高中数学(必修1)知识结构框图
高中数学(必修1)知识结构框图

高中数学(必修1)知识结构框图第一章集合与函数概念集合含义与表示基本关系基本运算列举法{a,b,c,…}描述法{x|p(x)}图象法包含关系相等关系交集:A∩B={x|x∈A且x∈B}并集:A∪B={x|x∈A或x∈B}补集:{|}UC A x x U x A=∈∉且韦恩图; 数轴子集; 真子集函数概念定义域对应关系值域表示解析法图象法列表法性质单调性定义图象特征最值奇偶性定义图象特征:对称性映射映射的概念上升或下降第二章基本初等函数(Ⅰ)基本初等函数(Ⅰ) 指数与指数函数指数根式n a分数指数幂(0,,*,1)mn mna a a m n N n=>∈>无理数指数幂运算性质指数函数定义(0,1)xy a a a=>≠图象: “一撇或一捺”,过点(0,1).见教材P92性质: 位于x轴上方,以x轴为渐近线对数与对数函数对数定义:x a N x a N=若则叫以为底的对数运算性质对数函数定义:log(0,1)ay x a a=>≠图象:位于y轴右侧,以y轴为渐近线.见教材P103性质:过点(1,0)log()log loglog log loglog loga a aa a ana aM N M NMM NNM n M⋅=+=-=()()r s r sr s rsr r ra a aa aab a b+===幂函数定义:y xα=具体的五个幂函数23121y xy xy xy xy x-=====特征:过点(1,1),当0α>时在(0,)+∞上递增;当0α<时,在(0,)+∞上递减。
换底公式:loglog(0,1,0,1,0)logcacbb a ac c ba=>≠>≠>图象见P109第三章函数的应用函数的应用函数与方程函数模型及其应用方程的根与函数零点的关用二分法求方程的近似解几种不同增长的函数模型用已知函数模型解决问题建立实际问题的函数模型函数零点的存在性直线上升指数爆炸对数增长指数函数,对数函数,幂函数增长速度的比较。
高中数学(高一至高三)知识点汇总

高中数学第一部分必备知识点第二部分学习难点必修1知识点重难点高考考点第一章:集合与函数1.1.1、集合1.1.2、集合间的基本关系1.1.3、集合间的基本运算1.2.1、函数的概念1.2.2、函数的表示法1.3.1、单调性与最大(小)值1.3.2、奇偶性重点:1、集合的交、并、补等运算。
2、函数定义域的求法3、函数性质难点:函数的性质1、集合的交、并、补等运算。
2、集合间的基本关系3、函数的概念、三要素及表示方法4、分段函数5、奇偶性、单调性和周期性第二章:基本初等函数(Ⅰ)2.1.1、指数与指数幂的运算2.1.2、指数函数及其性质2.2.1、对数与对数运算2..2.2、对数函数及其性质2.3、幂函数重点:1、指数函数的图像与性质2、对数函数的图像与性质3、特殊的幂函数的图像与性质4、指数、对数的运算难点:1、指数函数与对数函数相结合2、指数对数与不等式、导数、三角函数等结合1、指数函数的图像与性质2、对数函数的图像与性质3、特殊的幂函数的图像与性质4、指数、对数的运算5、数值大小的比较6、习惯与不等式、导数、三角函数等结合,难度较大第三章:函数的应用3.1.1、方程的根与函数的零点3.1.2、用二分法求方程的近似解3.2.1、几类不同增长的函数模型3.2.2、函数模型的应用举例重点:1、零点的概念2、二分法求方程近似解的方法难点:1、函数模型2、函数零点与导数,含有字母的参数相结合1、零点的概念2、二分法必修2知识点重难点高考考点第一章:空间几何体1、空间几何体的结构2、空间几何体的三视图和直观图3、空间几何体的表面积与体积重点:1、认识柱、锥、台、球及其简单组合体的结构特征2、几何体的三视图和直观图3、会利用公式求一些简单几何体的表面积和体积难点:空间想象能力1、几何体的三视图和直观图2、空间几何体的表面积与体积第二章:点、直线、平面之间的位置关系(重点)1、空间点、直线、平面之间的位置关系2、直线、平面平行的判定及其性质3、直线、平面垂直的判定及其性质重点:1、线面平行、面面平行的有关性质和判定定理2、证明线面垂直3、点到平面的距离难点:1、线面垂直2、点到平面的距离1、以选择填空的形式考查线与面、面与面的平行关系,考查线面位置的关系2、以解答的形式考查线与面、面与面的位置3、证明线面垂直4、点到平面的距离第三章:直线与方程1、直线的倾斜角与斜率2、直线方程3、直线的交点坐标与距离公式重点:1、初步建立代数方法解决几何问题的观念2、正确将几何条件与代数表示进行转化3、掌握直线方程并会用于定理地研究点与直线、直线与直线的位置关系。
新课标人教A版高中数学全部知识点归纳总结

高三第一轮复习资料(注意保密)引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算 必修1数学知识点第一章:集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
高中数学必修1-5知识点小结(很实用)OK

高一数学必修1知识网络123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数A B A x B y f ?B A B x,y,x f,y y x y 映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素,在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义按照某个对应关系都有唯一确定的值和它对应。
高中数学必修第一册人教A版(2019)《等式性质与不等式性质》教材分析

高中数学必修第一册人教A版(2019)《等式性质与不等式性质》教材分析2.1等式性质与不等式性质一、本节知识结构框图二、重点、难点重点:不等式的基本性质,等式与不等式的共性与差异.难点:类比等式的基本性质及其蕴含的思想方法,研究不等式的基本性质;等式与不等式的共性与差异.三、教科书编写意图及教学建议在初中,学生学习了用含有未知数的等式(方程)表示问题中的相等关系,为了解方程研究了等式的一些基本性质,本节在初中等式学习的基础上,类比等式的学习内容和方法,展开不等式的研究,首先类比用等式表示相等关系,用不等式表示问题中的不等关系;然后在对等式的基本性质进行梳理,归纳其中蕴含的数学思想方法的基础上,研究不等式的性质,并用不等式的性质证明简单命题,通过本节的学习,掌握不等式的性质,提高对等式和不等式的共性与差异的理解,加深对“代数性质”的认识,提高提出问题和解决问题的能力.1.相等关系与不等关系教科书从现实世界和日常生活中存在的相等关系、不等关系讲起,类比用等式表示相等关系,用问题1的4个例题说明了如何用不等式或不等式组表示实际问题或数学问题中蕴含的不等关系.与用等式表示相等关系类似,用不等式表示不等关系的关键也是确定问题中涉及的量及其满足的不等关系,然后用未知数表示量,把不等关系“翻译”成不等式.与用等式表示相等关系不同的是,有时用自然语言表达的不等关系不够明确,例如“不少于”“不低于”“至多”“至少”等,需要先把它们翻译成大于或小于的关系,再用不等式表示.关于问题2,要解决这个问题,需要用不等式表示其中的不等关系,还需要求不等式的解集.而如何解这个不等式呢,教科书提出“与解方程要用等式的性质一样,解不等式要用不等式的性质”,这就引出了对不等式性质的研究.接下来,教科书没有立即开始研究不等式的性质,而是先讨论了确定两个实数大小关系的方法.在初中,学生学过了实数的大小关系是由这两个实数在数轴上的点的位置关系规定的,这可以看成确定实数之间大小关系的几何规则.这个规则尽管直观,但在比较两个实数的大小关系时并不实用,因此这里介绍了一种代数方法——两个实数大小关系的基本事实.这个基本事实把两个实数的大小关系转化为它们的差与0的大小关系,实际上就是两个实数差的符号,从而使实数的运算能够参与到实数的大小比较中,为不等式的论证提供了运算工具,也为研究不等式的性质奠定了基础.在本部分内容的最后,作为对相等关系和不等关系的总结,也为了引出基本不等式,教科书设计了一个探究栏目,让学生在第24届国际数学家大会的会标中发现相等关系和不等关系.这个会标实际上就是“赵爽弦图”——由4个全等的直角三角形围成一个大正方形,中空的部分是一个小正方形,由于大正方形的面积大于4个直角三角形的面积和,即(设直角三角形的两条直角边的长为,()),而当直角三角形变为等腰直角三角形,即时,中空部分缩为一个点,这时有相等关系.这样,就引出了基本不等式的一种变形形式.在上述过程中,学生的困难在于想不到从面积的角度发现不等关系,教学中应加强引导.接下来,教科书利用完全平方公式和两个实数大小关系的基本事实证明了上述不等式,这既体现了数学知识之间的联系,又再一次说明了两个实数大小关系的基本事实在解决不等式问题中的应用价值.2,等式性质与不等式性质教科书类比等式的基本性质,研究了不等式的基本性质及其证明和应用.为了帮助学生从等式的性质及其研究方法中获得启发,去研究不等式的性质,教科书设计了两个问题(教科书第40页的思考栏目和探究栏目).通过这两个问题,让学生在梳理并观察等式的基本性质的基础上认识到,这些性质包括在数学推理和运算中经常用到的“对称性”和“传递性”,还包括解方程所需要的等式对四则运算的不变性,而这两个方面反映了“式的大小关系”的本质属性,这些基本属性为探究不等式的基本性质指明了方向.学生在猜想不等式的基本性质的过程中会发现,不等式的基本性质与等式的基本性质存在差异:就不等式自身的特性而言,不等式不具有“对称性”,而是具有“相反性”,即,;就不等式与四则运算的关系而言,当乘一个负数时,不等号要调换方向,即,.不等式的这种特殊性是由实数的基本性质决定的,在对不等式进行论证时,除了要用到实数大小关系的基本事实,还需要用到关于实数的其他一些基本事实,例如:(1)正数大于0,也大于一切负数;负数小于0,也小于一切正数.(2)正数的相反数是负数,负数的相反数是正数.(3)两个正数的和仍是正数,两个负数的和仍是负数.(4)同号两数相乘,其积为正数;异号两数相乘,其积为负数.利用这些基本事实,可以对猜想出的不等式的基本性质进行证明.在表述不等式的基本性质时,教科书也做了一些改变.不等式的性质3是类比等式的性质3得到的,性质4是类比等式的性质4,5得到的,在表述它们时,教科书把加法和减法合并为“加法”,把乘法和除法合并为“乘法”,这也表明高中数学对运算的认识更趋于一般性.此外,考虑到对于同一个数学对象的多元联系表示,有利于加深学生对它的理解,教科书从不同角度表述了不等式的性质,例如对于性质3和性质4使用了自然语言叙述,对于性质3还用数轴上的实数点展现了不等式包含的动态过程及结果.教学中可以让学生用自然语言或图形语言表述其他不等式的性质.在得到并证明了不等式的基本性质之后,教科书用这些基本性质,推导出了其他一些常用的不等式的性质(性质5~7),这些性质可以作为结论在今后的推理中使用.另外,证明这些性质的过程可以看作不等式的性质在代数证明中的初步应用.证明的关键是利用不等式的基本性质,对给定的不等式进行结构上的变形,例如“不等式两边同加一个数”“不等式两边同乘一个数”等,逐步把给定的不等式变形为要证明的不等式.正确地运用不等式的性质对不等式进行变形对学生来说有一定的难度,教学中可以通过让学生多练习、纠正其典型错误等方式逐步帮助学生掌握正确的方法.在本部分内容的最后,教科书安排了一道例题(例2),向学生示范了应用不等式的性质证明命题的一般思路,这个命题的证明比不等式的性质5~7的证明要复杂一些,因为已知条件与结论之间的联系不够明显,证明中需要对已知不等式做什么变形不太明确,对于这样的问题,教科书在“分析”中给出了证明的一般思路:从结论出发,结合已知条件,寻求使当前命题成立的充分条件,而这个充分条件是容易由已知条件证明的,这实际上是综合运用“综合法”和“分析法”证明命题的思路,但因为教科书没有专门介绍证明方法,所以本例的证明过程采用了学生更熟悉的“综合法”的格式,教师在教学中可以补充一些典型题目,引导学生领会这种“发展条件、转化结论、寻求联系”的证明较复杂命题的一般思路.。
高中数学新课程标准(解读)

高中数学新课程标准1.课程框架高中数学课程分必修和选修。
必修课程由5个模块组成;选修课程有4个系列,其中系列1、系列2由若干个模块组成,系列3、系列4由若干专题组成;每个模块2学分(36学时),每个专题1学分(18学时),每2个专题可组成1个模块。
课程结构如图所示。
注:上图中代表模块(36学时),代表专题(18学时)。
2.必修课程必修课程是每个学生都必须学习的数学内容,包括5个模块。
数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。
数学2:立体几何初步、平面解析几何初步。
数学3:算法初步、统计、概率。
数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。
数学5:解三角形、数列、不等式。
3.选修课程对于选修课程,学生可以根据自己的兴趣和对未来发展的愿望进行选择。
选修课程由系列1,系列2,系列3,系列4等组成。
◆系列1:由2个模块组成。
选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用;选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图。
◆系列2:由3个模块组成。
选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何;选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入;选修2-3:计数原理、统计案例、概率。
◆系列3:由6个专题组成。
选修3-1:数学史选讲;选修3-2:信息安全与密码;选修3-3:球面上的几何;选修3-4:对称与群;选修3-5:欧拉公式与闭曲面分类;选修3-6:三等分角与数域扩充。
◆系列4:由10个专题组成。
选修4-1:几何证明选讲。
选修4-2:矩阵与变换。
选修4-3:数列与差分。
选修4-4:坐标系与参数方程。
选修4-5:不等式选讲。
选修4-6:初等数论初步。
选修4-7:优选法与试验设计初步。
选修4-8:统筹法与图论初步。
选修4-9:风险与决策。
选修4-10:开关电路与布尔代数4.关于课程设置的说明◆课程设置的原则与意图必修课程内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学习提供必要的数学准备。
高中数学必修及选修教材学习知识体系结构与框架

第一章集合集合与函数概函数及其定义念概念表示方法:列举法、描述法根本关系:交集、并集、补集、全集、属于根本运算交、并、补元素的概念、个数概念定义域、值域对应关系区间:闭开,半开半闭展示发放:图像法、列表函数的单调性增函数基本性质最大、最小值定义义奇偶性;判断方法减函数a r a s a r s指数与指数幂的运算( a r) s a rs( ab) r a r b r第二章整数指数幂基本初等函数指数函数互为反函数对数函数幂函数指数幂指数函数性质对数与对数运算对数函数及性质定义:有理数指数幂无理数指数幂定义定义域 R性质值域〔 0,+ ∞〕图像过定点〔 0,1〕单调性对数底数真数定义log a ( M N ) log a M log a N运算log a M log a M log a NNlog a M n nlog a M定义定义域图象值域过点〔 1, 0〕性质单调性过〔 1,1 〕性质奇偶性单调性第三章]函数与程函数的应用函数模型及应用定义关系方程的根与函数的零点零点定理二分法定义用二分法求方程的近视根求根步骤几类不同增长的函数模型函数模型的应用实例建立实际问题的函数模型必修二第一章空间几何体锥、柱、台、球的结构特征空间几何体的结构简单组合体的结构特征正视图三视图侧视图俯视图空间几何体的三视图与直观图斜二侧画法直观图平行投影与中心投影锥、柱、台的外表积与体积空间几何体的表面积与体积球的外表积与体积第二章平面:公理1、公理 2、公理3共面相交直线平行直线:点、直线、平面间的位置关系空间点、直线、平面间的位置关系直线、平面平行的判定及性质直线、平面垂直的判定及性质空间中直线与直线的位置公理 4关系异面直线平行平面与平面间的位置关系相交直线在平面空间中直线与内平面的位置关相交系平行直线与平面平行的判定定理平面与平面平行的判定定理直线与平面平行的性质定理平面与平面平行的性质定理直线与平面垂直的判定定理平面与平面垂直的判定定理直线与平面垂直的性质定理平面与平面垂直的性质定理第三章直线与方程倾斜角 0°≤α< 180°直线的倾斜角与斜率斜率 k tanl1 //l2k1k2,b1b2两条直线平行与垂直的判定l 1l2k 1k 21点斜式y y1k(x x1 )截距式 y kx b直线的方程两点式yy1x x1y2y1x2x1一般式 Ax By C0两条直线的交点坐标A1 x B1 y C10A2 x B2 y C20两点间的距离公式|AB|(x x)2(y y)22121直线的交点坐标与距离公式点到直线的距离Ax0 By0CdB 2A 2平行线间的距离第四章圆的标准方程x a 2y b 2r 2圆的一般方程圆的方程y2x 2Dx Ey F0d r l 与 C 相交直线与圆的位置关系d r l 与 C相切圆与方程直线、圆的位置关系直线与圆的方程的应用圆与圆的位置关系概念空间直角坐标系空间两点间的距离公式d r l与 C相离相交 R r d R r内切d Rr外切 d Rr内含 d Rr相离 d Rr辗转相除法与更相减损术必修三算法的概念第一章算法秦久韶算法算法与程序框图顺序结构程序框图条件结构循环结构输入语句、输出语赋值语句初根本算法语句步条件语句、循环语句算法案例第二章随机抽样统用样本估计总体计变量间的相关关系抽签法简单随机抽样随机法系统抽样求极差分层抽样决定组距组数将数据分组用样本频率分布估计总体分布列频率分布表画频率分布直方图用数本的数字特征估众数,中位数,平均数计总体的数字特征标准差变量间的相关关系正相关两个变量的线性相关负相关回归直线第三章概率随机事件的概率随机事件的概率频率意义概率性质必然事件不可能事件任何两个不同事件互斥根本领件特征古典概型任何事件都可表示为根本领件的和概率定义几何概型概率必修四第一章任意角和弧度制任意角弧度制正角负角零角任意角的三角函数三角函数三角函数的图像与性质三角函数:正弦函数,余弦函数,正切函数公式一:终边相同的角同一三角函数值相等周期性同角三角函数关系单调性正弦余弦函数的性质奇偶性正弦余弦函数的图像最大最小值正弦为奇余弦为偶正切函数的性质与图像周期奇偶性单调性三角函数的诱导公式函数y sin x的图像公式二值域公式三公式四公式五公式六振幅周期2初相相位x频率f12三角函数模型的简单应用第二章平面向量的实际背景及根本概念平面向量的线性运算平面向量平面向量的根本定理及坐标表示平面向量的数量积平面向量应用实例向量的物理背景与概念有向线段零向量,单位向量的几何表示向量平行向量相等向量与共线向向量加法三角形法那么量向量加法运算及几何意义向量加法平行四边形法那么向量减法运算及几何r ra a意义r r r向量数乘运算及几a a a何意义rrr ra b a b平面向量根本定理平面向量的正交分解极坐标表示平面向量坐标运算数量积rrrrr r r r o o 共线的坐标表示a b a b cos a0,b0,0180物理背景与定义投影rx , ya坐标表示,模,夹r角x2y2ar rx1x2y1 y2平面几何中的向量cosa br r2222方法 a b x1y1x2y2向量在物理中的应用举例cos cos cos sin sin两角差的余弦公式cos cos cos sin sin 第三章sin sin cos cos sin两角和与差的正弦sin sin cos cos sin 两角和与差的正余弦正切公式弦,余弦和正切公tantan tan 1 tan tan式tantan tan 1tan tan三sin22sin cos角二倍角的正弦余弦恒正切公式2222等cos2 cos sin2cos 1 1 2sin 变换tan 22 tan 1tan2简单的三角恒等变换必修五正弦定理a b c 第一章sin sin 2 Rsin C解三角形222正弦定理和余弦定ab c 2bccos理余弦定理b2a2c22accosc2a2b22ab cosC应用举例第二章数列项数列的概念与简单表示法有穷数列无穷数列定义等差数列数列等差数列的前n 项和等比数列等比数列前n 项和S n等差中项ba c2通项 a a n 1 dn1公差 da n a mn mn a1 a nS n2数列的应用S n na1n n1d2定义公比q n m a na m等比中项 a n2a p a q通项a n a1q n 1na1q1a11q n anqq 11qa11q必修五a b 0a b第三章不等式与不等关系a b0a ba b 0a b一元二次不等式及不其解法等式根本不等式二元一次不等式〔组〕与简单线性规划问题ax2bx c0ax2bx c0ax2bx c0a b 2 ab最大最小值问题一元一次不等式〔组〕与平面区域目标函数线性目标函数线性规划简单的线性规划问题可行解可行域最优解选修 1-1第一章命题及其关系常充分条件和必要条件用逻辑用语简单的逻辑连接词全称量词与存在量词真命题:判断为真的语句命题假命题:判断为假的语句四种命题及其关系原命题逆命题四种命题否命题逆否命题充分条件和必要条件充要条件且或非全称量词x M , p( x)存在量词x M , p( x)含有一个量词的命题的否认x M , p(x)nx i y i nx yb i1n2x i2nxi 1a y bx 选修 1-2回归分析的根本思想及初步应用样本中心第一章统计案例独立性检验的根本思想与初步应用第二章合情推理合情推理与演绎推理推理演绎推理与证明总偏差平方和回归方程y bx a分类变量随机变量 K 2越大,说明两个分类变量,关系越强,反之,越弱。
新课标高中数学人教A版选择性必修第一二三册教材解读〖数学探究 杨辉三角的性质与应用内容解读〗

数学探究杨辉三角的性质与应用一、知识结构框图二、学习目标1.结合对杨辉三角性质的探究和应用杨辉三角解决问题,经历发现数学关联、提出数学问题、得到数学结论、推理论证、综合应用的过程,掌握数学探究活动的方法,提升数学学科核心素养.2.在对杨辉三角性质的探究和应用过程中,经历从类比模仿到自主创新、从局部实施到整体构想的过程,初步掌握数学课题研究的基本方法,培养遵守学术规范、坚守诚信底线的科学研究素养.三、重点、难点重点:杨辉三角性质的发现和证明,利用杨辉三角解决古算题和其他领域的问题.难点:杨辉三角性质的应用.四、教科书编写意图及教学建议杨辉三角是一个很有魅力的数字三角形.它很实用,从低次到高次,从各行之间的相互独立到相邻两行之间关联的发现,从一两条性质到一系列性质的探究,从正整数的开方到组合数、幂和公式的导出,都体现了数学知识的由浅入深、由特殊到一般的过程,也体现了由直观到抽象、由猜想到论证的数学思维过程.它还很美,特别是对称之美,广受喜爱,曾经成为邮票或数学杂志封面的图案.它也很多元化,中国、阿拉伯、欧洲等地的众多数学家都曾经研究和运用它,数十幅带有不同文化元素的数字三角形展现了丰富生动的多元文化.考虑到杨辉三角在数学、数学思维和数学文化上的魅力,教科书专门将它作为一个主题,设置了数学探究活动,并安排了3课时,让学生以课题研究的形式,从不同角度探究它.通过自主探究或合作探究,既能够丰富数学知识,建立不同知识之间的联系,还能进一步学会如何进行数学探究,感悟数学价值,提升数学精神、应用意识,从而全面提升数学学科核心素养和人文素养.(一)杨辉三角的历史探源杨辉三角是我国数学史上的一个伟大成就,从数学角度体现了中华优秀传统文化.因此,教科书就从这里入手,给出了《详解九章算法》一书中的开方作法本源图,简单介绍了数学家杨辉,以及杨辉三角的由来.同时,这一段关于历史发展的介绍也是数学探究活动的背景,能够让学生在杨辉三角的演变中,了解为什么要研究杨辉三角,杨辉三角在我国的发现时间比欧洲早500年左右等,从而激发学生的民族自豪感和“一探究竟”的兴趣.在教学中,可以适当补充杨辉三角的演变历史,也可以让学生自己去搜集一些这方面的资料进行阅读,从而为接下来的数学探究活动作好准备,下面提供一些史料,供教学时参考.图1名为开方作法本源图,现在杨辉算书的传本中都没有这个图,只在明朝《永乐大典》(1407)抄录的《详解九章算法》中还保存着这份宝贵遗产,可惜《永乐大典》被掠至英国,现藏在剑桥大学图书馆内.《详解九章算法》由杨辉所著,他在书中提到“出释锁算书,贾宪用此术”.这说明,在我国至迟贾宪时期就已经发明了这个数字三角形.关于贾宪的生平,所知甚少.根据一些记载,只能推定贾宪著书的年代是在1023年至1050年这段时期.贾宪用这个数字三角形来进行开方,所以称为“开方作法本源”.而在宋元时期,数学家将开方或解数字方程称为“释锁”,故此图出现在《释锁》算书中.后来,朱世杰(1303)、吴敬(1450)、程大位(1592)等古代数学家均引用并发展了开方作法本源图.借助此图,古代数学家们开高次方、解高次方程,创造出了具有中国古代数学独特风格的高次方程的数值解法.(二)杨辉三角性质的探究杨辉三角性质的探究,是这个数学探究活动的重点,将杨辉三角作为一个探究主题有两个主要原因:一是由于前面提到的杨辉三角本身所具有的数学、数学思维和数学文化上的魅力;二是由于杨辉三角的直观性和性质的丰富性,既有“一目了然”的性质,也有“深藏不露”的性质,所以它可以让不同发展水平的学生都能探究,并有所收获.为了让学生顺利而又充分地开展探究活动,教科书在编写中重点关注了以下两个方面.1.探究的方法探究是一种复杂的学习活动,不同学科的探究,因其学科特点会有其特有的方法.在科学中,探究强调调查研究、实验验证、数据分析和解释,结论解释和预测;而在数学中,探究更多的是一种思维状态,强调观察和想象、归纳和猜想、推理和论证,当学生获得了探究的方法、养成了探究的习惯,他们就会自发地去探究、主动积极地学习,成为自主学习者.因此,教科书在杨辉三角性质探究这一部分,注重“如何探究”的引导,重在展现探究的方法,并加以示例说明.探究不是凭空产生的,它和数学问题紧密相联.首要的是发现和提出一个数学问题.如何发现和提出问题呢?教科书中的“1.观察杨辉三角的结构,即杨辉三角中数字排列的规律,例如每一行、相邻两行、斜行等,画一画,连连线,算一算,写出你发现的结论”告诉学生:(1)需要“观察”.这种观察并不是单纯地看一看,它包含着积极的思维过程,要有目的,如数字排列的规律;要随时比较,如数字间的关系和差异;等等.(2)需要“实验”.虽然数学不像科学那样需要精密设备、精心设计的实验,但有时候还是需要人为地创造一些条件和方法辅助思维,如圈一圈、连一连、算一算等.而这些观察和实验的结果正是归纳推理的基础.(3)需要“归纳”.通过观察和实验,获得一定素材后,就可以进行归纳,作出初步的结论,然后用数学语言描述出来,就是一个猜想,即一个数学问题.为了说明这一一点,教科书以杨辉三角的基本性质C r n =C 11r n --+C 1r n -为例,示范如何发现和提出问题.具体来说,通过观察和比较教科书中的图1和图2,发现杨辉三角和二项式系数之间的对应关系;通过连线和计算,如教科书上的图4,发现除了三角形的两个腰上的数字都是1,其余的数都是它肩上两个数相加,从特殊到一般,就归纳出结论:C rn =C 11r n --+C 1rn -.这就是一个数学问题.在教学中,要特别注意探究方法的指导,至于发现结论和写出结论,应该由学生自己完成.例如观察和实验的指导,应关注于在数字三角形中圈一圈、连一连、算一算等手段的尝试;关注于有目的的观察,相邻行之间、各行数字的和等(图2).基于观察、实验和归纳,学生会获得很多关于杨辉三角的结论,这里列出一些最基本的结论(更多的结论见“五、探究活动参考资料”),供教学时参考:(1)对称性:每行中与首末两端“等距离”之数相等,即C r n =C n r n-. (2)递归性:除1以外的数都等于肩上两数之和,即C r n =C 11r n --+C 1r n -.(3)第n 行奇数项之和与偶数项之和相等,即C n 0+C n 2+C n 4+…=C n 1+C n 3+C n 5+….(4)第n 行数的和为2n ,即C n 0+C n 1+C n 2+…+C n n =2n .(5)第n 行各数平方和等于第2n 行中间的数,即(C n 0)2+(C n 1)2+(C n 2)2+…+(C n n )2=C 2n n (图3).(6)自腰上的某个1开始平行于腰的一条线上的连续n 个数的和等于最后一个数斜右下方的那个数,即C r r +C 1r r ++C 2r r ++…+C n -1r =C n r +1(图4).在提出了一个数学问题后,就需要分析和解决这个问题,教科书中的“2.利用已学知识,尝试对所得结论进行证明”就指明了,在数学上,当我们获得一个猜想之后,必须要证明它,所用的就是逻辑推理的方法.从观察和实验,到归纳和猜想,再到推理和论证,这是一个完整的数学探究过程,数学探究中的“推理论证”不同于科学探究中的“实验验证”,数学中的结论一旦得到证明,是不会改变的,而科学中经过实验验证的结论有时会在若干年后推翻重建.在教学中,要特别注意强调推理论证在数学中的重要性及其作用,而且要鼓励或要求学生去证明自己发现的结论,让学生经历完整的数学探究过程.这样不仅有助提升学生的直观想象、数学抽象素养,而且还有助于提升学生的数学运算、逻辑推理素养.2.探究的开放性杨辉三角这个数学探究活动,从教科书的设计来看,它的开放性很大,除了给定一个“数字三角形”这个情境外,其他环节都是完全开放的,教科书给的示例也只是为了说明探究方法.在这种情况下,如果没有教师的指导,那么学生能探究到什么程度就取决于学生的自主探究能力,自主探究能力越高,探究就越开放、收获就会越多.但是学生的数学能力总是参差不齐的,能力越低越需要教师的指导,让他们“跳一跳”摘到果子.当学生在探究活动中的发现越来越多,解决的问题越来越难,兴趣和信心也会越来越浓厚.因此,在教学中教师需要关注学生的探究过程,掌握学生的探究程度,并据此匹配相应程度的探究指导.关于杨辉三角这个主题,以“问题”为例,有的学生可能会发现和提出一组问题,有的学生可能只能发现和提出一个问题,在这种情况下,教师可以分别为他们提供一些材料或给予一些提示,指导他们发现更多的结论,在各自的程度上更加深入地探究.在教学中,根据学生的探究程度,灵活采用开放型、指导型等不同的探究形式,让不同水平的学生通过探究活动都能有所收获,包括知识的增长和探究方法的养成.(三)杨辉三角应用的探究华罗庚先生(1910—1985)曾写过一本小册子《从杨辉三角谈起》,其中从杨辉三角的性。