初中数学几何辅助线技巧
初中几何辅助线大全及口诀

作辅助线的方法一:中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
初中数学做辅助线的方法总结

初中数学做辅助线的方法总结
在初中数学中,做辅助线是解题的重要方法之一。
以下总结了几
种常见的做辅助线的方法:
1. 对称性辅助线法:当一个图形或方程式具有对称性时,可以
画出一条对称轴或一些对称线,从而利用对称性来简化问题。
例如,
在求三角形的中线长度相等定理时,可以描绘出三角形的垂直平分线,并在中点处作垂线,得到两个相等的直角三角形。
2. 垂线辅助线法:当一个角、线段或线段的垂线很难直接操作时,可以画出一条垂线,将问题转化为一个直角三角形问题。
例如,
在求一条线段的垂线长度时,可以先画出一条垂线与该线段相交,并
组成一个直角三角形。
3. 平移辅助线法:当一个几何图形或方程式涉及到平移时,可
以通过向图形或方程式添加平移线或平移量来使问题变得简单。
例如,在证明平行四边形对角线平分的定理时,可以平移一个平行四边形,
使其成为一个重合的平行四边形,从而使问题变得简单。
4. 分割辅助线法:当一个图形或方程式很复杂时,可以通过将
其分解成几个简单的部分来解题。
例如,在求多边形面积时,可以将
多边形分割成几个三角形或梯形,并将它们的面积相加,从而得到多
边形的面积。
总之,做辅助线的方法不只有以上四种,还可以根据具体问题的
不同情况选用其他的方法。
需要注意的是,在使用辅助线时,要注意
画出清晰的图形,并理解各种辅助线的作用,才能有效地解决问题。
初中数学辅助线常用做法

1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
(5)过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。
(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰(5)过梯形上底的两端点向下底作高(6)平移对角线(7)连接梯形一顶点及一腰的中点。
(8)过一腰的中点作另一腰的平行线。
(9)作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。
初中数学几何辅助线技巧!

初中数学 140 分以上,必须掌握的几何辅助线技巧!几何可以说是初中数学的半壁江山,囊括了无数的重点知识、难点知识、无数的中考考点……学好几何,初中数学就不在话下!!在几何问题中,添加辅助线可以说是解题的关键!辅助线画得好,解题轻松又快速!辅助线画不对,解题可能就会绕弯又出错!如何快速添加利于解题的辅助线??诀窍都在下面了!↓↓几何常见辅助线口诀三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连接则成中位线。
三角形中有中线,倍长中线得全等。
四边形平行四边形出现,对称中心等分点。
梯形问题巧转换,变为三角或平四。
平移腰,移对角,两腰延长作出高。
如果出现腰中点,细心连上中位线。
上述方法不奏效,过腰中点全等造。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆形 半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆。
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
由角平分线想到的辅助线一、截取构全等如图, AB//CD ,BE 平分∠ABC,CE 平分∠BCD,点 E 在 AD 上,求证:BC=AB+CD 。
分析:在此题中可在长线段 BC 上截取 BF=AB,再证明 CF=CD,从而达到证明的目的。
初二做辅助线的技巧

初二做辅助线的技巧初二时学习数学,辅助线是一个非常重要的技巧。
辅助线可以帮助我们更好地理解和解决各种数学问题。
下面我将介绍一些初二做辅助线的技巧。
我们来看一下如何在几何图形中使用辅助线。
在求解几何问题时,辅助线可以帮助我们找到一些隐藏的几何关系,从而简化问题。
比如,在求解平行线问题时,我们可以通过画一条与已知直线平行的辅助线,来找到与所求直线平行的线段。
通过这样的辅助线,我们可以很容易地得到所求的答案。
在代数中,辅助线同样可以发挥重要的作用。
比如,在解方程的过程中,我们可以通过引入一个新的变量来构造一个辅助方程,从而简化问题。
通过这个辅助方程,我们可以得到原方程的解。
在解决分数运算问题时,辅助线也是一个非常有用的工具。
当我们需要对两个分数进行比较或运算时,可以通过引入一个相同的分母来简化计算。
这个相同的分母就是我们引入的辅助线,通过它,我们可以将分数转化为整数,从而更方便地进行计算。
在解决几何问题时,辅助线还可以帮助我们证明定理。
通过引入一些辅助线,我们可以得到一些额外的几何关系,从而证明所要证明的定理。
这种方法在解决几何证明问题时非常常用。
除了上述的几种情况,辅助线还可以用于解决其他类型的数学问题。
无论是代数、几何还是其他数学领域,辅助线都是一个非常有用的工具。
通过合理地使用辅助线,我们可以将原来复杂的问题简化为易于理解和解决的问题。
初二做辅助线是一个非常重要的技巧。
通过合理地使用辅助线,我们可以更好地理解和解决各种数学问题。
在几何中,辅助线可以帮助我们找到隐藏的几何关系;在代数中,辅助线可以简化方程的解法;在分数运算中,辅助线可以简化计算;在几何证明中,辅助线可以帮助我们证明定理。
在解决其他类型的数学问题时,辅助线同样是一个非常有用的工具。
通过合理地使用辅助线,我们可以更好地理解和解决各种数学问题。
希望以上的介绍能够帮助到大家,提高大家的数学水平。
初一数学几何题辅助线技巧详解

巧添辅助线 解证几何题在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决;值得注意的是辅助线的添加目的与已知条件和所求结论有关;下面我们分别举例加以说明;例题解析一、倍角问题 例1:如图1,在△ABC 中,AB=AC,BD ⊥AC 于D;求证:∠DBC=12∠BAC.分析:∠DBC 、∠BAC 所在的两个三角形有公共角∠C,可利用三角形内角和来沟通∠DBC 、∠BAC 和∠C 的关系; 证法一:∵在△ABC 中,AB=AC, ∴∠ABC=∠C=12180°-∠BAC=90°-12∠BAC; ∵BD ⊥AC 于D ∴∠BDC=90°∴∠DBC=90°-∠C=90°-90°-12∠BAC= 12∠BAC 即∠DBC=12∠BAC 分析二:∠DBC 、∠BAC 分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ½∠BAC ”中含有角的倍、半关系,因此,可以做∠A 的平分线,利用等腰三角形三线合一的性质,把½∠A 放在直角三角形中求解;也可以把∠DBC 沿BD 翻折构造2∠DBC 求解;证法二:如图2,作AE ⊥BC 于E,则∠EAC+∠C=90°∵AB=AC ∴∠EAG=12∠BAC ∵BD ⊥AC 于D∴∠DBC+∠C=90°∴∠EAC=∠DBC 同角的余角相等即∠DBC=12∠BAC;证法三:如图3,在AD 上取一点E,使DE=CD 连接BE ∵BD ⊥AC∴BD 是线段CE 的垂直平分线 ∴BC=BE ∴∠BEC=∠C∴∠EBC=2∠DBC=180°-2∠C ∵AB=AC ∴∠ABC=∠C∴∠BAC=180°-2∠C ∴∠EBC=∠BAC ∴∠DBC=12∠BAC 说明:例1也可以取BC 中点为E,连接DE,利用直角三角形斜边的中线等于斜边的一半和等腰三例2、如图4,在△ABC 中,∠A=2∠B求证:BC 2=AC 2+AC •AB分析:由BC 2=AC 2+AC •AB= ACAC+AB,启发我们构建两个相似的三角形,且含有边BC 、AC 、AC+AB.又由已知∠A=2∠B 知, 构建以AB 为腰的等腰三角形;证明:延长CA 到D,使AD=AB,则∠D=∠DBA ∵∠BAC 是△ABD 的一个外角 ∴∠BAC=∠DBA+∠D=2∠D ∵∠BAC=2∠ABC∴∠D=∠ABC又∵∠C=∠C ∴△ABC ∽△BDC ∴AC BCBC CD=∴BC 2=AC •CD AD=AB∴BC 2= ACAC+AB=AC 2+AC •AB二、 中点问题例3.已知:如图,△ABC 中,AB=AC,在AB 上取一点D,在AC的延长线上取一点E,连接DE 交BC 于点F,若F 是DE 的中点;求证:BD=CE分析:由于BD 、CE 的形成与D 、E 两点有关,但它们所在的三角形之间因为不是同类三角形,所以 关系不明显,由于条件F 是DE 的中点,如何利用这个中点条件,把不同类三角形转化为同类三角形式问题的关键; 由已知AB=AC,联系到当过D 点或E 点作平行线,就可以形成新 的图形关系——构成等腰三角形,也就是相当于先把BD 或CE 移动一下位置,从而使问题得解;证明:证法一:过点D 作DG ∥AC,交BC 于点G 如上图 ∴∠DGB=∠ACB, ∠DGF=∠FCE ∵AB=AC ∴∠B=∠ACB ∴∠B=∠DGB ∴BD=DG ∵F 是DE 的中点 ∴DF=EF在△DF G 和△DEFC 中,DFG= EFC DGF= FCE DF=EF ∠∠⎧⎪∠∠⎨⎪⎩∴△DF G ≌EFC∴DG=CE ∴BD=CEABCEGDFCAB证法二:如图,在AC 上取一点H,使CH=CE,连接DH ∵F 是DE 的中点∴CF 是△EDH 的中位线 ∴DH ∥BC∴∠ADH=∠B, ∠AHD=∠BCA ∵AB=AC ∴∠B=∠BCA∴∠ADH=∠AHD ∴AD=AH ∴AB-AD=AC-AH ∴BD=HC∴BD=CE说明:本题信息特征是“线段中点”;也可以过E 作EM ∥BC,交AB 延长线于点G,仿照证法二求解;例4.如图,已知AB ∥CD,AE 平分∠BAD,且E 是BC 的中点 求证:AD=AB+CD证法一:延长AE 交DC 延长线于F ∵AB ∥CD ∴∠BAE=∠F, ∠B=∠ECF ∵E 是BC 的中点 ∴BE=CE 在△ABE 和△CEF 中BAE= F B= ECF BE=CE ∠∠⎧⎪∠∠⎨⎪⎩∴△ABE ≌△CEF ∴AB=CF∵AE 平分∠ABD ∴∠BAE=∠DAE ∴∠DAE=∠F ∴AD=DF ∵DF=DC+CF CF=AB ∴AD=AB+DC证法二:取AD 中点F,连接EF ∵AB ∥CD,E 是BC 的中点 ∴EF 是梯形ABCD 的中位线∴EF ∥AB , EF=12AB+CD∴∠BAE=∠AEF ∵AE 平分∠BAD ∴∠BAE=∠FAE ∴∠AEF=∠FAE ∴AF=EF ∵AF=DF∴EF=AF=FD=12AD ∴12 AB+CD= 12ADAB CD HEF A B CEFDA BCEF三.角平分线问题例5.如图1,OP 是∠MON 的平分线,请你利用图形画一对以OP 所在直线为对称轴的全等三角形;请你参考这个全等三角形的方法,解答下列问题;(1) 如图2,在△ABC 中,∠ACB 是直角,∠B=60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE相交于点F,请你判断并写出EF 与FD 之间的数量关系;(2) 如图3,在△ABC 中,如果∠ACB 不是直角,而1中的其他条件不变,请问,你在1中所得的结论是否仍然成立 若成立,请证明;若不成立,请说明理由;(3)分析:本题属于学习性题型;这类题型的特点是描述一种方法,要求学生按照指定的方法解题;指定方法是角平分问题的“翻折法”得全等形;解:1EF=FD2答:1结论EF=FD 仍然成立理由:如图3,在AC 上截取AG=AE,连接FG 在△AEF 和△AGF 中,AE=AG EAF= FAG AF=AF ⎧⎪∠∠⎨⎪⎩∴△AEF ≌△AGF由∠B=60°,AD 、CE 分别是∠BAC ∠BCA 的平分线 可得∠FAG+∠FCA=60° ∴∠EFA=∠GFA=∠DFC=60° ∴∠GFC=60°在△CFG 和△CFD 中GFC= DFC CF=CF DCE= ACE ∠∠⎧⎪⎨⎪∠∠⎩∴△CFG ≌△CFD ∴FG=FD 又因为EF=GF ∴EF=FD说明:学习性问题是新课程下的新型题,意在考查学生现场学习能力和自学能力;抛开本题要求从角平分线的角度想,本题也可以利用角平分线的性质“角平分线上的点到角的两边的距离相等”达到求解的目的;解法二:2答1中的结论EF=FD 仍然成立;理由:作FG ⊥AB 于G,FH ⊥AC 于H,FM ⊥BC 于M ∵∠EAD=∠DAC ∴FG=FH∵∠ACE=∠BCE ∴FH=FG∵∠B=60° ∴∠DAC+∠ACE=60° ∴∠EFD=∠AFC=180°- 60°=120°在四边形BEFD 中 ∠BEF+∠BDF=180°∵∠BDF+∠FDC=180° ∴∠FDC =∠BEF 在△EFG 和△DFM 中FDC = BEF EGF= DMF=90FG=FM ∠∠⎧⎪∠∠⎨⎪⎩∴EFG ≌△DFM ∴EF=DF四、线段的和差问题例6 如图,在△ABC 中,AB=AC,点P 是边BC 上一点,PD ⊥AB 于D,PE ⊥AC 于E,CM ⊥AB 于M,试探究线段PD 、PE 、CM 的数量关系,并说明理由;分析:判断三条线断的关系,一般是指两较短线段的和与较长线段的大小关系,通过测量猜想PD+PE=CM.分析:在CM 上截取MQ=PD,得□PQMD,再证明CQ=PE 答:PD+PE=CM证法一:在CM 上截取MQ=PD,连接PQ. ∵CM ⊥AB 于M, PD ⊥AB 于D∴∠CMB=∠PDB=90°∴CM ∥DP∴PQ ∥AB∴∠CQP=∠CMB=90°∠QPC=∠B ∵AB=AC ∴∠B=∠ECP ∴∠QPC=∠ECP ∵PE ⊥AC 于E ∴∠PEC=90°在△PQC 和△PEC 中PQC= PEC QPC= ECP PC=PC ∠∠⎧⎪∠∠⎨⎪⎩∴△PQC ≌△PEC ∴QC=PE ∵MQ=PD ∴MQ+QC=PD+PE ∴PD+PE=CM分析2:延长DF 到N 使DN=CM,连接CN,得平行四边形DNCM, 再证明PN=PE证法2:延长DF 到N,使DN=CM,连接CN同证法一得平行四边形DNCM,及△PNC ≌△PEC ∴PN=PE ∴PD+PE=CM分析3:本题中含有AB=AC 及三条垂线段PD 、DE 、CM, 且PABPACABCSSS+=,所以可以用面积法求解;证法三:连接AP,∵PD ⊥AB 于D,PE ⊥AC 于E,CM ⊥AB 于M ∠PQC=∠PEC ∠QPC=∠ECP PC=PC ∴121212ABPACPABCS AB PD S AC PE SAB CM =•=•=• ∵AB=AC 且PABPACABCSSS+=∴1112220AB PD AB PE AB CM AB PD PE CM•+•=•≠∴+= 说明:当题目中含有两条以上垂线段时,可以考虑面积法求解;FEDCBA五、垂线段问题例7 在平行四边形ABCD 中,P 是对角线BD 上一点,且,,PE AB PF BC ⊥⊥垂足分别是E 、F求证:AB PF BC PE=分析:将比例式AB PF BC PE=转化为等积式AB PE BC PF •=•,联想到AB PE BC PF•=•1122, 即△PAB 与△PBC 的面积相等,从而用面积法达到证明的目的;证明:连接AC 与BD 交于点O,连接PA 、PC 在平行四边形ABCD 中,AO=COAOBBOCSS∴=同理,AOPCOP AOBAOPBOCCOPPAB PBCS S SS SSSS=∴-=-=∵,,PE AB PF BC ⊥⊥,11221122PAB PBC SAB PE S BC PF AB PE BC PF AB PE BC PF AB PFBC PE∴=•=•∴•=•∴•=•∴=例8求证:三角形三条边上的中线相交于一点;分析:这是一个文字叙述的命题;要证明文字命题,需要根据题意画出图形,再根据题意、结合图形写出已知、求证;已知:△ABC 中,AF 、BD 、CE 是其中线; 求证:AF 、BD 、CG 相交于一点;分析:要证三线交于一点,只要证明第三条线经过另两条线的交点即可;FED CBAP,ABDCBDAGDCGD AGBCGBCGBAGCAGBAGCAD DC SSSSS S SSSS=∴==∴==∴=同理,作BM ⊥AF ,于M,CN ⊥AF ,于N则,11221122AGB AGC SAG BM S AG CN AG BM AG CN BM CN=•=•∴•=•∴= 在△BMF ,和△CNF ,中 BF MCF N BMF CNF BM CN ''∠=∠⎧⎪''∠=∠⎨⎪=⎩∴△BMF ≌△CNF ∴''BF CF =∴AF ,是BC 边上的中线 又∵AF 时BC 边上的中线∴AF 与AF ,重合 即AF 经过点D∴AF 、BD 、CE 三线相交于点G因此三角形三边上的中线相交于一点;六、梯形问题例9.以线段a=16,b=13为梯形的两底,以c=10为一腰,则另一腰长d 的取值范围是_ 分析:如图,梯形ABCD 中,上底b=13,下底a=16,腰AD= c=10,过B 作BE ∥AD,得到平行四边形ABED,从而得AD=BE=10,AB=DE=13 所以EC=DC-DE=16-13=3. 所以另一腰d 的取值范围是 10-3<d <10+3 答案:7<d <13例10.如图,已知梯形ABCD 中,AB ∥DC,高AE=12,BD=15,AC=20,求梯形ABCD 的面积;分析:已知条件中给出两条对角线的长,但对角线位置交错,条件一时用不上;另外,求梯形面积只要求出上、下底的和即可,不一定求出上、下底的长,所以考虑平移腰;解:解法一:如图,过A 作AF ∥BD,交CD 延长线于FD CE B A//,AB FCFD AB AF BD FC AB DCAE FC AEF AEC ∴∴===∴=+⊥∴∠=∠=ABDF 1590。
初中数学几何做辅助线方法技巧

初中数学几何做辅助线方法技巧初中数学里面,几何这个部分是比较重要的,因为对我们日后的学习和生活有一定的帮助。
在学习几何的过程中,我们常常需要用到做辅助线的方法来帮助我们更好的理解和解决问题。
下面是关于初中数学几何做辅助线方法技巧的介绍。
1. 画出平行线在处理一些证明题或求几何中的相关数据时,使用画一条平行线的方法,这条线起到辅助线的作用。
具体来说,我们可以根据题目已知的条件,画出一条平行于两条线的直接过这两条线的平行线。
这样做可以帮助我们更好的理解题目所需要求解的问题。
2. 画出垂线在几何中,垂线是非常重要的一种线。
垂线可以将一条线分成两段,并且在某些时候可以帮助我们求解一些困难的问题。
具体的做法是在需要求解的点上,画出一条线段与目标线段垂直相交。
3. 构造相似三角形有时候在处理一些题目时,不好直接得出一个结论或者一些数据,使用相似三角形来帮助我们更好的理解和求解问题。
相似三角形有一个共同的特点就是它们的对应角度相等,边长成比。
具体的做法是在画图的时候,根据题目条件构造一个相似三角形,利用等比例关系求解相关数据或者结论。
4. 利用勾股定理在解析几何中,勾股定理是一个非常重要的公式,它在很多问题中都有很大的帮助。
利用勾股定理可以求出直角三角形的三个边长。
同时在画图的时候,也可以利用勾股定理来帮助画出直角三角形。
5. 使用比例关系在某些问题中,我们可能需要根据已知条件来求出一些距离或长度之类的数据。
在这种情况下,我们可以通过比例关系来帮助我们快速求解。
具体的做法是在画图的时候,根据已知条件构造出一定的比例关系,在求出需要的数据。
6. 构造平行四边形和等边三角形利用平行四边形和等边三角形来帮助我们求解问题也是一个非常不错的方法。
具体的做法是在求解相关问题时,根据已知条件或者所求的条件,在画出平行四边形或者等边三角形,利用它们的性质来求解所需要求解的问题。
几何学是一个非常重要的数学分支,它在我们的生活中起着非常重要的作用。
几何证明题辅助线的技巧和方法

几何证明题辅助线的技巧和方法
在解决几何证明题时,辅助线是一种常用且有效的工具。
它可以帮助我们发现
隐藏的几何关系,简化证明过程,并提供新的角度来解决问题。
以下是几种常见的辅助线技巧和方法,可用于解决几何证明题。
1. 平行线辅助线法:当题目涉及到平行线时,我们可以通过引入一条平行线作
为辅助线,从而构建出平行线之间的相似三角形或平行四边形。
这样,我们可以得出相应的角度和边的关系,进而证明几何问题。
2. 三角形中线辅助线法:三角形的中线是连接一个顶点与对应中点的线段。
通
过引入三角形中线作为辅助线,我们可以将原问题转化为直角三角形的性质或平行线的性质。
这种方法常常用于证明三角形的等边、等腰等性质。
3. 垂直线辅助线法:当题目涉及到垂直线时,我们可以通过引入一条垂直线作
为辅助线,从而构建出垂直角、直角三角形或平行四边形。
通过利用垂直线的性质,我们可以得到角度、边长等关系,进而解决问题。
4. 内切圆辅助线法:对于一个给定的三角形,可以通过引入其内切圆作为辅助线,来简化证明过程。
内切圆与三角形的的边相切于三个点,这些点可以提供有用的几何关系,如正方形的性质、垂直线的性质等。
5. 类似三角形辅助线法:当计算角度或证明形状相似时,引入类似三角形作为
辅助线可以大大简化证明过程。
通过找到两个或多个类似的三角形,我们可以得到两个三角形的边长比例,并据此解决问题。
总之,辅助线是几何证明中的有效工具,它们可以帮助我们发现关键的几何关系,简化证明过程,并提供新的角度来解决问题。
通过灵活运用各种辅助线技巧和方法,我们可以更加轻松地解决各种几何证明题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何常见辅助线口诀
三角形
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连接则成中位线。
三角形中有中线,倍长中线得全等。
四边形
平行四边形出现,对称中心等分点。
梯形问题巧转换,变为三角或平四。
平移腰,移对角,两腰延长作出高。
如果出现腰中点,细心连上中位线。
上述方法不奏效,过腰中点全等造。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面
作高线,比例中项一大片。
圆形
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径联。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个接圆,角平分线梦圆。
如果遇到相交圆,不要忘作公共弦。
外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
由角平分线想到的辅助线
一、截取构全等:
如图,AB//CD , BE平分/ ABC , CE平分/ BCD,点E在AD上,
求证:BC=AB+CD。
分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。
这里面用到了角平分线来构造全等三角形。
另外一个全等自已证明。
此题的证明也可以延长BE与CD的延长线交于一点来证明。
自己试一试。
二、角分线上点向两边作垂线构全等:
如图,已知AB>AD, / BAC二/ FAC,CD二BC。
求证:/ ADC+ / B=
分析:可由C向/ BAD的两边作垂线。
近而证/ ADC与/B之和为平角。
三、三线合一构造等腰三角形:
如图,AB=AC,/ BAC=90 , AD为/ ABC的平分线,CE丄BE求证:BD=2CE。
分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。
四、角平分线+平行线:
如图,AB>AC, / 1 = / 2,求证:AB —AC>BD —CD。
分析:AB上取E使AC=AE,通过全等和组成三角形边边边的关系可证。
由线段和差想到的辅助线
由中点想到的辅助线
一、中线把三角形面积等分:如图,△ ABC中,AD是中线,延长AD至U E,使DE=AD , DF是△ DCE 的中线。
已知△ ABC的面积为2,求:△ CDlF面积。
,求证:AE二AD+BE。
、截长补短法
分析:过C点作AD垂线,得到全等即可。
分析:利用中线分等底和同高得面积关系。
二、中点联中点得中位线:
如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点, BA、CD的延长线分别交EF的延长线G、H。
求证:/ BGE= / CHE.
分析:联BD取中点联接联接,通过中位线得平行传递角度。
三、倍长中线:
如图,已知△ ABC中,AB=5 , AC=3,连BC上的中线AD=2,求BC的长。
分析:倍长中线得到全等易得。
四、RT斜边中线:
如图,已知梯形ABCD中,AB//DC , AC丄BC , AD丄BD,求证: AC=BD 。
分析:取AB中点得RT△斜边中线得到等量关系
由全等三角形想到的辅助线
一、倍长过中点得线段:已知,如图△ ABC中,AB=5, AC=3,则中线AD的取值围是
A
8 0
分析:利用倍长中线做二、截长补短:
如图,在四边形ABCD中,BC >BA,AD = CD , BD平分,求证:
/ A+ / C=
分析:在角上截取相同的线段得到全等。
三、平移变换:如图,在厶ABC 的边上取两点D、E,且BD=CE ,求证:AB+AOAD+AE
B E C
分析:将厶ADF 旋转使AD 与AB 重合。
全等得证。
由梯形想到的辅助线
一、平移一腰:
所示,在直角梯形 ABCD 中,/ A = 90 °,AB // DC ,
=16 , BC = 17.求 CD 的长。
分析:将厶ACE 平移使EC 与BD 重合。
四、旋转:
形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,
求/ EAF 的度数
BE+DF 二EF, A
D
AD = 15 , AB
分析:利用平移一腰把梯形分割成三角形和平行四边形。
二、平移两腰:
如图,在梯形ABCD 中,AD//BC ,/ B+/ C=90 °,AD=1 , BC=3 , E、F分别是AD、BC的中点,连接EF,求EF的长。
肖£ D
C F H C
分析:利用平移两腰把梯形底角放在一个三角形。
三、平移对角线:
已知:梯形ABCD 中,AD//BC , AD=1 , BC=4 , BD=3, AC=4 ,求梯形ABCD的面积。
分析:通过平移梯形一对角线构造直角三角形求解。
四、作双高:
在梯形ABCD中,AD为上底,AB>CD,求证:BD>AC
分析:作梯形双高利用勾股定理和三角形边边边的关系可得。
五、作中位线:
(1)如图,在梯形ABCD中,AD//BC ,E、F分别是BD、AC 的
中点,求证:EF//AD
分析:联DF并延长,利用全等即得中位线。
(2)在梯形ABCD 中,AD // BC, / BAD=90 ° , E 是DC 上的中点,连接AE 禾口BE,求/ AEB=2 / CBE。
o A
分析:在梯形中出现一腰上的中点时,过这点构造出两个全等的三角形达到解题的目的。