光纤通信重要知识点总结

合集下载

光纤通信基础知识

光纤通信基础知识

光纤通信的基本概念光导纤维,是一种介质光波导,能把光封闭其中并且使光沿轴向进行传播的导波结构。

由石英玻璃、合成树脂等材料制成的极细的纤维。

单模光纤:纤芯8-10um、包层125um多模光纤:纤芯51um、包层125um利用光导纤维传输光信号的通信方式称为光纤通信。

光波属于电磁波的范畴。

可见光的波长范围是390-760nm,大于760nm部分是红外光,小于390nm部分是紫外光。

光波的工作窗口(三个通信窗):光纤通信中应用的波长范围是在近红外区短波长区(可见光,肉眼看是一种橘黄色的光)850nm橘黄色的光长波长区(不可见光区)1310nm(理论上的色散最小点)、1550nm (理论上的衰减最小点)光纤的结构与分类1. 光纤的结构理想的光纤结构:纤芯、包层、涂覆层、护套构成。

纤芯和包层用石英材料制作,机械性能比较脆弱,容易断,故一般会加两层涂覆层,一层树脂型、一层尼龙型,使得光纤柔性性能达到工程实际运用的要求。

2.光纤的分类(1)光纤按照光纤横截面的折射率分布划分:分为阶跃型光纤(均匀光纤)和渐变型光纤(非均匀光纤)。

假设,纤芯折射率为n1,包层折射率为n2为了使纤芯能够远距离传光,构成光纤的必要条件是n1>n2均匀光纤的折射率分布是个常数非均匀光纤的折射率分布规律:其中,△——相对折射率差α——折射指数,α=∞——阶跃型折射率分布光纤,α=2——平方律折射率分布光纤(一种渐变型光纤)这种光纤比起其他渐变型光纤,模式色散最小最优(2)按纤芯中所传输的模式数量来划分:分为多模光纤和单模光纤这里的模式是指:在光纤中所传输的光线的一种电磁场的分布,不同的场分布就是一种不同的模式。

单模(光纤中只传输一种模式)、多模(光纤中同时传输多种模式)目前由于对传输的速率要求越来越高、传输的数量要求越来越多,城域网向高速大容量方向发展,所以采用的多是单模阶跃型光纤。

(本身传输特性优于多模光纤)(3)光纤的特性:①光纤的损耗特性:光波在光纤中传输,随着传输距离的增加而光功率逐渐下降。

光纤通信技术知识点简要(考试必备)

光纤通信技术知识点简要(考试必备)

光纤通信.1.光纤结构光纤是由中心的纤芯和外围的包层同轴组成的圆柱形细丝。

纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。

包层为光的传输提供反射面和光隔离,并起一定的机械保护作用。

设纤芯和包层的折射率分别为n1和n2,光能量在光纤中传输的必要条件是n1>n2。

2.光纤主要有三种基本类型: 突变型多模光纤,渐变型多模光纤, 单模光纤. 相对于单模光纤而言,突变型光纤和渐变型光纤的纤芯直径都很大,可以容纳数百个模式,所以称为多模光纤3.光纤主要用途:突变型多模光纤只能用于小容量短距离系统。

渐变型多模光纤适用于中等容量中等距离系统。

单模光纤用在大容量长距离的系统。

1.55μm 色散移位光纤实现了10 Gb/s容量的100 km的超大容量超长距离系统。

色散平坦光纤适用于波分复用系统,这种系统可以把传输容量提高几倍到几十倍。

三角芯光纤有效面积较大,有利于提高输入光纤的光功率,增加传输距离。

偏振保持光纤用在外差接收方式的相干光系统,这种系统最大优点是提高接收灵敏度,增加传输距离。

4.分析光纤传输原理的常用方法:几何光学法.麦克斯韦波动方程法5.几何光学法分析问题的两个出发点: 〓数值孔径〓时间延迟. 通过分析光束在光纤中传播的空间分布和时间分布. 几何光学法分析问题的两个角度: 〓突变型多模光纤〓渐变型多模光纤.6.产生信号畸变的主要原因是光纤中存在色散,损耗和色散是光纤最重要的传输特性:损耗限制系统的传输距离, 色散则限制系统的传输容量.7.色散是在光纤中传输的光信号,由于不同成分的光的时间延迟不同而产生的一种物理效应. 色散的种类:模式色散、材料色散、波导色散.8. 波导色散纤芯与包层的折射率差很小,因此在交界面产生全反射时可能有一部分光进入包层之内,在包层内传输一定距离后又可能回到纤芯中继续传输。

进入包层内的这部分光强的大小与光波长有关,即相当于光传输路径长度随光波波长的不同而异。

光纤通信重要知识点总结

光纤通信重要知识点总结

光纤通信重要知识点总结光纤通信是指利用光纤作为传输介质进行信息传输的通信方式。

光纤通信具有高带宽、长传输距离、低损耗和抗干扰等优点,因此在现代通信领域得到广泛应用。

下面是光纤通信的重要知识点总结:1.光纤的组成与结构:光纤主要由芯、包层和包衣组成。

芯是光信号传输的区域,通常由高折射率的材料制成;包层是用低折射率材料包围芯,起到光信号在纤芯内反射传播的作用;包衣是保护光纤的外层,通常由聚合物材料制成。

2.光纤的工作原理:光信号通过光纤的内部反射传播。

当光线从纤芯射入包层界面时,根据全反射原理,光线会完全反射回纤芯内部,从而沿着光纤传输。

通过控制入射角度和光纤材料的折射率可实现光信号的传输和传播。

3.光纤的传输特性:光纤具有高带宽、低损耗和低延迟等优点。

由于采用了光的传输方式,能够实现高速率的数据传输,大大提高了通信的速度和容量。

光纤的损耗非常低,可以在长距离范围内传输信号,而且几乎不受电磁干扰和信号衰减影响。

同时,光信号在光纤中的传输速度非常快,几乎接近光速,因此具有低延迟特性。

4.光纤通信系统的组成:光纤通信系统一般由光源、调制器、光纤传输介质、光解调器和接收器等组成。

光源可以是激光器或发光二极管等,用来产生光信号。

调制器用来将电信号转换成光信号,例如使用调制技术将数字信号转换成光脉冲信号。

光解调器则将光信号转换为电信号,通常使用光电二极管或光电探测器等光电转换器件。

接收器接收到光信号后进行信号处理和解码,将其转化为原始的电信号。

5.光纤通信的调制技术:光纤通信中常用的调制技术包括直接调制和外调制两种。

直接调制是通过改变激光器的电流或电压来实现光信号的调制,简单且成本低,但调制深度较浅。

外调制则是利用外部器件(如调制器)来对光信号进行调制,可以实现高深度的调制,但需要较复杂的设备和技术。

6.光纤通信网络的结构:光纤通信网络一般采用分布式结构或集中式结构。

分布式结构中,光纤纷纱采用星型或网状拓扑结构连接各个用户,每个用户都连接到一个光纤节点。

光纤通信重要知识点总结

光纤通信重要知识点总结

光纤通信重要知识点总结一、概述当我们谈论信息传输的时候,光纤通信就像是连接你我他的重要纽带。

你可能会觉得光纤是一个离生活很远的概念,其实不然它在我们的日常生活中无处不在,为我们的互联网生活提供了高效快捷的服务。

接下来让我们一起了解下关于光纤通信的一些重要的知识点吧。

光纤通信简单来说,就是通过光的信号传输信息的方式。

在这个过程中,光纤就像是一条信息的高速公路,承载着各种数据在网络的各个角落自由穿梭。

它的重要性在于其传输速度快、距离远、稳定性高,为现代社会的通信需求提供了强大的支持。

它就像我们生活中的一道桥梁,让我们的通话、视频聊天或者浏览网页都能流畅进行。

听起来很有趣对吧?接下来我们会深入了解它的工作原理和特点等内容。

1. 光纤通信概述及其在现代社会的重要性嘿,朋友们你们是否知道我们如今依赖的互联网、电视信号和电话通讯背后,其实有一个神奇的科技力量在支撑,那就是光纤通信。

光纤通信就像是信息时代的超级高速公路,负责把我们的数字世界连接在一起。

那么什么是光纤通信呢?简单来说光纤通信就是通过光信号在光纤中传输信息的一种方式。

接下来我们来聊聊它在现代社会的重要性。

想象一下如果没有光纤通信,我们的世界会是什么样?可能我们无法随时随地与朋友视频聊天,无法在家观看世界各地的新闻和娱乐节目,甚至无法享受在线购物的便利。

光纤通信已经成为我们日常生活中不可或缺的一部分,它的重要性体现在以下几个方面:首先光纤通信提供了超高速的数据传输速度,这对于大数据处理、云计算、在线视频会议等应用至关重要。

想象一下医生通过光纤网络进行远程手术指导,或者学生们通过网络进行实时的互动学习,这都是光纤通信技术带来的变革。

其次光纤通信具有极高的稳定性和可靠性,在数字化时代,信息的连续性和准确性至关重要。

光纤由于其物理特性,能够抵抗电磁干扰和天气影响,保证了通信的稳定性和可靠性。

光纤通信的带宽大,容量大。

这意味着它可以同时处理大量的数据和信息,支持更多的用户和设备接入网络。

光纤通信 知识点总结

光纤通信 知识点总结

光纤通信知识点总结引言光纤通信是一种通过光纤传输光信号的通信技术,它使用光纤作为传输媒质,通过光的反射、折射和传播来实现信息的传输。

光纤通信具有带宽大、传输速度快、抗干扰性强、安全可靠等优点,因此在现代通信中得到了广泛的应用。

本文将对光纤通信的相关知识点进行总结,包括光纤通信的基本原理、组成结构、传输特点、光纤通信系统的组成和工作原理、光纤通信的发展趋势等内容。

一、光纤通信的基本原理1. 光的特性光波是一种电磁波,具有波粒二象性,既可以表现为波动又可以表现为微粒。

光波的主要特性包括波长、频率、相速度、群速度等。

2. 光纤的基本原理光纤是一种通过光的全反射来传输光信号的一种传输媒质。

它的基本结构是由一根纤维芯和包覆在外的包层组成,通过这样的结构使得光信号可以沿着光纤的传输方向不断进行反射和传播。

二、光纤通信的组成结构1. 光纤的结构光纤由芯和包层构成,芯是由单质或复合材料制成,包层是由低折射率的材料构成,使得光可以在芯和包层的界面上发生全反射。

2. 光纤的连接器连接器是光纤通信中的重要部分,它用于将光纤连接在一起,保证光信号的传输质量。

3. 光纤的光源和接收器光源是产生光波的设备,用于向光纤中输入光信号;接收器是用于接收光纤传输过来的光信号,并将其转换为电信号。

三、光纤通信的传输特点1. 带宽大光纤通信的带宽远远大于传统的铜线通信,可以传输更多的信息。

2. 传输距离远光纤通信的传输距离远远大于铜线通信,可以满足更长距离的通信需求。

3. 传输速度快光纤通信的传输速度远远快于铜线通信,可以实现更快的数据传输。

4. 抗干扰性强光纤通信的信号传输过程中不受电磁干扰,抗干扰性能强。

5. 安全可靠光纤信号传输过程中不会泄露电磁波,安全可靠。

四、光纤通信系统的组成和工作原理1. 光纤通信系统的组成光纤通信系统由光源、光纤、接收器、调制解调器、复用器、解复用器等组成。

2. 光纤通信系统的工作原理光源产生光信号,光信号经过调制解调器进行调制,然后通过光纤进行传输,接收器接收光信号并将其转换为电信号,经过复用器和解复用器将多个信号合并或分解,最终传输到目标设备。

光纤通信知识点归纳

光纤通信知识点归纳

第1章概述1、光纤通信的基本概念:利用光导纤维传输光波信号的通信方式。

光纤通信工作波长在于近红外区:0.8~1.8μm的波长区,对应频率: 167~375THz。

对于SiO2光纤,在上述波长区内的三个低损耗窗口,是目前光纤通信的实用工作波长,即0.85μm、1.31μm及1.55μm。

2、光纤通信系统的基本组成:(P2图1-3)目前采用比较多的系统形式是强度调制/直接检波(IM/DD)的光纤数字通信系统。

该系统主要由光发射机、光纤、光接收机以及长途干线上必须设置的光中继器组成。

1)在点对点的光纤通信系统中,信号的传输过程:由电发射机输出的脉码调制信号送入光接收机,光接收机将电信号转换成光信号耦合进光纤,光接收机将光纤送过来的光信号转换成电信号,然后经过对电信号的处理以后,使其恢复为原来的脉码调制信号送入电接收机,最后由信息宿恢复用户信息。

2)光发射机中的重要器件是能够完成电-光转换的半导体光源,目前主要采用半导体发光二极管(LED)和半导体激光二极管(LD)。

3)光接收机中的重要部件是能够完成光-电转换的光电检测器,目前主要采用光电二极管(PIN)和雪崩光电二极管(APD)。

特性参数:灵敏度4)一般地,大容量、长距离光纤传输: 单模光纤+半导体激光器LD小容量、短距离光纤传输: 多模光纤+半导体发光二极管LED5)光纤线路系统:功能:把来自光发射机的光信号,以尽可能小的畸变和衰减传输到光接收机。

组成:光纤、光纤接头和光纤连接器要求:较小的损耗和色散参数3、光纤通信的特点:优点:(1),传输频带宽,通信容量大。

(2)传输损耗小,中继距离长:石英光纤损耗低达0.19 dB/km,用光纤比用同轴电缆或波导管的中继距离长得多。

(3)保密性能好:光波仅在光纤芯区传输,基本无泄露。

(4)抗电磁干扰能力强:光纤由电绝缘的石英材料制成,不受电磁场干扰。

(5)体积小、重量轻。

(6)原材料来源丰富、价格低廉。

缺点:1)不能远距离传输;2)传输过程易发生色散。

光纤知识点总结(5-9章)

光纤知识点总结(5-9章)

光纤知识点(5-9章)第五章知识点1.数字传输体制有两种:是不同的传输体制协议。

SDH(同步数字传输体制)PDH(准同步数字传输体制)2. SDH对模型的下列几个方面做了规定:(1)网络节点接口(2)同步数字体系的速率(3)帧结构。

(1)网络节点接口传输设备:光缆传输系统设备;微波传输系统设备;卫星传输系统设备。

网络节点:只有复用功能(简单);复用、交叉连接多种功能(复杂)。

(2)速率:同步传输模块:STM-N,N=1、4、16 等。

STM-1 155.520Mbit/s 155Mbit/sSTM-4622.080Mbit/s 622Mbit/sSTM-16 2488.320Mbit/s 2.5Gbit/sSTM-64 9953.280Mbit/s 10Gbit/sSTM-256 39813.12Mbit/s 40Gbit/s(3)帧结构:SDH 帧为块状帧结构,共有9 行,270 列,以字节为单位。

一个STMN 帧有9 行,每行由270×N 个字节组成。

这样每帧共有9×270×N 个字节,每字节为8 bit。

帧周期为125μs,即每秒传输8000 帧。

对于STM1 而言,传输速率为9×270×8×8000=155.520 Mb/s 。

字节发送顺序为:由上往下逐行发送,每行先左后右。

(结构图见书127页,重点)3.STM-N 帧包括三个部分:SOH、AU-PTR、PAYLOAD(结构图见书127页,重点)(1)段开销SOH:RSOH,再生段开销:1~3 行。

MSOH,复用段开销:5~9 行。

区别:监管范围不同。

如:若光纤上传输2.5G 信号,RSOH 监控STM-16 整体的传输性能。

MSOH 监控每一个STM-1 的传输性能。

(2)管理指针AU-PTR:指示净负荷PAYLOAD 中信息的起始字节位置,便于接收端从正确的位置分解出有效传输信息。

光纤通信原理及基础知识

光纤通信原理及基础知识

光纤通信原理及基础知识光纤通信是一种利用光信号传输信息的通信技术。

它基于光波在光纤中的传输,具有高带宽、低损耗、抗干扰等优点,因此在现代通信领域得到广泛应用。

下面将介绍光纤通信的原理和一些基础知识。

1.光纤通信原理光纤通信的原理基于光的全内反射。

光纤是由一个或多个折射率不同的材料构成,光信号通过光纤中的光核进行传输。

当光信号从一个折射率较高的材料传到折射率较低的材料时,会发生全内反射,光信号会在光纤中沿着光核一直传输。

光纤通信系统主要包括光源、光纤和光接收器三个部分。

光源产生光信号并将其注入光纤中,光纤将光信号传输到目标位置,光接收器将光信号转化为电信号进行处理。

这样就完成了光纤通信的整个过程。

2.光纤类型根据应用场景和使用材料的不同,光纤可以分为多种类型。

常见的光纤类型有单模光纤和多模光纤。

单模光纤(Single-Mode Fiber,SMF)是一种具有较小光纤芯径的光纤,适用于远距离传输。

它可以在光纤中传输一个光模式,具有较低的传输损耗和较小的色散效应。

单模光纤主要用于长距离通信和数据传输。

多模光纤(Multi-Mode Fiber,MMF)是一种具有较大光纤芯径的光纤,适用于短距离传输。

多模光纤可以在光纤中传输多个光模式,但由于折射率不同,不同光模式的传输速度会有差异。

多模光纤主要用于局域网、数据中心等短距离通信场景。

3.光纤连接方式光纤连接主要有两种方式:直连和连接器。

直连是将两根光纤通过激光焊接技术直接连接起来。

直连具有较低的插损和回波损耗,但连接时需要专业操作,一旦连接失败将无法更换。

连接器是将光纤端面抛光并用连接器将两根光纤连接在一起。

连接器具有灵活性,连接和更换方便,但具有一定的插损和回波损耗。

4.光纤通信的关键参数光纤通信中,有几个重要的参数需要关注。

带宽是指光纤传输信号的频率范围。

带宽越大,传输速率越高。

损耗是光信号在光纤中传输时丢失的能量。

损耗越小,信号传输的距离越远。

色散是指光信号在光纤中传输时信号传播速度与光波长之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤通信重要知识点总结第一章1.任何通信系统追求的最终技术目标都是要可靠地实现最大可能的信息传输容量和传输距离。

通信系统的传输容量取决于对载波调制的频带宽度,载波频率越高,频带宽度越宽。

2.光纤:由绝缘的石英(SiO2)材料制成的,通过提高材料纯度和改进制造工艺,可以在宽波长范围内获得很小的损耗。

3.光纤通信系统的基本组成:以光纤为传输媒介、光波为载波的通信系统,主要由光发送机、光纤光缆、中继器和光接收机组成。

光纤通信系统既可传输数字信号也可传输模拟信号。

输入到光发射机的带有信息的电信号,通过调制转换为光信号。

光载波经过光纤线路传输到接收端,再由光接收机把光信号转换为电信号。

系统中光发送机的作用是将电信号转换为光信号,并将生成的光信号注入光纤。

光发送机一般由驱动电路、光源和调制器构成,如果是直接强度调制,可以省去调制器。

光接收机的作用是将光纤送来的光信号还原成原始的电信号。

它一般由光电检测器和解调器组成。

光纤的作用是为光信号的传送提供传送媒介,将光信号由一处送到另一处。

中继器分为电中继器和光中继器(光放大器)两种,其主要作用就是延长光信号的传输距离。

为提高传输质量,通常把模拟基带信号转换为频率调制、脉冲频率调制或脉冲宽度调制信号,最后把这种已调信号输入光发射机。

还可以采用频分复用技术,用来自不同信息源的视频模拟基带信号(或数字基带信号)分别调制指定的不同频率的射频电波,然后把多个这种带有信息的RF信号组合成多路宽带信号,最后输入光发射机,由光载波进行传输。

在这个过程中,受调制的RF电波称为副载波,这种采用频分复用的多路电视传输技术,称为副载波复用技术。

目前大都采用强度调制与直接检波方式。

又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。

数字光纤通信系统基本上由光发送机、光纤与光接收机组成。

发送端的电端机把信息进行模数转换,用转换后的数字信号去调制发送机中的光源器件LD,则LD就会发出携带信息的光波,即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”。

光波经低衰耗光纤传输后到达接收端。

在接收端,光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数模转换,恢复成原来的信息。

这样就完成了一次通信的全过程。

4.光纤通信的优点:1通信容量大,一根仅头发丝粗细的光纤可同时传输1000亿个话路2中继距离长,光纤具有极低的衰耗系数,配以适当的光发送与光接收设备,可使其中继距离达数百千米以上,因此光纤通信特别适用于长途一、二级干线通信。

3.保密性能好4.适应能力强5.体积小、重量轻、便于施工维护6.原材料资源丰富,节约有色金属和能源,潜在价格低廉,制造石英光纤的原材料是二氧化硅(砂子),而砂子在自然界中几乎是取之不尽、用之不竭的5.光发射机:功能是把输入的电信号转换为光信号,并用耦合技术把光信号最大限度地注入光纤线路。

光发射机由光源、驱动器和调制器组成。

光源是光发射机的核心。

光发射机的性能基本上取决于光源的特性,对光源的要求是输出光功率足够大,调制频率足够高,谱线宽度和光束发散角尽可能小,输出功率和波长稳定,器件寿命长。

6.实现光源调制的方法:直接调制和外调制。

直接调制是用电信号直接调制半导体激光器或发光二极管的驱动电流,使输出光随电信号变化而实现的。

这种方案技术简单,成本较低,容易实现,但调制速率受激光器的频率特性所限制。

外调制是把激光的产生和调制分开,用独立的调制器调制激光器的输出光而实现的。

外调制的优点是调制速率高,缺点是技术复杂,成本较高,因此只有在大容量的波分复用和相干光通信系统中使用。

6.光纤线路:光纤线路的功能是把来自光发射机的光信号,以尽可能小的畸变(失真)和衰减传输到光接收机。

光纤线路由光纤、光纤接头和光纤连接器组成。

光纤是光纤线路的主体,接头和连接器是不可缺少的器件。

光纤线路的性能主要由缆内光纤的传输特性决定。

对光纤的基本要求是损耗和色散这两个传输特性参数都尽可能地小,而且有足够好的机械特性和环境特性。

7.石英光纤在近红外波段,其损耗随波长的增大而减小,在0.85μm、1.31μm和1.55μm有3个损耗很小的波长窗口。

在这3个波长的窗口损耗分别小于2dB/km、0.4dB/km和0.2dB/km。

8.光接收机:功能是把从光纤线路输出、产生畸变和衰减的微弱光信号转换为电信号,并经放大和处理后恢复成发射前的电信号。

光接收机由光检测器、放大器和相关电路组成,光检测器是光接收机的核心,对光检测器的要求是响应度高、噪声低和响应速度快。

光检测器类型:在半导体PN结中加入本征层的PIN光敏二极管和雪崩光敏二极管。

光接收机把光信号转换为电信号的过程,是通过光检测器的检测实现的。

检测方式有直接检测和外差检测两种。

直接检测是用检测器直接把光信号转换为电信号。

这种检测方式设备简单、经济实用,是当前光纤通信系统普遍采用的方式。

外差检测要设置一个本地振荡器和一个光混频器,使本地振荡光和光纤输出的信号光在混频器中产生差拍而输出中频光信号,再由光检测器把中频光信号转换为电信号。

难点是需要频率非常稳定、相位和偏振方向可控制,以及谱线宽度很窄的单模激光源,优点是有很高的接收灵敏度。

光接收机最重要的特性参数是灵敏度。

灵敏度是衡量光接收机质量的综合指标,它反映接收机调整到最佳状态时,接收微弱光信号的能力。

灵敏度主要取决于组成光接收机的光敏二极管和放大器的噪声,并受传输速率、光发射机的参数和光纤线路的色散的影响,还与系统要求的误码率或信噪比有密切关系。

9.空间光通信与传统的微波通信相比,其显著的优点为:1通信容量大。

2体积小。

3功耗低。

4建造经费和维护经费低。

10.空间光通信是指在两个或多个终端之间,利用在空间传输的激光束作为信息载体,实现通信,空间光通信关键技术:1激光器技术对激光波长的研究主要集中在800nm、1000nm及1550nm三个波段,与以上三种波长对应的半导体激光器、固体激光器和光纤激光器。

2.捕获、瞄准、跟踪技术3.调制、接收技术,调制方式分为调幅、调频、调相,接收直接强度探测,即非相干探测具有结构简单、成本低、易实现等优点。

相干(外差)探测这种方法具有接收灵敏度高、抗干扰能力强等优点,但系统较为复杂,对元器件性能要求较高,特别是对波长的稳定性和谱线宽度要求较高11.光通信链路功率设计原则主要是保证在所要求的参数(通信距离、系统码率及误码率)条件下,光接收端机探测器上接收到的最小功率Prmin大于接收机灵敏度的要求。

第二章1.光源是光发射机的主要器件,主要功能是实现信号的电—光转换,作用是将电数字脉冲信号转换为光数字脉冲信号并将此信号送入光纤线路进行传送。

光检测器位于光接收机内,主要功能是实现信号的光—电转换,2.光源性能的基本要求与类型:1发光波长与光纤的低衰减窗口相符2足够的光输出功率3可靠性高、寿命长4温度稳定性好5光谱宽度窄,由于光纤有色散特性,使较高速率信号的传输距离受到一定限制。

若光源谱线窄,则在同样条件下的无中继传输距离就长。

6调制特性好7与光纤的耦合效率高8尺寸小、重量轻3.光源的类型:光纤通信光源分为半导体激光器(LD)和发光二极管(LED)。

半导体光源优点是其工作波长可以对准光纤的低损耗、低色散窗口,还具有体积小、功耗低、易于实现内调制等特点,特别适用于光纤通信。

缺点,包括输出功率小、热稳定性差、远场发散角大(指半导体光源发出的激光功率不够集中,大致分布在30°左右的立体角内,因而有相当一部分光功率不能耦合进光纤,这一部分丢失的光功率就是“入纤损耗”的主要机理。

)半导体光源的输出功率小和入纤损耗大,限制了通信的无再生距离。

热稳定性差,环境温度超过40℃时应有监测和告警。

发光二极管分为边发光、面发光和超辐射三种结构。

同一波长的LD和LED采用相同组成的有源层(即发光层),它们的区别在于结构和工作原理不同。

LD的输出功率大,入纤耦合效率高,但稳定性较差;而LED的输出功率小,耦合损耗也较大,但稳定性好,寿命几乎不成问题,价格也较LD便宜。

一般长途干线使用LD作光源,短距离的本地网发送机选用LED。

4.半导体光源:半导件激光器是向半导体PN结注入电流,实现粒子数的反转分布,产生受激辐射,再利用谐振腔的正反馈,实现光放大而产生激光.绝大部分粒子处于基态,只有较少数的粒子被激发到高能级,且能级越高,处于该能级的粒子数越小。

k0=1.38×10-23J/K,k0为玻耳兹曼常数.电子在原子核外的跃迁有三种基本方式:自发辐射、受激辐射和受激吸收.受激辐射是受激吸收的逆过程。

电子在E1和E2两个能级之间跃迁,吸收的光子能量或辐射的光子能量都要满足玻尔条件,即E2-E1=hf12h为普朗克常数,h=6.626×10-34J·s;f12为吸收或辐射的光子频率。

5.粒子反转分布:产生受激辐射和产生受激吸收的物质是不同的。

设在单位物质中,处于低能级和处于高能级的粒子数分别为N1和N2。

当系统处于热平衡状态时,存在分布 k0为玻尔兹曼常数,k0=1.38×10-23J/K;T为热力学温度。

由于(E2-E1)>0,T>0,总有N1>N2。

这是因为电子总是首先占据低能量的轨道。

受激吸收和受激辐射的速率分别比例于N1和N2且比例系数相等。

如果N1> N2,即受激吸收大于受激辐射。

当光通过这种物质时,光强按指数衰减,这种物质称为吸收物质。

通常情况下,粒子具有正常能级分布,总是低能级上的粒子数比高能级上的粒子数多。

所以光的受激吸收比受激辐射强,因此光总是受到衰减。

要想获得光的放大,必须使受激辐射强于受激吸收。

也就是说,使N2> N1,当光通过这种物质时,会产生放大作用,这种物质称为激活物质。

N2> N1的分布和正常状态(N2> N1)的分布相反,所以称为粒子数反转分布。

处于粒子数反转分布的物质称为激活物质或增益物质。

要想得到粒子数反转分布,一般采用光激励、放电激励、化学激励等方法,给物质能量,以求把低能级的粒子激发到高能级上去,这个过程叫泵浦。

13.光源与光纤的耦合:光源和光纤耦合的程度,可以用耦合效率η来衡量,它的定义为η=P F/Ps. PF 为耦合入光纤的光功率;Ps为光源发射的光功率。

η的大小取决于光源和光纤的类型,LED和单模光纤的耦合效率较低,LD和单模光纤的耦合效率更低。

影响光源与光纤耦合效率的主要因素是光源的发散角和光纤的数值孔径NA。

发散角越大,耦合效率越低;数值孔径越大,耦合效率越高。

此外,光源的发光面、光纤端面尺寸、形状以及二者间距都会直接影响耦合效率。

相关文档
最新文档