对数平均不等式 - 学生

合集下载

对数平均不等式 (2)

对数平均不等式 (2)

对数平均不等式引言对数平均不等式(Logarithmic Mean Inequality)是一个在数学中常被使用的不等式,它在计算和证明中具有重要的意义。

本文将对对数平均不等式进行详细的介绍和证明,并给出应用实例。

对数平均不等式的定义对数平均不等式是指对于任意的正实数a和b,有如下不等式成立:\[ \frac{{b-a}}{{\ln(b) - \ln(a)}} \leq \frac{{b{b-a}}}{{a{b-a}}} \]其中,ln(a)表示以e为底的对数,e为自然对数的底(即2.71828…)。

对数平均不等式的证明首先,对上述不等式两边取自然对数,得到:\[ \ln\left(\frac{{b-a}}{{\ln(b)-\ln(a)}}\right) \leq (b-a)\ln\left(\frac{{b}}{{a}}\right) \]接着,我们使用微分学相关知识对上式进行证明。

令f(x) = ln(x)和g(x) = (b-a) ln(x),其中x为大于0的实数。

由于f(x)和g(x)分别是连续可导函数,我们可以通过观察两者的关系来证明不等式。

首先,计算f’(x)和g’(x):\[ f’(x) = \frac{{1}}{{x}} \]\[ g’(x) = (b-a) \cdot \frac{{1}}{{x}} \]由于f’(x)和g’(x)的导数具有相同的形式,因此我们可以使用平均值定理来证明。

根据平均值定理,存在一个介于a和b之间的实数c,使得:\[ \frac{{f(b)-f(a)}}{{b-a}} = f’(c) \]\[ \frac{{g(b)-g(a)}}{{b-a}} = g’(c) \]由于f’(x) = g’(x),我们可以得知:\[ \frac{{f(b)-f(a)}}{{b-a}} = \frac{{g(b)-g(a)}}{{b-a}} \]将上式代入对数平均不等式的证明中:\[ \frac{{f(b)-f(a)}}{{b-a}} \leq \frac{{g(b)-g(a)}}{{b-a}} \] \[ f(b)-f(a) \leq g(b)-g(a)\]由于f(a) = ln(a)和g(a) = (b-a) ln(a),f(b) = ln(b)和g(b) = (b-a) ln(b),代入上式,得到:\[ ln(b)-ln(a) \leq (b-a) \cdot (ln(b)-ln(a)) \]这就证明了对数平均不等式。

指对数均值不等式

指对数均值不等式

指对数均值不等式指对数均值不等式是数学中的一种重要不等式,它是指对于任意正实数a1,a2,...,an,有以下不等式成立:(a1*a2*...*an)^(1/n) >= (a1+a2+...+an)/n其中,左边的式子表示这n个数的几何平均数,右边的式子表示这n个数的算术平均数。

这个不等式的意义在于,它告诉我们,对于一组正实数,它们的几何平均数一定大于等于它们的算术平均数。

这个结论在很多领域都有应用,比如在统计学中,我们可以用它来证明样本均值的稳定性;在金融学中,我们可以用它来证明投资组合的风险性。

那么,为什么这个不等式成立呢?其实,这个不等式的证明并不难,我们可以通过数学归纳法来证明它。

首先,当n=2时,不等式显然成立。

接着,我们假设当n=k时不等式成立,即:(a1*a2*...*ak)^(1/k) >= (a1+a2+...+ak)/k那么,当n=k+1时,我们可以将不等式左边的式子乘上ak+1,右边的式子加上ak+1,得到:(a1*a2*...*ak*ak+1)^((k+1)/k) >= (a1+a2+...+ak+ak+1)/(k+1)接着,我们将左边的式子拆开,得到:(a1*a2*...*ak*ak+1)^((k+1)/k) = (a1*a2*...*ak)^(1/k) * ak+1 * (ak+1/(a1*a2*...*ak))^(1/k)由于我们已经假设了(a1*a2*...*ak)^(1/k) >= (a1+a2+...+ak)/k,所以我们只需要证明:ak+1 * (ak+1/(a1*a2*...*ak))^(1/k) >= ak+1/(k+1)这个不等式可以通过取对数,然后应用柯西-施瓦茨不等式来证明。

指对数均值不等式是一种非常重要的不等式,它告诉我们,几何平均数一定大于等于算术平均数。

这个不等式的证明也非常简单,我们可以通过数学归纳法来证明它。

对数平均不等式 - 学生

对数平均不等式 - 学生

对数平均不等式 1.定义:设,0,,a b a b >≠则2ln ln a b a b ab a b+->>-其中ln ln a b a b -- 为对数平均数. 2.几何解释: 反比例函数()()10f x x x =>的图象,如图所示,AP BC TU KV ||||||,MN CD x ||||轴, (),0,A a 1,,P a a ⎛⎫ ⎪⎝⎭()1,0,,B b Q b b ⎛⎫ ⎪⎝⎭,1,,T ab ab ⎛⎫ ⎪⎝⎭作()f x 在点2,2a b K a b +⎛⎫ ⎪+⎝⎭处的切线分别与,AP BQ 交于,E F ,根据左图可知, 变形公式: )0.()(2ln ln >≥+-≥-b a ba b a b a 3.典例剖析对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的.(一) ()0ln ln b a b a a b a->>>-的应用 例1 (2014年陕西)设函数)1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数. (1)(2)(略)(3)设+∈N n ,比较()()()12gg g n +++与()n f n -的大小,并加以证明.. (二) ()2202ln ln a b b a b a b a+->>>-的应用 例2 设数列{}n a 的通项()111n a n n =++,其前n 项的和为n S ,证明:()ln 1n S n <+.(三) ()02ln ln a b b a b a b a+->>>-的应用例3. 设数列{}n a 的通项111123n a n=++++,证明:()ln 21n a n <+. (四) ()2011ln ln b a b a b a a b->>>-+的应用 例 4. (2010年湖北)已知函数()()0b f x ax c a x=++>的图象在点()()1,1f 处的切线方程为1y x =-.(1)用a 表示出,b c ;(2)(略)(3)证明:()()()1111ln 11.2321n n n n n ++++>++?+L (五) ()0ln ln b a ab b a b a ->>>-的应用例5. (2014福建预赛)已知1()ln(1)311f x a x x x =+++-+. (1)(略)(2)求证:()222223411ln 21411421431414n n n +++++>+⨯-⨯-⨯-⨯-对一切正整数n 均成立. 强化训练1. (2012年天津)已知函数()()()ln 0f x x x a a =-+>的最小值为0.(1)(2)(略)(3)证明:()()12ln 212*.21n i n n N i =-+<∈-∑ 2.(2013年新课标Ⅰ)已知函数()()()1ln 11x x f x x xλ+=+-+. (1)若0x ≥时, ()0,f x ≤求λ的最小值;(2)设数列{}n a 的通项111123n a n =++++,证明:21ln 24n n a a n -+>.。

高考数学二轮复习考点知识与题型专题讲解10---对数平均不等式、切线不等式

高考数学二轮复习考点知识与题型专题讲解10---对数平均不等式、切线不等式

高考数学二轮复习考点知识与题型专题讲解 第10讲 对数平均不等式、切线不等式在高考压轴题中,经常考查与导数有关的不等式问题,这些问题可以用常规方法求解,也可以转变成对数平均不等式、切线不等式进行求解,起到事半功倍的效果.考点一 对数平均不等式例1 若a >0,b >0,a ≠b ,求证:ab <a -b ln a -ln b<a +b 2. 证明 不妨设a >b >0,①要证ab <a -b ln a -ln b成立, 即证ab <a -b ln a b,即证ln a b <a -b ab , 即证ln a b <a b -b a ,令a b=t (t >1), 则需证明2ln t <t -1t(t >1), 构造函数f (t )=2ln t -t +1t(t >1), 则f ′(t )=2t -1-1t 2=-(t -1)2t2<0, 所以f (t )在(1,+∞)上单调递减,又f (1)=0,所以f (t )<0,即2ln t <t -1t,原不等式得证. ②要证a -b ln a -ln b <a +b 2,只需证2·a -b a +b<ln a b ,即证2·a b -1a b+1<ln a b ,令t =a b (t >1), 即证2·t -1t +1<ln t .即证2-4t +1<ln t , 构造函数φ(t )=2-4t +1-ln t (t >1), φ′(t )=4(t +1)2-1t =-(t -1)2t (t +1)2<0, ∴φ(t )在(1,+∞)上单调递减,∴φ(t )<φ(1)=0,即2-4t +1<ln t , ∴原不等式得证. 综上,ab <a -b ln a -ln b<a +b 2. 规律方法 该类问题的特征是双变量,将双变量问题转变为单变量问题处理,即将a b看成一个新对象(整体),从而进行降维打击.跟踪演练1 已知函数f (x )=1x-x +a ln x . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2. (1)解 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2. ①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,∴f (x )在(0,+∞)上单调递减. ②若a >2,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. ∴f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减, 在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. (2)证明 由(1)知,f (x )存在两个极值点当且仅当a >2.由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 2>x 1>0,则x 2>1.由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a (ln x 1-ln x 2)x 1-x 2=-2+a (ln x 1-ln x 2)x 1-x 2, 由对数平均不等式知x 1-x 2ln x 1-ln x 2>x 1x 2=1, 又x 2>x 1>0,∴x 1-x 2<0,ln x 1-ln x 2<0,∴0<ln x 1-ln x 2x 1-x 2<1, ∴f (x 1)-f (x 2)x 1-x 2=-2+a (ln x 1-ln x 2)x 1-x 2<-2+a , 即证原不等式成立.考点二 以泰勒公式为背景的切线不等式泰勒公式:将函数展开为一个多项式与一个余项的和.f (x )=f (x 0)+f ′(x 0)(x -x 0)+f ″(x 0)2!(x -x 0)2+…+f (n )(x 0)n !(x -x 0)n +R n (x ), 其中余项R n (x )=f (n +1)(ξ)(n +1)!(x -x 0)n +1(ξ在x 0与x 之间), 当x 0=0时为麦克劳林公式.其中e x 与ln(1+x )的麦克劳林公式为e x =1+x +12x 2+16x 3+o (x 3), ln(1+x )=x -12x 2+13x 3+o (x 3), 从中截取片段就构成了常见的不等式:e x ≥1+x 或e x≥1+x +x 22(x ≥0), ln(1+x )≤x (x ≥0)或ln x ≤x -1(x >0),ln(1+x )≥x -x 22(x ≥0),例2 设函数f (x )=a e xln x +b e x -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2. (1)求a ,b ;(2)证明:f (x )>1.(1)解 函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1. 由题意可得f (1)=2,f ′(1)=e.故a =1,b =2.(2)证明 方法一 由(1)知,f (x )=e x ln x +2x·e x -1, 从而f (x )>1等价于x ln x >x e -x -2e. 设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝⎛⎭⎫0,1e ,g ′(x )<0; 当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e. 设函数h (x )=x e -x -2e, 则h ′(x )=e -x (1-x ). 所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e. 综上,当x >0时,g (x )>h (x ),即f (x )>1.方法二 f (x )=e x ln x +2xe x -1=e x ⎝⎛⎭⎫ln x +2e x . 当x >0时,e x >1+x ,所以e x -1≥x , 即e x e≥x ,e x ≥e x ,当x =1时等号成立, 即e -ln x ≥e(-ln x ),所以1x≥e(-ln x ), 即ln x ≥-1e x ,当x =1e时等号成立,所以e x ⎝⎛⎭⎫ln x +2e x ≥e x ⎝⎛⎭⎫-1e x +2e x =e xe x >1(等号不同时成立). 规律方法 指数的放缩.形如:e x -1≥x -1+1⇒e x ≥e x , e x n≥e·x n ⇒e x ≥e n n n x n . 对数的放缩.形如:e ln x ≥1+ln x ⇒ln x ≤x -1⇒ln(1+x )≤x ,ln ⎝⎛⎭⎫1+1x <1x ⇒ln(x +1)-ln x <1x, ln ⎝⎛⎭⎫1+⎝⎛⎭⎫-11+x <-11+x⇒ln(1+x )-ln x >11+x , ln x e ≤x e-1⇒x ≥eln x . 跟踪演练2 已知函数f (x )=12ax 2-(2a +1)x +2ln x (a ∈R ). (1)当a >0时,求函数f (x )的单调递增区间;(2)当a =0时,证明:f (x )<2e x -x -4.(1)解 f (x )的定义域为(0,+∞),f ′(x )=ax -(2a +1)+2x =(ax -1)(x -2)x, 当0<1a <2,即a >12时, 在⎝⎛⎭⎫0,1a 和(2,+∞)上,f ′(x )>0,f (x )单调递增; 当1a =2,即a =12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增; 当1a >2,即0<a <12时, 在(0,2)和⎝⎛⎭⎫1a ,+∞上,f ′(x )>0,f (x )单调递增.综上所述,当a >12时,f (x )的单调递增区间为⎝⎛⎭⎫0,1a 和(2,+∞); 当a =12时,f (x )的单调递增区间为(0,+∞); 当0<a <12时,f (x )的单调递增区间为(0,2)和⎝⎛⎭⎫1a ,+∞. (2)证明 方法一 当a =0时,要证f (x )<2e x -x -4,即证e x -ln x -2>0,构造函数h (x )=e x -ln x -2(x >0),h ′(x )=e x -1x, 令φ(x )=e x -1x(x >0), 则φ′(x )=e x +1x 2>0, 所以h ′(x )在(0,+∞)上单调递增,h ′⎝⎛⎭⎫12=e -2<0,h ′(1)=e -1>0,故存在x 0∈⎝⎛⎭⎫12,1,使得h ′(x 0)=0,即0e x =1x 0. 当x ∈(0,x 0)时,h ′(x )<0,h (x )单调递减;当x ∈(x 0,+∞)时,h ′(x )>0,h (x )单调递增.所以当x =x 0时,h (x )取得极小值,也是最小值.h (x 0)=0e x -ln x 0-2=1x 0-01ln e 2x - =1x 0+x 0-2>21x 0·x 0-2=0, 所以h (x )=e x -ln x -2>0,故f (x )<2e x -x -4.方法二 当a =0时,要证f (x )<2e x -x -4,即证e x -ln x -2>0,由x >0时,e x >x +1可得e x -1>x ,由x >0时,ln x ≤x -1可得x ≥ln x +1,故e x -1>x ≥ln x +1,即e x -ln x -2>0,即原不等式成立.专题强化练1.(2022·葫芦岛模拟)已知函数f (x )=x +b (1+ln x )(b ∈R ).(1)求f (x )的单调区间;(2)设g (x )=f (x )-12sin x ,若存在0<x 1<x 2,使得g (x 1)=g (x 2),求证: ①b <0;②x 1x 2<4b 2.(1)解 由题意,定义域为(0,+∞),f ′(x )=x +b x, 若b ≥0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;若b <0,令f ′(x )=0,得x =-b , 当x ∈(0,-b )时,f ′(x )<0,f (x )单调递减;当x ∈(-b ,+∞)时,f ′(x )>0,f (x )单调递增,综上,若b ≥0,f (x )的单调递增区间为(0,+∞),无单调递减区间;若b <0,f (x )的单调递减区间为(0,-b ),单调递增区间为(-b ,+∞).(2)证明 g (x )=x +b (1+ln x )-12sin x , g ′(x )=1-cos x 2+b x, ①若b ≥0,则由1-cos x 2>0,b x≥0得g ′(x )>0,g (x )在(0,+∞)上单调递增,故不存在0<x 1<x 2,使得g (x 1)=g (x 2),所以b <0.②令m (x )=x -sin x (x >0),m ′(x )=1-cos x ≥0,当x →0时,m (x )→0, 故m (x )>0,即x >sin x ,因为g (x 1)=g (x 2),即x 1+b (1+ln x 1)-12sin x 1 =x 2+b (1+ln x 2)-12sin x 2, 所以-b (ln x 2-ln x 1)=x 2-x 1-12(sin x 2-sin x 1)>12(x 2-x 1), 又0<x 1<x 2,所以-2b >x 2-x 1ln x 2-ln x 1>0, 根据对数平均不等式ab <a -b ln a -ln b<a +b 2, 所以x 2-x 1ln x 2-ln x 1>x 2x 1, 所以-2b >x 2x 1,故x 1x 2<4b 2.2.(2022·抚州模拟)已知函数f (x )=x (ln x +a ),a ∈R .(1)求f (x )的单调区间;(2)当a =1时,求证:f (x )≤x e x-1在(0,+∞)上恒成立. (1)解 因为f (x )=x (ln x +a ),故可得f ′(x )=ln x +a +1,又y =ln x +a +1为单调递增函数,令f ′(x )=0,解得x =e -a -1,故当0<x <e-a -1时,f ′(x )<0; 当x >e -a -1时,f ′(x )>0,故f (x )的单调递减区间为(0,e-a -1), 单调递增区间为(e -a -1,+∞).(2)证明 方法一 当a =1时,f (x )=x (ln x +1), 要证f (x )≤x e x -1,即证x (ln x +1)≤x e x -1,又x >0,则只需证ln x +1≤e x -1,即证ln x -x +1≤e x -1-x ,令m (x )=ln x -x +1,m ′(x )=1x -1=1-x x ,当0<x <1时,m ′(x )>0,m (x )单调递增, 当x >1时,m ′(x )<0,m (x )单调递减, 故当x =1时,m (x )取得最大值m (1)=0; 令n (x )=e x -1-x ,n ′(x )=e x -1-1,又y =n ′(x )为单调递增函数,且当x =1时,n ′(x )=0,当0<x <1时,n ′(x )<0,n (x )单调递减; 当x >1时,n ′(x )>0,n (x )单调递增, 故当x =1时,n (x )取得最小值n (1)=0. 则n (x )min =m (x )max ,且当x =1时,同时取得最小值和最大值, 故n (x )≥m (x ),即ln x -x +1≤e x -1-x ,故f (x )≤x e x -1在(0,+∞)上恒成立.方法二 当a =1时,f (x )=x (ln x +1),要证f(x)≤x e x-1,即证x(ln x+1)≤x e x-1,又x>0,则只需证ln x+1≤e x-1,又ln x+1≤x,e x-1≥x,且等号都在x=1处取得,所以ln x+1≤e x-1.即f(x)≤x e x-1在(0,+∞)上恒成立.11 / 11。

对数平均不等式的证明及应用

对数平均不等式的证明及应用

对数平均不等式的证明及应用对数平均不等式是数学中的一个重要定理,它常用来证明不等式、推理问题以及在各种数学分支中的应用。

在本文中,我将为您详细介绍对数平均不等式的证明和应用。

让我们来了解一下对数平均不等式的定义。

对数平均不等式可以用来表示一组非负实数的平均值。

对于一组非负实数a1, a2, ..., an,它们的对数平均不等式可以表示为:ln((a1 + a2 + ... + an)/n) ≥ (lna1 + lna2 + ... + lnan)/nln表示自然对数。

这个不等式告诉我们,一组非负实数的算术平均的对数大于等于这组数的对数的算术平均。

接下来,我们将探讨对数平均不等式的证明方法。

证明:证明对数平均不等式,我们可以使用几何平均和算术平均的性质来推导。

我们知道一组非负实数a1, a2, ..., an的几何平均值定义为:G = (a1 * a2 * ... * an)^(1/n)而这组数的算术平均值定义为:接下来,我们对几何平均值取对数:现在我们来比较lnA和lnG:我们定义一个新的函数f(x) = ln(x),然后对f(x)进行泰勒展开:f(x) = f(a) + (x-a)f'(a) + O((x-a)^2)将a设为1,我们将得到:由于这里涉及到泰勒展开,我们在此略去具体的数学推导,但可以证明上面的式子大于等于0,即对数平均不等式成立。

应用:对数平均不等式常常用来证明其他不等式。

当我们需要证明某个不等式时,可以尝试将其转化为对数平均不等式,然后通过证明对数平均不等式来推导出原始不等式。

对数平均不等式还可以应用在概率论、信息论、统计学等领域。

在这些领域中,对数平均不等式可以用来分析随机变量的期望值、熵的性质等问题。

对数平均不等式还可以与其他数学定理和不等式结合使用,以推导出更复杂的结论。

在微积分中,我们可以与柯西-施瓦茨不等式结合使用,来推导一些复杂函数的性质。

对数平均不等式是数学中一个非常重要的定理,它不仅具有重要的理论意义,还可以在各个数学领域中得到应用。

高考数学培优专题(1)——对数平均不等式的证明与应用(答安详解)

高考数学培优专题(1)——对数平均不等式的证明与应用(答安详解)
对数平均数:对于正数 a , b ,且 a b ,定义 a b 为 a , b 的对数平均数; ln a ln b
对数平均不等式:对于正数 a , b ,且 a b ,则有 ab a b a b ,即几何平均数<对 ln a ln b 2
数平均数<算术平均数,简记为 G a,b L a,b Aa,b .
(ⅱ)若 a 2 ,令 f (x) 0 得, x a a2 4 或 x a a2 4 .
2
2
当 x (0, a
a2 4 )
(a
a2 4 , ) 时, f (x) 0 ;
2
2
当 x(a
a2 4 a ,
a2 4 ) 时, f (x) 0 . 所以 f (x) 在 (0, a
2/6
高考数学培优专题(1)
例 3 (2014 年江苏南通二模)设函数 f (x) ex ax a ,其图像与 x 轴交于 A(x1, 0), B(x2, 0) 两点,且
x1 x2 . (Ⅰ)求实数 a 的取值范围; (Ⅱ)求证: f ( x1x2 ) 0 .
例 4(2011 年辽宁理科)已知函数 f (x) ln x ax2 (2 a)x .
a2 4 ) , (a
a2 4 , ) 单调递
2
2
2
2
减,在 (a
a2 4 a ,
a2 4 ) 单调递增.
2
2
(2)由(1)知, f (x) 存在两个极值点当且仅当 a 2 .
由于 f (x) 的两个极值点 x1 , x2 满足 x2 ax 1 0 ,所以 x1x2 1 ,不妨设 x1 x2 ,则 x2 1 . 由于
高考数学培优专题(1)
对数平均不等式的证明与应用

对数平均不等式的证明及应用

对数平均不等式的证明及应用

对数平均不等式的证明及应用对数平均不等式是数学中的一种重要不等式,它常常被用于证明和推导其他数学定理。

在本文中,我们将介绍对数平均不等式的定义、证明以及一些应用。

一、对数平均不等式的定义对数平均不等式又称为加权对数平均,它是指对数平均和算术平均之间的不等关系。

具体来说,设x_1, x_2, ..., x_n是n个正实数,a_1, a_2, ..., a_n是n个非负实数且满足a_1 + a_2 + ... + a_n = 1,则对数平均不等式定义为:(\prod_{i=1}^{n} x_i^{a_i})^{\frac{1}{1}} \geq (\sum_{i=1}^{n} a_ix_i)\prod_{i=1}^{n} x_i^{a_i}表示x_i的加权乘积,\sum_{i=1}^{n} a_ix_i表示x_i的加权和。

二、对数平均不等式的证明对数平均不等式的证明可以通过多种方法,其中一个比较简单的证明思路如下:假设n=2,即x_1和x_2是两个正实数,a_1和a_2是两个非负实数且满足a_1 + a_2 = 1。

我们需要证明以下不等式成立:(x_1^{a_1} \cdot x_2^{a_2})^{\frac{1}{1}} \geq (a_1x_1 + a_2x_2)我们可以通过将不等式两边同时取对数,化为等价的形式,即证明以下不等式成立:\frac{1}{1} \cdot (a_1\ln{x_1} + a_2\ln{x_2}) \geq \ln{(a_1x_1 + a_2x_2)}进一步化简得到:a_1\ln{x_1} + a_2\ln{x_2} \geq \ln{(a_1x_1 + a_2x_2)}通过进一步变形和化简,可以得到对数平均不等式成立的结论。

对于n > 2的情况,证明的思路和方法也是类似的,只是需要进行更多的数学推导和变形运算。

有兴趣的读者可以尝试通过数学归纳法或其他方法进行证明。

对数均值不等式的应用典例

对数均值不等式的应用典例

对数均值不等式的应用典例对数均值不等式是数学中一种常见的不等式,它在数学推导和证明中具有重要的应用价值。

在以下内容中,将介绍对数均值不等式的应用典例。

1. 应用于几何平均数和调和平均数的比较对数均值不等式可以用来比较几何平均数和调和平均数的大小关系。

几何平均数和调和平均数在统计学和概率论中经常用到,对于一组非负实数a1, a2, ..., an,它们的几何平均数定义为G = (a1 * a2 * ... * an)^(1/n),调和平均数定义为H = n / (1/a1 + 1/a2 + ... + 1/an)。

根据对数均值不等式,有ln(G) >= (ln(a1) + ln(a2) + ... + ln(an))/n >= ln(H),即G >= H。

这意味着,在一组非负实数中,几何平均数大于等于调和平均数。

2. 应用于证明不等式对数均值不等式在证明不等式时经常被使用。

例如,我们要证明对于任意正实数a, b,有a^2 + b^2 >= 2ab。

可以使用对数均值不等式来证明。

首先,我们可以将不等式化简为(a^2 + b^2)/2 >= ab,然后取对数得到ln((a^2 + b^2)/2) >= ln(ab)。

接下来,根据对数均值不等式,有ln((a^2 + b^2)/2) >= (ln(a) + ln(b))/2,ln(ab) = ln(a) + ln(b),所以ln((a^2 + b^2)/2) >= ln(ab)。

进一步化简得到(a^2 + b^2)/2 >= ab,即原不等式成立。

3. 应用于概率论中的熵和相对熵对数均值不等式在概率论中的熵和相对熵的推导中也有应用。

熵是一个度量随机变量的不确定性的概念,相对熵则是衡量两个概率分布之间差异的概念。

根据对数均值不等式,可以证明熵和相对熵是凸函数,这是由于对数函数是凸函数,而均值不等式保持凸性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


数平均不等式
1.定义:设,0,,a b a b >≠则2ln ln a b a b a b
+->>-ln ln a b a b -- 为对数平均数. 2.几何解释: 反比例函数()()10f x x x =
>的图象,如图所示,AP BC TU KV ||||||,MN CD x ||||
轴, (),0,A a 1,,P a
a ⎛⎫ ⎪⎝⎭()1,0,,B
b Q b b ⎛⎫ ⎪⎝⎭,,T 作()f x 在点2,2a b K a b +⎛⎫ ⎪+⎝⎭处的切线分别与
,AP BQ 交于,E F ,根据左图可知, 变形公式: )0.()(2ln ln >≥+-≥-b a b
a b a b a 3.典例剖析
对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的.
(一) 0ln ln b a
b a a b a 的应用
例1 (2014年陕西)设函数
)1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数. (1)(2)(略)
(3)设+∈N n ,比较()()()12g
g g n +++与()n f n -的大小,并加以证明.
. (二)2202ln ln b b a b a b a 的应用
例2 设数列{}
n a 的通项n a =,其前n 项的和为n S ,证明:()ln 1n S n <+. (三) 02ln ln a b b a b a b a 的应用
例3. 设数列{}n a 的通项111123
n a n =++++,证明:()ln 21n a n <+. (四) 2011ln ln b a b a b a a b 的应用
例 4. (2010年湖北)已知函数0b
f x ax c a x 的图象在点1,1f 处的切线方程为1y x .(1)用a 表示出,b c ;(2)(略)
(3)证明:1111ln 11.2321n n n n n (五) 0ln ln b a ab b a b a 的应用
例5. (2014福建预赛)已知1()ln(1)311f x a x x x =++
+-+. (1)(略)
(2)求证:
()222223411ln 21411421431414n n n +++++>+⨯-⨯-⨯-⨯-对一切正整数n 均成立. 强化训练
1. (2012年天津)已知函数()()()ln 0f x x x a a =-+>的最小值为0.
(1)(2)(略)(3)证明:
()()12ln 212*.21n i n n N i =-+<∈-∑ 2.(2013年新课标Ⅰ)已知函数()()()1ln 11x x f x x x
λ+=+-+. (1)若0x ≥时, ()0,f x ≤求λ的最小值;
(2)设数列{}n a 的通项111123n a n =++++,证明:21ln 24n n a a n -+>.。

相关文档
最新文档