,6)4. 用二分法求方程3250x x --=在区间[2,3]内的实根,由计算器可算得(2)1f =-,(3)16f =,(2.5)5.625f =,那么下一个有根区间为 .5. 函数()lg 27f x x x =+-的零点个数为 ,大致所在区间为 .课后作业1. 求方程0.90.10x x -=的实数解个数及其大致所在区间.2. 借助于计算机或计算器,用二分法求函数3()2f x x =-的零点(精确到0.01).§3.1 函数与方程(练习)1. 体会函数的零点与方程根之间的联系,掌握零点存在的判定条件;2. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;3. 初步形成用图象处理函数问题的意识.8694 复习1:函数零点存在性定理.如果函数()y f x =在区间[,]a b 上的图象是连续不断的一条曲线,并且有 ,那么,函数()y f x =在区间(,)a b 内有零点.复习2:二分法基本步骤.①确定区间[,]a b ,验证()()0f a f b <g ,给定精度ε; ②求区间(,)a b 的中点1x ;③计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <g ,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <g ,则令1a x =(此时零点01(,)x x b ∈); ④判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤②~④.二、新课导学 ※ 典型例题例1已知3()2log (19)f x x x =+≤≤,判断函数22()()()g x f x f x =+有无零点?并说明理由.例2若关于x 的方程268x x a -+=恰有两个不等实根,求实数a 的取值范围.小结:利用函数图象解决问题,注意|()|f x 的图象.例3试求()f x =381x x -+在区间[2,3]内的零点的近似值,精确到0.1.小结:利用二分法求方程的近似解. 注意理解二分法的基本思想,掌握二分法的求解步骤. ※ 动手试试练1. 已知函数()()14,4x f x e g x x -=-=,两函数图象是否有公共点?若有,有多少个?并求出其公共点的横坐标.若没有,请说明理由.练2. 选择正确的答案.(1)用二分法求方程在精确度ε下的近似解时,通过逐步取中点法,若取到区间(),a b 且()()0f a f b <g ,此时不满足a b ε-<,通过再次取中点2a bc +=,有()()0f a f c <g ,此时a c ε-<,而,,a b c 在精确度ε下的近似值分别为123,,x x x (互不相等).则()f x 在精确度ε下的近似值为( ).A. 1xB. 2xC. 3xD. ε(2)已知12,x x 是二次方程()f x 的两个不同实根,34,x x 是二次方程()0g x =的两个不同实根,若12()()0g x g x <g ,则( ). A. 1x ,2x 介于3x 和4x 之间 B. 3x ,4x 介于1x 和2x 之间 C. 1x 与2x 相邻,3x 与4x 相邻 D. 1x ,2x 与3x ,4x 相间相列三、总结提升 ※ 学习小结1. 零点存在性定理;2. 二分法思想及步骤;※ 知识拓展若函数()f x 的图象在0x x =处与x 轴相切,则零点0x 通常称为不变号零点;若函数()f x 的图象在0x x =处与x 轴相交,则零点0x 通常称为变号零点.二分法的条件()()f a f b g 0<表明用二分法求函数的近似零点都是指变号零点.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 若()y f x =的最小值为2,则()1y f x =-的零点个数为( ). A. 0 B. 1 C. 0或l D. 不确定2. 若函数()f x 在[],a b 上连续,且同时满足()()0f a f b <g ,()()02a bf a f +>g .则( ). A. ()f x 在[,]2a ba +上有零点 B. ()f x 在[,]2a bb +上有零点C. ()f x 在[,]2a ba +上无零点D. ()f x 在[,]2a bb +上无零点3. 方程2|2|lg x x -=的实数根的个数是( ). A. 1 B. 2 C. 3 D.无数个4. 方程24x x +=的一个近似解大致所在区间为 .5. 下列函数:① y =lg x ; ② 2x y =; ③ y = x 2;④ y = |x | -1. 其中有2个零点的函数的序号是 .1.已知2()22f x x x =+-,(1)如果2()(2)g x f x =-,求()g x 的解析式; (2)求函数()g x 的零点大致所在区间.2. 探究函数0.3x y =与函数0.3log y x =的图象有无交点,如有交点,求出交点,或给出一个与交点距离不超过0.1的点.§3.2.1几类不同增长的函数模型(1)1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;3. 恰当运用函数的三种表示法(解析式、图象、列表)并借助信息技术解决一些实际问题.9598阅读:澳大利亚兔子数“爆炸”有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.二、新课导学※典型例题例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?反思:①在本例中涉及哪些数量关系?如何用函数描述这些数量关系?②根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.例2某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:0.25y x =;7log 1y x =+; 1.002x y =. 问:其中哪个模型能符合公司的要求?反思:① 此例涉及了哪几类函数模型?本例实质如何?② 根据问题中的数据,如何判定所给的奖励模型是否符合公司要求? ※ 动手试试练1. 如图,是某受污染的湖泊在自然净化过程中,某种有害物质的剩留量y 与净化时间t (月)的近似函数关系:t y a =(t ≥0,a >0且a ≠1).有以下叙述① 第4个月时,剩留量就会低于15;② 每月减少的有害物质量都相等;③ 若剩留量为111,,248所经过的时间分别是123,,t t t ,则123t t t +=.其中所有正确的叙述是 .练2. 经市场调查分析知,某地明年从年初开始的前n 个月,对某种商品需求总量()f n (万件)近似地满足关系4(2,)9y1 t (月)()()()()113521,2,3,,12150f n n n n n =+-=L . 写出明年第n 个月这种商品需求量()g n (万件)与月份n 的函数关系式.三、总结提升 ※ 学习小结1. 两类实际问题:投资回报、设计奖励方案;2. 几种函数模型:一次函数、对数函数、指数函数;3. 应用建模(函数模型);※ 知识拓展解决应用题的一般程序:① 审题:弄清题意,分清条件和结论,理顺数量关系;② 建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型; ③ 解模:求解数学模型,得出数学结论;※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,现有2个这样的细胞,分裂x 次后得到的细胞个数y 为( ). A .12x y += B. y =21x - C. y =2x D. y =2x2. 某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与时间x 的关系,可选用( ).A. 一次函数B. 二次函数C. 指数型函数D. 对数型函数3. 一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,它的解析式为( ). A. y =20-2x (x ≤10) B. y =20-2x (x <10) C. y =20-2x (5≤x ≤10) D. y =20-2x (5<x <10)4. 某新品电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则销量y 与投放市场的月数x 之间的关系可写成 .5. 某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么每轮病毒发作时,这台计算机都可能感染没被感染的20台计算机. 现在10台计算机在第1轮病毒发作时被感染,问在第5轮病毒发作时可能有 台计算机被感染. (用式子表示)某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新价标在价目卡上,并注明按该价20%销售. 这样,仍可获得25%的纯利. 求此个体户给这批服装定的新标价与原标价之间的函数关系.§3.2.1几类不同增长的函数模型(2)1. 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;2. 借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;3. 恰当运用函数的三种表示法(解析式、图象、列表)并借助信息技术解决一些实际问题.98101复习1:用石板围一个面积为200平方米的矩形场地,一边利用旧墙,则靠旧墙的一边长为___________米时,才能使所有石料的最省.复习2:三个变量,,y y y 随自变量x 的变化情况如下表:呈指数型函数变化的变量是________,呈幂函数型变化的变量是________.二、新课导学 ※ 学习探究探究任务:幂、指、对函数的增长差异问题:幂函数(0)n y x n =>、指数函数(1)x y a a =>、对数函数log (1)a y x a =>在区间(0,)+∞上的单调性如何?增长有差异吗?实验:函数2x y =,2y x =,log y x =,试计算: x 1 2 3 4 5 6 7 8y 1y 2y 311.5822.32 2.58 2.813思考:22log ,2,x x x 大小关系是如何的?增长差异? (1)x y a a =>,log (1)a y x a =>和结论:在区间(0,)+∞上,尽管(0)n y x n =>都是增函数,但它们的增长速度不同,而且不在同一(1)x y a a =>的增长速度越来越快,会个“档次”上,随着x 的增大,超过并远远大于(0)n y x n =>的增长速度.而log (1)a y x a =>的增长存在一个0x ,当0x x >时,就有速度则越来越慢.因此,总会log n x a x x a <<.※ 典型例题例1某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量t 与月份的x 关系,模拟函数可以选用二次函数或函数(,,)x y ab c a b c =+其中为常数. 已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.小结:待定系数法求解函数模型;优选模型. ※ 动手试试练 1. 为了预防流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为1()16t a y -=(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 .(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.练2. 某商场购进一批单价为6元的日用品,销售一段时间后,为了获得更多利润,商场决定提高销售价格. 经试验发现,若按每件20元的价格销售时,每月能卖360件,若按25元的价格销售时,每月能卖210件,假定每月销售件数y (件)是价格x (元/件)的一次函数.(1)试求y 与x 之间的关系式;(2)在商品不积压,且不考虑其它因素的条件下,问销售价格定为多少时,才能时每月获得最大利润?每月的最大利润是多少?三、总结提升 ※ 学习小结直线上升、指数爆炸、对数增长等不同函数模型的增长的含义.※ 知识拓展在科学试验、工程设计、生产工艺和各类规划、决策与管理等许多工作中,常常要制订最优化方案,优选学是研究如何迅速地、合理地寻求这些方案的科学理论、模型与方法. 它被广泛应用于管理、生产、科技和经济领域中,几乎可以用于凡是有数值加工的每个领域. 中.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 某工厂签订了供货合同后组织工人生产某货物,生产了一段时间后,由于订货商想再多订一些,但供货时间不变,该工厂便组织工人加班生产,能反映该工厂生产的货物数量y 与时间x 的函数图象大致是( ).2. 下列函数中随x 增大而增大速度最快的是( ). A .2007ln y x = B .2007y x =C .2007xe y = D .20072x y =⋅3. 根据三个函数2()2,()2,()log x f x x g x h x x ===给出以下命题: (1)(),(),()f x g x h x 在其定义域上都是增函数; (2)()f x 的增长速度始终不变;(3)()f x 的增长速度越来越快; (4)()g x 的增长速度越来越快;(5)()h x 的增长速度越来越慢。

高中数学人教A版必修1第三章3、1、1方程的根与函数的零点的近似值 - 教案

高中数学人教A版必修1第三章3、1、1方程的根与函数的零点的近似值 - 教案

3.1.1 方程的根与函数的零点第二课一、教学目标:① 进一步巩固函数零点的概念,会求基本初等函数的零点;② 掌握方程的根与函数零点之间的等价关系,体会函数方程的转化思想; ③ 对函数零点,零点所在的区间及零点个数各题型有所思有所为。

二、课前预习:(务必课前总结)1、我们学习过的那些函数?它们的图像特点?①一次函数()0y kx b k =+≠:0k >时,是一条递增的直线;0k <时,是一条递减的直线。

b 是图像与y 轴交点的纵坐标,如0b =时,直线过原点。

②二次函数 ③指数函数 ④对数函数 ⑤幂函数2、默写函数零点定理与函数零点存在性定理三、教学过程探讨1:求函数()324f x x x =--+的零点。

探讨2:解决下列两个问题,并试图发现问题中的共性①确定正整数k 的值,使得函数()324f x x x =--+在区间(),1k k +上存在零点。

②试画出函数3y x =与24y x =-+的图像,并分析两个图像交点情况。

你所发现的共性:找出一个数0x 作为函数()324f x x x =--+零点的近似值。

(精度为0.1) 课堂练习:判断下列函数的零点个数①()22f x x x =-+②()lg 2f x x x =-+ ③()2log 2xf x x =+④()()2ln 23f x x x =-- ⑤()32221f x x x x =--+ 课后练习: 1.函数6)(2-+=x x x f 的零点为2.函数2)(+=ax x f 在区间)2,1(-上有零点,则a 的取值范围是3.函数11ln )(--=x x x f 的零点的个数是 ( )A .0个B .1个C .2个D .3个4.设函数3y x =与22xy -=的图象的交点为00()x y ,,则0x 所在的区间是 ( )A .(01),B .(12),C .(23),D .(34),5.根据表格中的数据,可以判定方程20x e x --=的一个零点所在的区间为))(1,(N k k k ∈+,则k 的值为 ;6、函数()11f x x =-的图像与函数()31y x =-的图像所有交点的横坐标之和等于 ( ) A. 2 B.4 C.6 D8.7、已知函数()21log 2xf x x ⎛⎫=- ⎪⎝⎭,且实数0a b c <<<满足()()()0f a f b f c <,若实数0x 是函数()y f x =的一个零点,那么下列不等式中不可能成立的是 ( ) A. 0x a < B. 0x c < C. 0x b > D. 0x c >8、确定正整数k 的值,使得函数()237xf x x =+-在区间(),1k k +上存在零点,并确定零点的一个近似值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省泰安市肥城市第三中学高考数学一轮复习函数与方程教案
几个等价关系
上的图象是连续不断的一条曲线,并且有
轴的交点
但不宜用二分法求交点横坐标的是( B )
、方程125x x +-=的解所在区间( B )
A (0,1)
B (1,2)
C (2,3) D(3,4)
则下一个有根区间是(精确度
即函数只有一个解。

的交点。

个不同实数解,即0
(
C

=(4m)^2-8(m+1)(2m-1)>0 -m+1>0
,则二次函数

取值范围是,
精美句子
1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了
6、朋友是什么?
朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

7、一粒种子,可以无声无息地在泥土里腐烂掉,也可以长成参天的大树。

一块铀块,可以平庸无奇地在石头里沉睡下去,也可以产生惊天动地的力量。

一个人,可以碌碌无为地在世上厮混日子,也可以让生命发出耀眼的光芒。

8、青春是一首歌,她拨动着我们年轻的心弦;青春是一团火,她点燃了我们沸腾的热血;青春是一面旗帜,她召唤着我们勇敢前行;青春是一本教科书,她启迪着我们的智慧和心灵。

相关文档
最新文档