高中数学概念图知识点

合集下载

高中数学知识框架思维导图(整理版)

高中数学知识框架思维导图(整理版)

基本初等函数 指数函数、对数函数、幂函数、三角函数 分段函数 复合函数 抽象函数 函数与方程 函数的应用 分段探究,整体考察 复合函数的单调性:同增异减 赋值法、典型的函数模型 零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换:������ = ������(������) → ������ = ������(������ ± ������),������ = ������(������) → ������ = ������(������) ± ������,������, ������ > 0 函数图象 及其变换 对称变换:������ = ������(������) → ������ = −������(������),������ = ������(������) → ������ = ������(−������),������ = ������(������) → ������ = −������(−������) 翻折变换:������ = ������(������) → ������ = |������(������)|,������ = ������(������) → ������ = ������(|������|) 伸缩变换:������ = ������(������) → ������ = ������������(������),������ = ������(������) → ������ = ������(������������)
������
第二部分
角的概念
三角函数与平面向量
弧长公式������ = ������������、扇形面积公式������ = ������������
2 1 π 2

高中数学知识点树形图总结

高中数学知识点树形图总结

高中数学知识点树形图总结一、数与代数1. 数的基本概念- 整数s与有理数- 实数与复数- 绝对值与相反数- 乘法口诀与乘除法规则2. 代数表达式- 单项式与多项式- 因式分解- 代数式的加减乘除- 完全平方公式与立方和差公式3. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 一元一次不等式及其解集- 线性函数的图像与性质4. 二元一次方程组- 方程组的解- 消元法- 代入法- 线性方程组的图像解法5. 一元二次方程- 一元二次方程的标准形式- 配方法- 公式法- 因式分解法- 根的判别式与根与系数的关系6. 不等式与不等式组- 不等式的性质- 解一元二次不等式- 含绝对值的不等式- 不等式组及其解集的确定二、平面几何1. 点、线、面- 点的位置关系- 直线的方程- 射线与线段- 平面的基本性质2. 三角形与四边形- 三角形的基本性质- 特殊三角形(等腰、等边、直角) - 四边形的分类与性质- 多边形的内角和与外角和3. 圆的基本性质- 圆的定义与性质- 圆的方程- 切线与割线- 圆与圆的位置关系4. 相似与全等- 全等三角形的判定- 相似三角形的判定与性质- 比例与相似比- 相似多边形5. 三角函数- 正弦、余弦、正切函数- 三角函数的基本关系- 三角函数的图像与性质- 解三角形问题6. 几何变换- 平移与旋转- 轴对称与中心对称- 相似变换与全等变换三、立体几何1. 空间几何体- 棱柱、棱锥与圆柱、圆锥 - 长方体与正方体- 球的体积与表面积- 多面体的表面积与体积 2. 空间位置关系- 点与直线的位置关系- 直线与平面的位置关系 - 直线与直线的位置关系 - 平面与平面的位置关系 3. 空间向量- 向量的加法与数乘- 向量的点积与叉积- 向量的模与方向余弦- 向量在立体几何中的应用四、概率与统计1. 概率的基本概念- 随机事件与概率的定义 - 事件的概率计算- 条件概率与独立事件2. 随机变量及其分布- 离散型随机变量- 连续型随机变量- 概率分布与概率密度函数3. 统计量与统计图表- 均值、中位数与众数- 方差与标准差- 直方图、饼图与箱线图4. 抽样与估计- 抽样分布- 参数估计- 置信区间5. 假设检验与回归分析- 假设检验的基本概念- 单样本与双样本假设检验- 线性回归与相关性分析五、数学思维与方法1. 合情推理与演绎推理- 归纳法与类比法- 反证法与归谬法2. 数学证明方法- 直接证明与间接证明- 构造性证明- 极限概念在证明中的应用3. 数学建模与问题解决- 数学建模的基本步骤- 问题解决策略- 数学在实际问题中的应用以上是高中数学知识点的树形图总结,涵盖了高中数学课程的主要。

2020年高中数学必修1-函数全册知识结构思维导图

2020年高中数学必修1-函数全册知识结构思维导图

x^n=a,则x叫做a的n次根,求方根的过程叫做开方运算,正数a的正n次方根
理数指数幂适用于有理数指数幂的法则
数函数的底判断是增函数还是减函数;实际问题中函数
叫做真数,读作以a为
,自然常数e,叫做ln
性质:
1.值域是实数集R
2.在定义域内,当a>1时是增函数,当0<a小于1时是减
函数
3.图象都通过点(1,0)
指数函数和对数函数的关系当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,称之为反函数
反函数。

高中数学知识点分类网络结构图

高中数学知识点分类网络结构图

;;=⇔⊆=⇔⊆=⇔⊆A B B A B A B A A B A B I A Bn-个A中元素有n个,则A的子集共有2n个,真子集有21集合间的运算2n R a +∈则2n n a n a ++≥平均值不等式2nnn a a n++≥当且仅当2,,)n 时取等号1111221n j n j n n n a b a b a b a b a b a b ++≤++≤+++,n Z 是∀,,nx 是区间1122)()()()n n n n q x q f x q f x q f x ++≤+++,,,1n i q R q +∈=∑)。

上凸函数不等号转向.1}n ma+仍是等比数列,其公比为)lim n n a ++=sin sin αtan tan 1tan tan α±2(AB x =,则a ⊥b2PP 所成比112222221cos ||||a b a b a ba b a b a ++⋅⋅==⋅+212()(x x y y =-+-空间向量的直角坐标运算律若123(,,a a a a =,12(,,b b b b =则①113(a b a b +=+,11(a b a b -=-123(,)()a a a R λλλλλ=∈,11a b a b ⋅=+②13//a ba b λλ⇔=,110a b a b ⊥⇔+若111(,,)A x y z 则2(AB x =-模长公式若12(,,a a a a =21||a a a a a =⋅=+空间向量的运算,,(OB OA AB a b BA OA OB a b OP a λλ=+=+=-=-=空间向量的加减与数乘OB OA AB =+=a +b ,AB OB OA =-,,(OP λ=a a b + c ⑶数乘分配律:λ(a + ) =λa +λb .平行六面体向量的数乘积||||cos ,a b a b a b ⋅=⋅⋅<>空间向量数乘积的性质①||cos ,a e a a e ⋅=<>.②0a b a b ⊥⇔⋅=.③2||a a a =⋅.空间向量数量积运算律①()()()a b a b a b λλλ⋅=⋅=⋅②a b b a ⋅=⋅(交换律) ③()a b c a b a c ⋅+=⋅+⋅(分配律)④e a = a e =|a |cos ,a e⑤ab a b = 0⑥当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |.特别的a a = |a |2或||a a a =⋅⑦cos ,||||a ba b a b ⋅=Bα∈,则l αβ=且l,则A、B、C 。

高中数学知识框架思维导图(整理版)

高中数学知识框架思维导图(整理版)
2 : 2 + 2 + 2 = 0.
点斜式:y-y0=k(x-x0)
注意:截距可正、
可负,也可为 0.
2 −1
注意各种形式的转化和运用范围.
x y
截距式: + =1
a b
两直线的交点
距离
一般式:Ax+By+C=0
两点间的距离公式|1 2 | = √(1 − 2 )2 + (1 − 2 )2 .
2.
3.
分组求和法
2
=
1

−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1ቤተ መጻሕፍቲ ባይዱ
2+1 −1
− (+2)2 )
= (−1) (
1
2−1
+
错位相加法: = ( + )−1 → = ( + ) −
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
与 的关系
1 ,
= 1,
= {
− −1 , ≥ 2.
构造等差数列
an+1 p an
= · +1 转为③
qn q qn-1
⑤an + 1=pan+qn

高中数学知识点总结图框架图

高中数学知识点总结图框架图

高中数学知识点总结图框架图一、代数1. 集合与函数概念- 集合的表示与运算- 函数的定义与性质- 常见函数(线性函数、二次函数、幂函数、指数函数、对数函数、三角函数)2. 代数式的运算- 整式的加减乘除- 因式分解- 分式的运算- 二次根式的运算3. 方程与不等式- 一元一次方程与不等式- 二元一次方程组- 一元二次方程- 不等式及其解集- 绝对值不等式4. 函数的应用- 函数的图像与性质- 函数的最值问题- 函数的单调性与周期性- 反函数与复合函数二、几何1. 平面几何- 点、线、面的基本性质- 三角形的性质与分类- 四边形的性质与计算- 圆的性质与方程- 相似与全等的判定与应用2. 空间几何- 空间图形的基本性质- 空间直线与平面的位置关系- 空间角的计算- 立体图形的表面积与体积3. 解析几何- 坐标系的建立与应用- 直线与圆的方程- 圆锥曲线(椭圆、双曲线、抛物线)的方程与性质三、概率与统计1. 概率论基础- 随机事件与概率的定义- 概率的计算与加法定理- 条件概率与乘法定理- 事件的独立性与贝叶斯定理2. 统计初步- 数据的收集与整理- 描述性统计(平均数、中位数、众数、方差、标准差) - 概率分布与正态分布- 抽样与估计四、数学思维与方法1. 逻辑推理- 演绎推理与归纳推理- 数学归纳法2. 数学证明- 直接证明与间接证明- 反证法3. 问题解决策略- 分类讨论- 转化与化归- 函数与方程思想以上框架图总结了高中数学的主要知识点,涵盖了代数、几何、概率与统计以及数学思维与方法四个方面。

每个部分都细分为若干小节,详细列出了各知识点及其内在联系。

通过这样的框架图,学生可以系统地复习和掌握高中数学的核心内容,为进一步的数学学习打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档