变压器各侧电流相位差与平衡补偿
主变保护定值计算稿

一. 主变压器系统参数(一) 主变压器系统参数(二)主变压器比率制动差动保护1、主变压器差动:主变压器高压侧TA 变比600/1; 主变压器低压侧TA 变比6000/1。
(1) 主变压器各侧一次额定电流:高压侧: A U S I n b n n b 3.2862423120000311=⨯==式中: U b1n 为主变压器高压侧额定电压;S n 为主变压器额定容量。
低压侧: A U S I n b n n b 65985.103120000311=⨯==式中: U b1n 为主变压器低压侧额定电压;S n 为主变压器额定容量。
(2) 主变压器各侧二次额定电流:高压侧: A n I I blhn b n b 477.01600286.312=== (n blh 为主变压器高压侧TA 变比600/1)。
低压侧: A n I I b l h n b n b 1.110060659812===(n blh 为发电机机端TA 变比6000/1)。
(3)高压侧平衡系数计算3307.11/60001/060.10.5324231H 1=⨯=⋅=TAL TAH nL n phL n n U U K 其中,nH U 1为主变压器高压侧额定电压,nL U 1为主变压器低压侧额定电压,TAL n 为低压侧CT 变比,TAH n 为高压侧CT 变比。
(4) 差动各侧电流相位差与平衡补偿主变压器各侧电流互感器二次均采用星形接线。
(5) 纵差保护最小动作电流的整定。
最小动作电流应大于主变压器额定负载时的不平衡电流,即Iop. min=Krel(Ker+ △m)I N /na= 2(0.1+0.02)X1.1=0.264 Iop.min 一般取0.2~0.3I N式中:I N —主变压器额定电流; na —电流互感器的变比;Krel —可靠系数,取1. 5~2,取2; Ker —TA 综合误差取0.02(6)起始制动电流Ires.o 的整定。
变压器的差动保护

从计算结果可以看出正常情况下流入差动回路 的不平衡电流为 Ibp= I2Y- I2Δ=4.55A-4.32A=0.23A。 为了消除这不平衡电流的影响,可将平衡线圈 接入低压侧的保护臂中,由于I2Y>I2Δ,则有 I2Y- I2Δ的差电流流过差动回路,形成磁势 (I2Y- I2Δ)Wcd,适当选取Wph的匝数,并应 满足下式的要求: I2ΔWph =(I2Y- I2Δ)Wcd 接线时要注意极性,应使I2Δ在Wph上所产生的 磁势,与(I2Y- I2Δ)在Wcd上产生的磁势方 向相反,互相抵消,这样差动继电器的执行元 件中就没有电流。
三、两侧电流互感器的型号和所选变比不
完全合适。
所谓所选变比不完全合适是指变压器两侧的 电流互感器都是采用定型产品。所以实际的计算 变比与产品的标准变比是往往不一样的,而且对 变压器两侧的电流互感器来说,这种程度又不一 样。这就在差动回路中引起了不平衡电流。 因变比选择不合适而引起的不平衡电流,可以采 用BCH型差动继电器的平衡线圈Wph利用磁势平 衡原理来消除其影响。其接线图如图(2)所示:
纵差保护:是利用比较被保护 元件各端电流的幅值和相位原 理构成。
1LH
1DL
I
2LH
2DL
变压器纵差保护
变压器纵差保护是反应变压器一、二次侧电流差值的一种快速动 作的保护装置,用来保护变压器内部以及引出线和绝缘套管的相 间短路。 由于变压器各侧的额定电压和额定电流不等,各侧电流相位也不 相同。且高低压侧是通过电磁联系,在电源一侧中有励磁涌流出 现。这些特点都将导致差动回路中暂态不平衡电流和稳态不平衡 电流大大增大。这便构成了实现变压器纵差保的特殊问题。为了 提高纵差保护的灵敏度,有必要分析有关不平衡增大的原因和克 服的办法。
变压器的纵差动保护原理及整定方法

热电厂主变压器的纵差动保护原理及整定方法浙江旺能环保股份有限公司 作者:周玉彩一、构成变压器纵差动保护的基本原则我们以双绕组变压器为例来说明实现纵差动保护的原理,如图1所示。
由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差动保护的正确工作,就必须适当选择两侧电流互感器的变比,使得在正常运行和外部故障时,两个二次电流相等,亦即在正常运行和外部故障时,差动回路的电流等于零。
例如在图1中,应使图1 变压器纵差动保护的原理接线'2I =''2I =1'1l n I =21''l n I 或 12l l n n 1'1''I I =B n 式中:1l n —高压侧电流互感器的变比;2l n —低压侧电流互感器的变比;B n —变压器的变比(即高、低压侧额定电压之比)。
由此可知,要实现变压器的纵差动保护,就必须适当地选择两侧电流互感器的变比,使其比值等于变压器的变比B n ,这是与前述送电线路的纵差动保护不同的。
这个区别是由于线路的纵差动保护可以直接比较两侧电流的幅值和相位,而变压器的纵差动保护则必须考虑变压器变比的影响。
二、变压器纵差动保护的特点变压器的纵差动保护同样需要躲开流过差动回路中的不平衡电流,而且由于İ1′′ n İ1′差动回路中不平衡电流对于变压器纵差动保护的影响很大,因此我们应该对其不平衡电流产生的原因和消除的方法进行认真的研究,现分别讨论如下: 1、由变压器励磁涌流LY I 所产生的不平衡电流变压器的励磁电流仅流经变压器的某一侧,因此,通过电流互感器反应到差动回路中不能平衡,在正常运行和外部故障的情况下,励磁电流较小,影响不是很大。
但是当变压器空载投入和外部故障切除后电压恢复时,由于电磁感应的影响,可能出现数值很大的励磁电流(又称为励磁涌流)。
励磁涌流有时可能达到额定电流的6~8倍,这就相当于变压器内部故障时的短路电流。
技术指标和技术参数

技术指标和技术参数:一、差动继电器 DCD-2型(BCH-2)技术要求1. 额定值(输入激励量)a. 交流电流频率50Hz;b. 交流额定电流5A。
2. 动作值无直流分量时,继电器的动作安匝AW0 =60±4。
3. 电流整定有效范围当继电器用于保护三绕组电力变压器时,其动作电流可在3A~12A的范围内进行整定 (AW0 = 60)。
当用于保护两绕组电力变压器或交流发电机时,其动作电流可以在1.55A~12A的范围内进行整定。
4. 动作特性继电器直流助磁特性ε= f (k)可以用改变短路绕组匝数的方法进行分阶调整。
5. 可靠系数5倍动作电流时的可靠系数不小于1.35。
2倍动作电流时的可靠系数不小于1.2。
6. 动作时间三倍动作电流时,继电器的动作时间不大于0 .035s。
二、电流继电器技术要求DL-30系列交流继电器,其中电流1.5A~6A ,需要4个;2.5~10A需要3个;其返回系数不小于0.8,额定频率50或60Hz,动作值极限误差不超过±6%,动作值一致性不超过5%,温度变化引起的变差不超过±5%。
三、中间继电器技术要求1、绕组类型:DZJ-204系列继电器是一个电流工作绕组2、额定电压:继电器工作绕组额定电压为:380V。
3、动作值、返回值:当周围介质温度为±20℃±5℃时,继电器动作电压不大于70%额定电压,返回值不小于5%额定电压。
电流型动作电流不大于0.8额定电流,或按要求不大于额定电流。
4、动作时间、返回时间:在额定值下继电器的动作时间不大于0.045秒。
返回时间不大于0.04秒。
四、时间继电器技术要求额定电压:DC 220V动作值:直流电压不大于75%额定值;交流电压不大于85%额定值返回值:不小于5%额定电压五、信号继电器1、继电器工作绕组额定值为:2202、动作值:动作电压不大于70%额定电压。
动作电流不大于90%额定电流。
技术指标和技术参数

技术指标和技术参数:一、差动继电器 DCD-2型(BCH-2)技术要求1. 额定值(输入激励量)a. 交流电流频率50Hz;b. 交流额定电流5A。
2. 动作值无直流分量时,继电器的动作安匝AW0 =60±4。
3. 电流整定有效范围当继电器用于保护三绕组电力变压器时,其动作电流可在3A~12A的范围内进行整定 (AW0 = 60)。
当用于保护两绕组电力变压器或交流发电机时,其动作电流可以在1.55A~12A的范围内进行整定。
4. 动作特性继电器直流助磁特性ε= f (k)可以用改变短路绕组匝数的方法进行分阶调整。
5. 可靠系数5倍动作电流时的可靠系数不小于1.35。
2倍动作电流时的可靠系数不小于1.2。
6. 动作时间三倍动作电流时,继电器的动作时间不大于0 .035s。
二、电流继电器技术要求DL-30系列交流继电器,其中电流1.5A~6A ,需要4个;2.5~10A需要3个;其返回系数不小于0.8,额定频率50或60Hz,动作值极限误差不超过±6%,动作值一致性不超过5%,温度变化引起的变差不超过±5%。
三、中间继电器技术要求1、绕组类型:DZJ-204系列继电器是一个电流工作绕组2、额定电压:继电器工作绕组额定电压为:380V。
3、动作值、返回值:当周围介质温度为±20℃±5℃时,继电器动作电压不大于70%额定电压,返回值不小于5%额定电压。
电流型动作电流不大于0.8额定电流,或按要求不大于额定电流。
4、动作时间、返回时间:在额定值下继电器的动作时间不大于0.045秒。
返回时间不大于0.04秒。
四、时间继电器技术要求额定电压:DC 220V动作值:直流电压不大于75%额定值;交流电压不大于85%额定值返回值:不小于5%额定电压五、信号继电器1、继电器工作绕组额定值为:2202、动作值:动作电压不大于70%额定电压。
动作电流不大于90%额定电流。
浅谈对变压器差动保护不平衡电流的认识

浅谈对变压器差动保护不平衡电流的认识摘要:差动保护是变压器的主保护。
但在实际运行中,产生了不平衡电流降低了保护的灵敏度,有时会产生误动作现象。
本文分析了差动保护不平衡电流产生的原因,并提出有效的防范措施。
关键词:差动保护不平衡电流影响措施引言在旗县农电局66千伏变电所中,差动保护是变压器的主保护。
理论上,当变压器两侧电流互感器的极性相同时,把电流互感器不同极性的二次端子相连,差动继电器的工作线圈并联在电流互感器的二次端子上,此时变压器两侧的二次电流大小相等,方向相反,通过继电器中的电流为零,差动继电器将不会动作。
但是在实际运行时,由于各种因素产生了不平衡电流,因而降低了保护的灵敏度,有时会产生误操作现象。
因此通过了解变压器差动保护工作原理,分析差动保护不平衡电流产生的原因,找出有效的防范措施,提高差动保护动作的灵敏度性,对确保变压器的安全稳定运行很有必要。
1 不平衡电流产生的原因及其对差动保护的主要影响和消除方法(1)变电所主变压器基本采用Yd11的接线方式,其两侧电流的相位差为30度,所以会在差动继电器中产生不平衡电流。
消除这种不平衡电流影响的最好方法是采用相位补偿法,通常将变压器的高压侧的三个电流互感器接成三角形,将变压器低压侧的三个电流互感器接成星形,通过调整互感器出线联接方式可使二次电流的相位相同。
但是经过相位调整后,在高低压侧的电流幅值出现了偏差,差动电流增大。
为了保证在正常运行情况下差动回路中电流近似为零,常通过将该侧电流互感器的电流乘以个系数,尽可能与另一侧的电流相近,使差动电流维持在最小水平。
这是消除不平衡电流的一种常用方法。
(2)变压器的励磁涌流也会产生不平衡电流。
变压器空载投入运行时,由于变压器的铁芯非常饱和,励磁电流将剧烈增大,这时出现可达额定电流8倍左右的励磁涌流。
励磁涌流的大小与回路的阻抗、变压器的容量和铁芯性质等有关系,变压器容量越大,涌流倍数反而越小。
另一方面,励磁涌流中含有二次谐波分量和大量的非周期分量,非周期分量都是偏到时间轴的一边,衰减比较慢。
变压器差动保护整定计算

变压器差动保护整定计算变压器差动保护整定计算1.⽐率差动1.1装置中的平衡系数的计算1).计算变压器各侧⼀次额定电流:式中n S 为变压器最⼤额定容量,n U 1为变压器计算侧额定电压。
2).计算变压器各侧⼆次额定电流:式中n I 1为变压器计算侧⼀次额定电流,LH n 为变压器计算侧TA 变⽐。
3).计算变压器各侧平衡系数:b n n PH K I I K ?=-2min 2,其中)4,min(min2max 2--=n n b I I K 式中n I 2为变压器计算侧⼆次额定电流,min 2-n I 为变压器各侧⼆次额定电流值中最⼩值,max 2-n I 为变压器各侧⼆次额定电流值中最⼤值。
平衡系数的计算⽅法即以变压器各侧中⼆次额定电流为最⼩的⼀侧为基准,其它侧依次放⼤。
若最⼤⼆次额定电流与最⼩⼆次额定电流的⽐值⼤于4,则取放⼤倍数最⼤的⼀侧倍数为4,其它侧依次减⼩;若最⼤⼆次额定电流与最⼩⼆次额定电流的⽐值⼩于4,则取放⼤倍数最⼩的⼀侧倍数为1,其它侧依次放⼤。
装置为了保证精度,所能接受的最⼩系数ph K 为0.25,因此差动保护各侧电流平衡系数调整范围最⼤可达16倍。
1.2差动各侧电流相位差的补偿变压器各侧电流互感器采⽤星形接线,⼆次电流直接接⼊本装置。
电流互感器各侧的极性都以母线侧为极性端。
变压器各侧TA ⼆次电流相位由软件调整,装置采⽤Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,⼤⼤加快保护的动作速度。
对于Yo/Δ-11的接线,其校正⽅法如下:Yo 侧:Δ侧:式中:a I ?、b I ?、c I ?为Δ侧TA ⼆次电流,a I '?、b I '?、cI '?为Δ侧校正后的各相电流;A I ?、B I ?、C I ?为Yo 侧TA ⼆次电流,a I '?、b I '?、c I '?为Yo 侧校正后的各相电流。
其它接线⽅式可以类推。
变压器差动保护整定计算

变压器差动保护整定计算1. 比率差动1.1 装置中的平衡系数的计算1).计算变压器各侧一次额定电流:n nn U S I 113=式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。
2).计算变压器各侧二次额定电流:LHn n n I I 12= 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。
3).计算变压器各侧平衡系数:b n n PH K I I K ⨯=-2min 2,其中)4,min(min2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。
平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。
若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。
装置为了保证精度,所能接受的最小系数ph K 为0.25,因此差动保护各侧电流平衡系数调整范围最大可达16倍。
1.2 差动各侧电流相位差的补偿变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。
电流互感器各侧的极性都以母线侧为极性端。
变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。
对于Yo/Δ-11的接线,其校正方法如下:Yo 侧:)0('I I I A A •••-=)0('I I I B B •••-= )0('I I I C C •••-=Δ侧: 3/)('c a a I I I •••-= 3/)('a b b I I I •••-=3/)('b c c I I I •••-=式中:a I •、b I •、c I •为Δ侧TA 二次电流,a I '•、b I '•、cI '•为Δ侧校正后的各相电流;A I •、B I •、C I •为Yo 侧TA 二次电流,a I '•、b I '•、c I '•为Yo 侧校正后的各相电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器各侧电流相位差与平衡补偿
1) TA 接线方法
变压器各侧TA 采用全星形接线(也可采用常规接线),二次电流直接接入本装置。
各侧相电流TA 均以母线侧为正极性端。
2) 平衡系数的计算 计算变压器各侧一次额定电流:n n
n U S I 113=
式中:n S 为变压器最大额定容量;n U 1为变压器各侧额定电压(应以运行的实际电压为准)。
计算变压器各侧二次额定电流:TA
n n n I I 12= 式中:n I 1为变压器各侧一次额定电流;TA n 为变压器各侧TA 变比。
以高压侧为基准,计算变压器中、低压侧平衡系数:
TAH TAM nH nM TAH TAM nM n nH n TAM nM TAH nH nM nH phM n n U U n n U S U S n I n I I I K ⋅=⋅===111111223/3///
TAH TAL nH nL phL n n U U K ⋅=11
将中、低压侧各相电流与相应的平衡系数相乘,即得幅值补偿后的各相电流。
3) 各侧电流相位补偿
变压器各侧TA 二次电流相位由软件自校正,采用在Y 侧进行校正相位。
例如对于Y 0/Δ-11的接线,其校正方法如下:
0Y 侧:
⎪⎪⎪⎭⎪⎪⎪
⎬⎫-=-=-=∙∙∙∙∙∙∙∙∙3/)(3/)(3/)('''A C C C B B B A A I I I I I I I I I (4)
式中:A I ∙、B I ∙、C I ∙为Y 侧TA 二次电流;A I ∙'、B I ∙'、C I ∙'为Y 侧校正后的各相电流。
其它
接线方式可以类推。
装置中可通过“中压绕组三角接线”、“低压绕组三角接线”、“软件不做TA 接线星三角转换”控制字以及“接线方式钟点数”定值来选择接线方式。
差动电流与制动电流的相关计算,都是在电流相位校正和平衡补偿后的基础上进行。