常见的一些等量关系
利用二元一次方程组解决实际问题

教案纸 科目名称 数学 审批意见:课 题 利用二元一次方程组解决实际问题 学生姓名任课教师 学生年级 初一授 课 日 期 授 课 形 式 □AA □AB 教学目的:1、掌握常见实际问题的几种类型中的等量关系式教学重点:实际问题等量关系的挖掘教学难点:实际问题等量关系的挖掘 要点一、常见的一些等量关系(一) 1.和差倍分问题: 增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题: 解这类问题的基本等量关系是:加工总量成比例. 3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量. 4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价 . 要点二、实际问题与二元一次方程组 1.列方程组解应用题的基本思想 列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足: ①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等. 2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数; 列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值; 验:检验求得的值是否正确和符合实际情形; 答:写出答案. 要点诠释: (1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.【典型例题】类型一、和差倍分问题例1.在一次数学测验中,甲、乙两校各有100名同学参加测试.测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率=()100%()⨯男女生优分人数男女生测试人数,全校优分率=100%⨯全校优分人数全校测试人数)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.【总结升华】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题的第(2)问也可以用不等式求出甲乙两校男生人数满足什么关系时,才满足甲校的全校优分率比乙校的全校的优分率低.举一反三:【变式】为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?类型二、配套问题例2. 某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68 个,扁担40 根,问这个班的男女生各有多少人?【总结升华】两人抬土需要一根扁担,一只筐;一人挑土需要一根扁担,两只筐.题中的等量关系是:参加劳动的同学一共用去箩筐68个和40根扁担,从而列出方程组,解出即可.举一反三:【变式】某工厂有工人60人,生产某种由一个螺栓和两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?类型三、工程问题例3.一项工程,甲队单独做要12天完成,乙队单独做要15天完成,丙队单独做要20天完成.按原定计划,这项工程要求在7天内完成.现在甲、乙两队先合做若干天,以后为加快速度,丙队也同时加入这项工作,这样比原定时间提前1天完成任务.问:甲、乙两队合做了多少天?丙队加入后又做了多少天?【总结升华】①工程类问题中相等关系一般都比较明显,常见的一组相等关系是:两个或几个工作效率不同的对象所完成的工作量之和等于工作总量.②在工程类问题中如果没有工作总量,一般情况下把工作总量设为单位“1”.变式训练:甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?思路点拨:画直线型示意图理解题意:(1)这里有两个未知数:①汽车的行程;②拖拉机的行程.(2)有两个等量关系:类型四、利润问题例题4.甲乙两件服装的成本为500元,商店老板为获取利润,决定将甲种服装按50%的利润定价,乙种服装按40%的利润定价.实际出售时,两种服装均按九折出售,这样商店共获利157元.求甲乙两件服装的成本各是多少元?举一反三:【变式】儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元.已知书包标价比文具盒标价的3倍少6元,那么书包和文具盒的标价各是多少元?变式:4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)课堂练习一、选择题1.某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元.该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x双、乙鞋y双,则依题意可列出下列哪一个方程式? () .A.200(30-x)+50(30-y) =1800 B.200(30-x)十50(30-x-y)=1800C.200(30-x)+50(60-x-y)=1800 D.200(30-x)十50[30-(30-x)-y]=18002. 某中心学校现有学生515人,计划一年后女生在校人数增加135,男生在校人数增加190,这样在校学生人数将增加2103,那么该校现有女生和男生人数分别是( ).A.245和270 B.260和255 C.25.9和256 D.240和2753.欣平超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折.王波两次购物分别付款80元、252元,如果王波一次性购买与上两次相同的商品,则应付款( ).A.288元B.322元C.288元或316元D.332元或363元4.某次知识竞赛共出了25道试题.评分标准如下:答对一道题加4分;答错1道题扣1分;不答记0分,已知李刚不答的题比答错的题多2道,他的总分为74分,则他答对了().A.18道B.19道C.20道D.21道5.某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土,已知全班共用箩筐59个,扁担36根,若设抬土的学生x人,挑土的学生y人,则有().A.2592362yxxy⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩B.2592362xyxy⎧+=⎪⎪⎨⎪+=⎪⎩C.2592236xyx y⎧+=⎪⎨⎪+=⎩D.259236x yx y+=⎧⎨+=⎩6.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系?()A. B.C. D.二、填空题7.一张方桌由一个桌面和四条桌腿组成,如果1 m3木料可制作方桌的桌面50个,或制作桌腿300条,现有5 m3木料,设用x cm3木料制作桌面,用y m3木料制作桌腿,恰好配成方桌,则可得方程组为________.8.如图所示,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为55cm,则木桶中水的深度是cm.9.如图所示个大小、形状完全相同的小长方形组合成一个周长为68的大长方形,则大长方形的面积为________.10.某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商店规定买一只茶壶赠一只茶杯,某人共付款171元得茶壶、茶杯共36只(含赠品在内),其中茶壶________只,茶杯________只.11.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是________.12. 如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与________个砝码C的质量相等.三、解答题13.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这批货车的情况如下表:第一次第二次甲种货车辆数(单位:辆)2 5乙种货车辆数(单位:辆)3 6吨)现租用该公司4辆甲种货车和5辆乙种货车一次刚好运完这批货,如果按每吨付费30元计算,问货主应付费多少元?14.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出大楼共有4道门,其中2道正门大小相同,2道侧门大小也相同,安全检查中,对4道门进行了测试:当同时开启1道正门和2道侧门时,2分钟内可通过560名学生;当同时开启1道正门和1道侧门时,4分钟内可通过800名学生,求平均每分钟1道正门和1道侧门各可通过多少名学生?15. [阅读]在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2、y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭. [运用](1)如图所示,长方形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),则点M 的坐标为________;。
常见等量关系

常见等量关系列方程解应用题的一般步骤:1.认真审题,找出已知量和未知量,以及它们之间的关系;2.设未知数,可以直接设未知数,也可以间接设未知数;3.列出方程中的有关的代数式;4.根据题中的相等关系列出方程;5.解方程;6.答题。
一、行程问题:基本相等关系:速度×时间=路程(一)相遇问题相遇问题的基本题型及等量关系1.同时出发(两段)甲的路程+乙的路程=总路程2.不同时出发(三段)先走的路程+甲的路程+乙的路程=总路程(二)追及问题追及问题的基本题型及等量关系1.不同地点同时出发快者行驶的路程-慢者行驶的路程=相距的路程2.同地点不同时出发快者行驶的路程=慢者行驶的路程慢者所用时间=快者所用时间+多用时间(三)飞行、航行的速度问题等量关系:顺水速度=静水速度+水流速度(顺风飞行速度=飞机本身速度+风速)逆水速度=静水速度-水流速度(逆风飞行速度=飞机本身速度-风速)顺水(顺风)的路程=逆水(逆风)的路程二、商品的利润率:基本相等关系利润利润=售价-进价实际售价=折扣数×10%×标价利润率=进价利润率=进价进价售价- 销售额=售价×销售量 售价=进价×(1+利润率) 利息-利息税=应得利息 利息=本金×利率×期数利息税=本金×利率×期数×税率本息和=本金+本金×年利率×年数三、变化率的问题:1、 基本相等关系(增长率、下降率问题)a(1±x )n =b (其中a 为变化前的量,x 为变化率,n 为变化次数,b 为变化后的量)四、工程问题:1、 基本相等关系工作效率=工作总量/工作时间 工作量=工作效率×工作时间 各工作量之和=总工作量 甲、乙一起合做:1+=合做天数合做天数甲独做天数乙独做天数甲先做a 天,后甲乙合做:1++=a 合做天数合做天数甲独做天数甲独做天数乙独做天数全部工作量之和=各队工作量之和,各队合作工作效率=各队工作效率之和五、不等式问题:1、 友情提醒注意审清题意,不要列成方程来解题。
10.5 用二元一次方程组解决问题-2020-2021学年七年级数学下册同(苏科版)(原卷版)

用二元一次方程组解决问题知识点一、常见的一些等量关系1.和差倍分问题:增长量=原有量×增长率较大量=较小量+多余量,总量=倍数×倍量.2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,;5.行程问题速度×时间=路程.顺水速度=静水速度+水流速度.逆水速度=静水速度-水流速度.6.存贷款问题利息=本金×利率×期数.本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数) .年利率=月利率×12.月利率=年利率×.7.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a.8.方案问题在解决问题时,常常需合理安排.需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案.知识点二、实际问题与二元一次方程组1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤:设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.注:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.巩固练习一.选择题(共12小题)1.一个长方形周长是16cm,长与宽的差是1cm,那么长与宽分别为()A.5cm,3cm B.4.5cm,3.5cmC.6cm,4cm D.10cm,6cm2.小明到文具店购买文具,他发现若购买4支钢笔、2支铅笔、1支水彩笔需要50元,若购买1支钢笔、3支铅笔、4支水彩笔也正好需要50元,则购买1支钢笔、1支铅笔、1支水彩笔需要()A.10元B.20元C.30元D.不能确定3.为了更好地开展阳光大课间活动,某班级计划购买跳绳和呼啦圈两种体育用品,已知一个跳绳8元,一个呼啦圈12元.准备用120元钱全部用于购买这两种体育用品(两种都买),该班级的购买方案共有()A.3种B.4种C.5种D.6种4.某核心素养测试由20道题组成,答对一题得6分,答错一题扣4分.今有一考生虽然做了全部的20道题,但所得总分为零,他答对的题有()A.12道B.10道C.8道D.6道5.佳佳坐在匀速行驶的车上,将每隔一段时间看到的里程碑上的数描述如下:时刻12:0013:0014:00里程碑上的数 是一个两位数,数字之和为7 十位数字与个位数字相比12:00时看到的刚好颠倒 比12:00看到的两位数中间多了个0则12:00时看到的两位数是( )A .16B .25C .34D .526.产品的价格是由市场价格波动产生的,而每种产品价格在当天是固定的.某采购商欲购A 产品和B 产品,甲供应商捆绑销售2件A 产品和3件B 产品,报价在400元~500元之间,乙供应商也捆绑销售3件A 产品和2件B 产品,报价在500元~600元之间,采购商打算从甲、乙供应商购进A 产品80件,B 产品100件,所要准备的资金为( )A .12600元~15200元之间B .15200元~18800元之间C .18800元~21600元之间D .21600元~33000元之间7.现有两种礼包,甲种礼包里面含有4个毛绒玩具和1套文具,乙种礼包里面含有3个毛绒玩具和2套文具,现在需要37个毛绒玩具,18套文具,则需要采购甲种礼包的数量为( )A .2件B .3件C .4件D .5件8.有三种文具,每种价格分别是3元、7元和4元,现在有27元钱,三种文具都要买,恰好使钱用完的买法数有( )种.A .1B .2C .3D .49.在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元购买A ,B 两种奖品(两种都要买),A 种每个15元,B 种每个25元,在钱全部用完的情况下,购买方案共有( )A .2种B .3种C .4种D .5种10.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.测量的数据如图,则桌子的高度等于( )A .80cmB .75cmC .70cmD .65cm11.小明骑着自行车以每分钟120m 的速度匀速行驶在环城公路上,每隔5min就和一辆公交车迎面相遇,每隔15min就被同向行驶的一辆公交车追上,如果公交车是匀速行驶的,并且每相邻的两辆公交车从起点车站发出的间隔时间相等,则公交车的速度是()A.180m/min B.200m/min C.240m/min D.250m/min12.我们知道自行车一般是由后轮驱动,因此,后轮胎的磨损要超过前轮胎,假设前轮行驶5000千米报废,后轮行驶3000千米报废,如果在自行车行驶若干千米后,将前后轮进行对换,那么这对轮胎最多可以行驶()A.4000 千米B.3750 千米C.4250 千米D.3250 千米二.填空题(共12小题)13.某校七年级的数学竞赛中共有30道题,答对一题得5分,不答得0分,答错扣4分,学生小王有5题未答,最后得71分,那么他答对了题.14.一天,小民去问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,125岁了,哈哈!”请你写出小民爷爷到底是岁.15.寒假期间,爱学习的小明决定将部分压岁钱用于购买A、B两种文具,2月10日,A文具的单价比B 文具的单价少2元,小明购进A、B两种文具共3件;2月20日,A文具的单价翻倍,B文具的单价不变,小明购进A、B两种文具共4件.若A、B文具的单价和数量均为正整数且小明第二次购买文具比第一次购买文具多花费5元,则小明两次购买文具共花费元.16.为了保护环境,某校环保小组成员小明收集废电池,第一天收集1号电池4节,5号电池5节,总质量为460克;第二天收集1号电池2节,5号电池3节,总质量为240克,则1号电池每节重为克,5号电池每节重为克.17.一个两位数十位上的数字与个位上的数字之和为6,如果把这个两位数的个位与十位数字对调,得到新的两位数比原来的两位数大18,则原来的两位数是.18.如图,在长方形ABCD中,放入6个形状、大小都相同的长方形,所标尺寸如图所示,则图中阴影部分面积是,若平移这六个长方形,则图中剩余的阴影部分面积是否改变?(填“变”或“不变”).19.如图3个平衡的天平左盘中“〇”、“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.20.某公司向银行申请了甲、乙两种贷款,共计68万元,每年需付出3.2万元利息.已知甲种贷款每年的利率为4.5%,乙种贷款每年的利率为5%,则该公司申请的甲种贷款的数额为万元.21.某人沿着向上移动的自动扶梯从顶朝下走到底用了80s,而他沿同一扶梯从低朝上走到顶只用了10s,那么此人不走动,乘该扶梯从低到顶所需的时间是s(该人上、下的速度不变,电梯向上移动的速度也不变).22.把1﹣9这九个数填入3x3方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则x﹣y的值为.23.有甲,乙,丙三种笔,已知买甲种笔2支和乙种1支,丙种3支共12.5元,买甲种1支,乙4支,丙种5支,共18.5元,那么买甲种1支,乙种2支,丙种3支,共需元.24.五羊公共汽车公司的555路车在A,B两个总站间往返行驶,来回均为每隔x分钟发车一次.小宏在大街上骑自行车前行,发现从背后每隔6分钟开过来一辆555路车,而每隔3分钟则迎面开来一辆555路车.假设公共汽车与小宏骑车速度均匀,忽略停站耗费时间,则x=分钟.三.解答题(共7小题)25.某超市购进甲、乙两种型号的空气加湿器进行销售,已知购进4台甲型号空气加湿器和6台乙型号空气加湿器共用1820元,购进6台甲型号空气加湿器比购进4台乙型号空气加湿器多用520元.(1)求甲、乙两种型号的空气加湿器每台的进价.(2)超市根据市场需求,决定购进这两种型号的空气加湿器共60台进行销售,甲种型号每台售价260元,乙种型号每台售价190元,若超市购进的这两种空气加湿器全部售出后,共获利2800元,则该超市本次购进甲、乙两种型号的空气加湿器各多少台?26.某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲,乙两组合做.若装修完后,商店每天可赢利200元,你认为如何安排施工有利于商店经营?说说你的理由.27.在抗击新冠肺炎疫情期间,某社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.求每次购买的酒精和消毒液分别是多少瓶?28.某水果专卖店在批发市场用740元购进甲、乙两种水果共100千克进行零售,已知甲种水果购进单价为5元,乙种水果购进单价为8元.该水果店购买了甲、乙两种水果各多少千克?29.(列二元一次方程组求解)小明家离学校2km,其中有一段为上坡路,另一段为下坡路.他从家跑步去学校共用了16min,已知小明在上坡路上的平均速度是4.8km/h,在下坡路上的平均速度是12km/h.求小明上坡、下坡各用了多少min?30.学校准备组织同学参加研学活动,需要租用客车,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加活动的同学人数.(2)已知租用45座客车的租金为每辆500元,60座客车的租金为每辆600元.公司经理问:“你们准备怎样租车?”甲同学说:“我的方案是只租用45座的客车,这样没有空座位,不会浪费”;乙同学说:“我的方案是只租用60座的客车,因为60座的客车每个座位单价少,虽然有空位,但总体可以更省钱”,如果是你,从经济角度考虑,你会如何设计租车方案,并说明理由.31.已知某酒店的三人间和双人间客房标价为:三人间为每人每天200元,双人间为每人每天300元,为吸引客源,促进旅游,在“十•一”黄金周期间酒店进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间客房.(1)如果租住的每个客房正好住满,并且一天一共花去住宿费6300元,求租住了三人间、双人间客房各多间?(2)设三人间共住了x人,这个团一天一共花去住宿费y元,请写出y与x的函数关系式,并写出自变量的取值范围.(3)一天6300元的住宿费是否为最低?如果不是,请设计一种方案:要求租住的房间正好被住满,并使住宿费用最低,请写出设计方案,并求出最低的费用.。
8实际问题与一元一次不等式(基础)知识讲解及其练习 含答案

实际问题与一元一次不等式(基础)知识讲解【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题;2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+. 要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式;(4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意.要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来;(3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如:若“设还需要B 型车x 辆 ”,而在答中应为“至少需要11辆 B 型车 ”.这一点应十分注意.【典型例题】类型一、行程问题1.爆破施工时,导火索燃烧的速度是0.8cm/s ,人跑开的速度是5m/s ,为了使点火的战士在施工时能跑到100m 以外(包括100m )的安全地区,导火索至少需要多长?【思路点拨】设导火索要xcm 长,根据导火索燃烧的速度为0.8cm/s ,人跑开的速度是5m/s ,为了使点导火索的战士在爆破时能跑到离爆破点100m 的安全地区,可列不等式求解. 【答案与解析】 解:设导火索要xcm 长,根据题意得:1000.85x ≥ 解得:16x ≥答:导火索至少要16cm 长.【总结升华】本题考查一元一次不等式在实际问题中的应用,关键是以100m 的安全距离作为不等量关系列不等式求解.类型二、工程问题2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要完成多少土方?【思路点拨】假设以后几天平均每天完成x 土方,一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,那么该土方工程还剩300-60=240土方,现在要比原计划至少提前两天完成任务,说明至多4天完成任务,用去一天,还剩4-1=3(天)则列不等式2403x≤ 解得x 即可知以后平均每天至少完成多少土方.解:设以后几天平均每天完成x 土方.由题意得: 30060621x---≤ 解得: x≥80答:现在要比原计划至少提前两天完成任务,以后几天平均每天至少要完成80土方.【总结升华】解本类工程问题,主要是找准正确的工程不等式,如本题,以天数作为基准列不等式.举一反三:【变式】某人计划20天内至少加工400个零件,前5天平均每天加工了33个零件,此后,该工人平均每天至少需加工多少个零件,才能在规定的时间内完成任务?【答案】解:设以后平均每天加工x 个零件,由题意的:5×33+(20﹣5)x≥400,解得:x≥2153. ∵x 为正整数,∴x 取16.答:该工人以后平均每天至少加工16个零件.类型三、利润问题3.水果店进了某种水果1t ,进价是7元/kg .售价定为10元/kg ,销售一半以后,为了尽快售完,准备打折出售.如果要使总利润不低于2000元,那么余下的水果至少可以按原定价的几折出售?【答案与解析】解:设余下的水果可以按原定价的x 折出售,根据题意得:1t =1000kg 10001000(107)(107)20001022x ⨯-⨯+-⨯≥ 解得:8x ≥ 答:余下的水果至少可以按原定价的8折出售.【总结升华】本题考查一元一次不等式的应用,关键以利润作为不等量关系列不等式. 举一反三:【变式】某商品的进价为1000元,售价为2000元,由于销售状况不好,商店决定打折出售,但又要保证利润不低于20%,则商店最多打 折.【答案】六.类型四、方案选择4.(•资阳)某大型企业为了保护环境,准备购买A 、B 两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A 型2台、B 型3台需54万,购买A 型4台、B 型2台需68万元.(1)求出A 型、B 型污水处理设备的单价;(2)经核实,一台A 型设备一个月可处理污水220吨,一台B 型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.【思路点拨】(1)根据题意结合购买A 型2台、B 型3台需54万,购买A 型4台、B 型2台需68万元分别得出等式求出答案;(2)利用该企业每月的污水处理量不低于1565吨,得出不等式求出答案.【答案与解析】解:(1)设A 型污水处理设备的单价为x 万元,B 型污水处理设备的单价为y 万元,根据题意可得:,解得:.答:A 型污水处理设备的单价为12万元,B 型污水处理设备的单价为10万元;(2)设购进a 台A 型污水处理器,根据题意可得:220a+190(8﹣a )≥1565,解得:a ≥1.5,∵A型污水处理设备单价比B型污水处理设备单价高,∴A型污水处理设备买越少,越省钱,∴购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.【总结升华】本题考查了一元一次不等式的应用,二元一次方程组的应用,找准数量关系是解题的关键.实际问题与一元一次不等式(基础)巩固练习【巩固练习】一、选择题1.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于( )米.A .1B .1.2C .1.3D .1.52.(•西宁)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块3.小红和爸爸、妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,体重只有妈妈一半的小红和妈妈坐在跷跷板的另一端,这时爸爸那一端仍然着地,小红的体重应小于( )A .49kgB .50kgC .24kgD .25kg4.某商品进价为800元,售价为1200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%,则至少可打( ) A .六折 B .七折 C .八折 D .九折5.设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,结果如图所示,那么这三种物体的质量按从大到小的顺序排列应为( )A . ■、●、▲B . ■、▲、●C . ▲、●、■D . ▲、■、●6.现有若干本连环画册分给小朋友,如果每人分8本,那么不够分,现在每人分7本,还多10本,则小朋友人数最少有 ( )A.7人B. 8人C. 10人D.11人二、填空题7.当x_______时,代数式-3x+5的值是正数;当x_______时,它的值不大于4;当x______时,它的值不小于2.8.一家商店计划出售60件衬衫,要使销售总额不低于5100元,则每件衬衫的售价至少应为_______元.9.有10名菜农,每名可种茄子3亩或辣椒2亩,已知茄子每亩的收入是0.5万元,辣椒每亩的收入是0.8万元,要使总收入不低于15.6万元,则最多只能安排________名菜农种茄子.10.用一根长不足160 cm的铁丝围成一个宽是x cm,长是宽的2倍的长方形,则可列不等式_______.11.(春•德州期末)某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对道题,成绩才能在60分以上.12.一个工程队规定在6天内完成300千米的修路工程,第一天完成了60千米,现在接到任务要比原计划至少提前2填完成任务,以后几天平均每天至少完成千米.三、解答题13.某工人计划在15天里加工408个零件,前三天每天加工24个,问以后每天至少加工多少个零件才能在规定时间内超额完成任务?14.某种飞机进行飞行训练,飞出去的速度为1200km/h,飞回机场的速度为1500km/h,飞机油箱中的燃油只能保持2.5h的飞行,则飞机最多飞出多少千米就应返回?(结果精确到10km)15.某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和若干支钢笔.已知影集每本15元,钢笔每支8元,问他至少买多少支钢笔才能打折?16.沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器,下表是两天的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电器的销售单价;(2)若超市准备用不多于8200元的金额再采购这两种型号的电器共30台,求A种型号的电器最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;若不能,请说明理由.一、选择题1. 【答案】C ;【解析】解:设导火线的长度为x 米, 由题意得,>+,解得:x >1.3.故选C .2.【答案】C ;【解析】设这批手表有x 块,550×60+(x ﹣60)×500>55000解得x >104∴这批电话手表至少有105块,故选C .3. 【答案】D ;【解析】解:设小红的体重为xkg ,由题意可得: 2150(2)x x x x +<-+,解得:25x <.4. 【答案】B ;【解析】解:设打x 折,由题意得:1200800105%800x ⨯-≥,解得x ≥7,所以至少应打7折.5. 【答案】B ; 【解析】由图可得: 2■>■+▲ ①,●+▲=3● ②,由①②得■>▲,2●=▲, 所以可得:■>▲>●.6. 【答案】D ;【解析】设小朋友人数为x 人,可得:8710x x >+,解得:10x >,所以小朋友至少为11人.二、填空题7.【答案】53<,≥13,≤1; 【解析】 由5350,3x x -+><得;由35x -+≤4得x ≥13;由35x -+≥2得x ≤1. 8.【答案】85;【解析】设售价为x 元,则60x ≥5100得x ≥85.9.【答案】4;【解析】设最多只能安排x 名菜农种茄子,则有(10-x)人种辣椒,那么种茄子的收入为3×0.5x 万元,种辣椒的收入为2×0.8×(10-x)万元,那么总收入为3×0.5x+2×0.8(10-x)万元.根据题意:3×0.5x+2×0.8(10-x)≥15.6,解得x ≤4,故最多安排4名菜农种茄子10.【答案】x+2x <80;11.【答案】x >.【解析】设答对x 道.故6x ﹣2(15﹣x )>60解得:x >所以至少要答对12道题,成绩才能在60分以上.【解析】解:设以后几天平均每天完成x 千米,由题意得:60+(6﹣1﹣2)x≥300,解得:x≥80,故以后几天平均每天至少完成80千米,故答案为:80.三、解答题13.【解析】解:设三天后每天加工x 个零件,根据题意得:24×3+(15-3)x >408,解得 x >28.因为x 为正整数,所以以后每天加工的零件数至少为29个.14.【解析】解:设飞机最多飞出x 千米就应返回,则:2.512001500x x +<. 解得x <216663. ∴x 取1660.∴飞机最多飞出1660千米就应返回.15.【解析】解:设该同学买x 支钢笔,根据题题意,得:15×6+8x ≥200,解得 x ≥3134. 故该同学至少要买14支钢笔才能打折.16.【解析】解:(1)设A 、B 两种型号电器的销售单价分别为x 元和y 元,由题意,得:2x+3y=1700,3x+y=1500,解得x=400元,y=300元,∴A、B 两种型号电器的销售单价分别为400元和300元;(2)设采购A 种型号电器a 台,则采购B 种型号电器(30﹣a )台,依题意,得320a+250(30﹣a )≤8200,解得a≤10,a 取最大值为10,∴超市最多采购A 种型号电器10台时,采购金额不多于8200元;(3)依题意,得(400﹣320)a+(300﹣250)(30﹣a )≥2100,解得 a≥20,∵a 的最大值为10,∴在(2)的条件下超市不能实现利润至少为2100元的目标.。
常见的一些等量关系式

请同学们务必熟记熟背以下知识一、常见的一些等量关系式1、有关买东西单价×数量=总价总价÷数量=单价总价÷单价=数量2、有关路程速度×时间=路程路程÷速度=时间路程÷时间=速度二、平面图形的面积和周长的计算公式1、长方形长方形的面积=长×宽S = a×b长方形的周长=(长+宽)×2C =(a+b)×2请同学们务必熟记熟背以下知识一、常见的一些等量关系式1、有关买东西单价×数量=总价总价÷数量=单价总价÷单价=数量2、有关路程速度×时间=路程路程÷速度=时间路程÷时间=速度二、平面图形的面积和周长的计算公式1、长方形长方形的面积=长×宽S = a×b长方形的周长=(长+宽)×2C =(a+b)×23、有关工作工效×时间=工作总量工作总量÷工效=时间工作总量÷时间=工效4、有关农产品的产量单产量×数量=总产量总产量÷单产量=数量总产量量÷数量=单产2、正方形正方形的面积=边长×S = a×或S = a²正方形的周长=边长×C =a×C = 4a3、有关工作工效×时间=工作总量工作总量÷工效=时间工作总量÷时间=工效4、有关农产品的产量单产量×数量=总产量总产量÷单产量=数量总产量量÷数量=单产2、正方形正方形的面积=边长×S = a×或S = a²正方形的周长=边长×C =a×C = 4a边长边长a44a44。
等量关系的几种常见类型

八、“公式”型: 根据计算公式找等量关系。如: 长方形的周长=(长+宽)×2 长方形面积=长×宽 正方形周长=边长×4
例:一个长方形的面积是19平方米,它 的长是4米,那么宽是多少米? 解:设宽是x米。 长方形的面积=长×宽 19 4 x 即4x=19
练一练:一幅画长是宽的2倍,做画框 共用了1.8米的木条,求这幅画的面积 是多少? 理解:“做画框共用了多长的木条”这 句话是告诉我们画框的周长。要求这幅 画的面积就要知道长和宽。由条件列方 程求出它的长和宽。
九、“不变量”型: 把题目中的“不变量”作为等量关系。 例:某工地有一批钢材,原计划每天用 6吨,可以用70天,现在每天节约0.4吨, 现在可以用多少天? 解:设现在可以用x天。 实际总量=原计划总量 (6-0.4)x = 6×70 练一练:加工一批零件,原计划每天生 产20个,50天完成。实际40天完成了任 务,实际每天生产多少个?
解:设乙汽车每小时行x千米。 甲行的路程+乙行的路程=全程 68 ×3 +3x =300
练一练1:甲乙两站相距255千米,一列 客车从甲站开出,一列货车从乙站开出, 2.5小时后相遇。客车每小时行48千米, 货车每小时行多少千米?
练一练2:某款式的服装,零售价为36 元/套,现有216元,问一共可以买多少 套衣服?
练一练:一支钢笔比一支圆珠笔贵6.8元。 钢笔的价钱是圆珠笔价钱的4.4倍。钢笔 和圆珠笔的价钱各是多少元? 七、“数量关系 ”型: 如:工作效率×工作时间=工作总量; 单价×数量=总价;速度×时间=路程 例:AB两站相距300千米,甲乙两辆汽车 同时从的两个,站相向开出,3小时后两 车相遇,甲汽车每小时行68千米,乙汽 车每小时行多少千米?
例2:学校开展植树活动,五年级植树50 棵,比四年级植树棵数的2倍少4棵,四 年级植树多少棵? 解:四年级植树x棵。 四年级植树的棵数×2-4=五年级植树 的棵数 X ×2-4= 50 练一练2:某校五(2)班植树385棵, 比五(1)班植树棵树的1.5倍多5棵。 五(1)班植树多少棵?
人教版数学七年级下册知识重点与单元测-第八章8-4实际问题与二元一次方程(组)Ⅱ

第八章 二元一次方程(组)8.4 实际问题与二元一次方程(组)Ⅱ【要点梳理】知识点一、常见的一些等量关系(一) 1.和差倍分问题:增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价. 要点二、实际问题与二元一次方程组 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形; 答:写出答案. 要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组. 【典型例题】类型一、和差倍分问题例1.在一次数学测验中,甲、乙两校各有100名同学参加测试.测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率=()100%()⨯男女生优分人数男女生测试人数,全校优分率=100%⨯全校优分人数全校测试人数)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.【思路点拨】 (1)求甲校参加测试的男、女生人数需设两个未知数,故可建立二元一次方程组求解.(2)由于甲校男、女生的优分率相应高于乙校的男、女生的优分率,要使乙校的全校优分率比甲校的全校优分率高,此时,只有乙校的男生较多时,才能提高全校的优分率.【答案与解析】解:(1)设甲校参加测试的男生人数是x 人,女生人数是y 人. 由题意可列方程组:10060%40%49.6%100x y x y +=⎧⎨+=⨯⎩ 解之得:4852x y =⎧⎨=⎩.答:甲校参加测试的男生有48人,女生有52人.(2)如:乙校男生有70人,女生有30人,则乙校的全校优分率为7057%3037%100%51%100⨯+⨯⨯=.51%>49.6%(说明:只要所举例子中男生人数多于63人,且女生优分率合适,即可得全分.) 【总结升华】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题的第(2)问也可以用不等式求出甲乙两校男生人数满足什么关系时,才满足甲校的全校优分率比乙校的全校的优分率低.举一反三:【变式】为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?【答案】解:(1)设政策出台前一个月销售的手动型汽车为x 辆,自动型汽车为y 辆, 由题意可得:960(130%)(125%)1228x y x y +=⎧⎨+++=⎩解之得:560400x y =⎧⎨=⎩.答:政策出台前一个月销售的手动型汽车为560辆,自动型汽车为400辆. (2)[560×(1+30%)×8+400×(1+25%)×9]×5%=516.2(万元)答:政策出台后的第一个月,政府对这1228台汽车用户共补贴了516.2万元. 类型二、配套问题例2. 某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68 个,扁担40 根,问这个班的男女生各有多少人?【答案与解析】解:设女生x 人,男生y 人,由题意得:3440232(4)682x y x y +⎧+-=⎪⎪⎨+⎪+-=⎪⎩ 解得:2132x y =⎧⎨=⎩答:这个班的男生有32人,女生有21人.【总结升华】两人抬土需要一根扁担,一只筐;一人挑土需要一根扁担,两只筐.题中的等量关系是:参加劳动的同学一共用去箩筐68个和40根扁担,从而列出方程组,解出即可.举一反三:【变式】某工厂有工人60人,生产某种由一个螺栓和两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?【答案】解:设分配x 人生产螺栓,y 人生产螺母,则根据题意可得:答:应分配25人生产螺栓,35人生产螺母. 类型三、工程问题例3. 一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)【思路点拨】(1)本题的等量关系是:甲做8天需要的费用+乙作8天需要的费用=3520元.甲组6天需付的费用+乙做12天需付的费用=3480元,由此可得出方程组求出解.(2)根据(1)得出的甲乙每工作一天,商店需付的费用,然后分别计算出甲单独做12天需要的费用,乙单独做24天需要的费用,让两者进行比较即可.(3)本题可将每种施工方法的施工费加上施工期间商店损失的费用,然后将不同方案6020142x y y x +=⎧⎪⎨=⎪⎩2535x y =⎧∴⎨=⎩计算出的结果进行比较,损失最少的方案就是最有利商店的方案.【答案与解析】解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得解得答:甲、乙两组工作一天,商店各应付300元和140元.(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;因为5120<6000<8160,所以甲乙合作损失费用最少.答:甲乙合作施工更有利于商店.【总结升华】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:甲做8天需要的费用+乙作8天需要的费用=3520元.列出方程组,再求解.类型四、利润问题例4.甲、乙两件服装的成本共500元,商店老板为获取利润,将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按定价的9折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元?【思路点拨】设甲服装的成本是x元,则乙服装的成本是y元,根据“甲、乙两件服装共获利157元、将甲服装按50%的利润定价,乙服装按40%的利润定价,两件服装均按定价的9折出售,这样商店共获利157元”,列方程组解决问题.【答案与解析】解:设甲服装的成本是x元,则乙服装的成本是y元,依题意有解得:答:甲服装的成本为300元,乙服装的成本为200元.【总结升华】考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程组,再求解.举一反三:【变式】为处理甲、乙两种积压服装,商场决定打折销售,已知甲、乙两种服装的原单价共位880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲、乙两种服装的原单价分别是多少?【答案】解:设甲、乙两种服装的原单价分别是x元、y元.根据题意,得:,解得:,即:甲、乙两种服装的原单价分别是480元、400元.【巩固练习】一、选择题1.某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元.该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x双、乙鞋y双,则依题意可列出下列哪一个方程式? ( ) .A.200(30-x)+50(30-y) = 1800 B.200(30-x)十50(30-x-y)=1800C.200(30-x)+50(60-x-y)=1800 D.200(30-x)十50[30-(30-x)-y]=18002.现有大、小两种船,1艘大船与4艘小船一次最多可以载客46名,2艘大船与3艘小船一次最多可以载客57名,某旅游点的船有3艘大船与6艘小船,一次最多可以载客的人数为()A.129 B.120 C.108 D.963.欣平超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折.王波两次购物分别付款80元、252元,如果王波一次性购买与上两次相同的商品,则应付款( ).A.288元 B.322 元 C.288元或316元 D.332元或363元4.某次知识竞赛共出了25道试题.评分标准如下:答对一道题加4分;答错1道题扣1分;不答记0分,已知李刚不答的题比答错的题多2道,他的总分为74分,则他答对了( ).A.18道 B.19道 C.20道 D.21道5.某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土,已知全班共用箩筐59个,扁担36根,若设抬土的学生x人,挑土的学生y人,则有 ( ).A.2592362yxxy⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩B.2592362xyxy⎧+=⎪⎪⎨⎪+=⎪⎩C.2592236xyx y⎧+=⎪⎨⎪+=⎩D.259236x yx y+=⎧⎨+=⎩6.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系?()A. B.C. D.二、填空题7.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需分钟.8.如图所示,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为55cm,则木桶中水的深度是 cm.9.一个水池有两个进水管,单独开甲管注满水池需2小时,单独开乙管注满水池需3小时,两个同时开注满水池的时间是_________小时.10.某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商店规定买一只茶壶赠一只茶杯,某人共付款171元得茶壶、茶杯共36只(含赠品在内),其中茶壶________只,茶杯________只.11.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是________.12. 如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A 与________个砝码C的质量相等.三、解答题13.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:商品价格 A B进价(元/件)1200 1000售价(元/件)1350 1200(总利润=单件利润×销售量)(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原价购进A、B两种商品,购进B商品的件数不变,而购进A商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润不少于75000元,则B种商品最低售价为每件多少元?14.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出大楼共有4道门,其中2道正门大小相同,2道侧门大小也相同,安全检查中,对4道门进行了测试:当同时开启1道正门和2道侧门时,2分钟内可通过560名学生;当同时开启1道正门和1道侧门时,4分钟内可通过800名学生,求平均每分钟1道正门和1道侧门各可通过多少名学生?15.某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.甲乙丙每辆汽车能装的数量(吨) 4 2 3每吨水果可获利润(千元) 5 7 4(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?【答案与解析】一、选择题1. 【答案】D;【解析】由已知,卖出甲鞋(30-x)双,则送出乙鞋也是(30-x)双,那么乙卖出[30-(30-x)-y]双,卖出甲鞋的钱数加上卖出乙鞋的钱数就等于1800元,由此得出答案.2.【答案】D.【解析】设1艘大船的载客量为x人,一艘小船的载客量为y人.由题意可得:, 解得, ∴3x+6y=96.∴3艘大船与6艘小船,一次可以载游客的人数为96人.3. 【答案】C ;【解析】解:一次性购物超过100元,但不超过300元一律9折,则在这个范围内最低付款90元,因而第一次付款80元,没有优惠;当第二次购物是第二种优惠,可得出原价是 252÷0.9=280(元)(符合超过100不高于300).则两次共付款:80+280=360元,超过300元,则一次性购买应付款:360×0.8=288元;当第二次付款是超过300元时:可得出原价是 252÷0.8=315(符合超过300元), 则两次共应付款:80+315=395元,则一次性购买应付款:395×0.8=316元.故一次性购买应付款:288元或316元.4. 【答案】B ;【解析】设李刚答错的题为x 道,答对的题y 道,则他不答的题2x +道,且有 225474x y y x y +++=⎧⎨-=⎩, 解得192x y =⎧⎨=⎩.5. 【答案】B ;【解析】注意了解生活常识:抬土即两个人需要一根扁担和一个箩筐;挑土即一个人需要一根扁担和两个箩筐.6. 【答案】B ;【解析】设馒头每颗x 元,包子每颗y 元,根据题意王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元,可列式为5x+3y=52,李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元,可列式为0.9(11x+5y )=90,联立方程即可得到所求方程组.二、填空题7. 【答案】40;【解析】解:设李师傅加工1个甲种零件需要x 分钟,加工1个乙种零件需要y 分钟, 依题意得:,由①+②,得7x+14y=140,所以x+2y=20,则2x+4y=40,所以李师傅加工2个甲种零件和4个乙种零件共需40分钟.故答案是:40.8.【答案】20; 【解析】设两根铁棒的长度分别是a ,b(a >b),则有24,3555a b a b ⎧=⎪⎨⎪+=⎩ 解得30,25.a b =⎧⎨=⎩ 所以4205b =,∴ 木桶中水的深度为20cm 9.【答案】.【解析】设两个同时开注满水池的时间是x 小时,由题意得(+)x=1,解得:x=.答:两个同时开注满水池的时间是小时.10.【答案】7, 29;【解析】设买茶壶x 只,那么赠x 只茶杯,所以要买(36-2x )茶杯,然后根据共付款171元即可列出方程,解方程就可以解决问题.11.【答案】150元,50元;【解析】设甲、乙两种商品的定价分别为x 元,y 元,则:0.80.6100500.60.810030x y x y +-=⎧⎨+-=⎩, 解得15050x y =⎧⎨=⎩. 12. 【答案】2.【解析】此题可以分别设砝码A 、B 、C 的质量是x ,y ,z .然后根据两个天平列方程组,消去y ,得到x 和z 之间的关系即可.三、解答题13.【答案】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和150件;(2)由于A商品购进400件,获利为(1350﹣1200)×400=60000(元),从而B商品售完获利应不少于75000﹣60000=15000(元),设B商品每件售价为x元,则150(x﹣1000)≥15000,解之得x≥1100.所以B种商品最低售价为每件1100元.14.【解析】解:设平均每分钟1道正门可通过x名学生,1道侧门可通过y名学生.由题意,得2(2)560 4()800x yx y+=⎧⎨+=⎩,解得12080xy=⎧⎨=⎩.答:平均每分钟1道正门可通过120名学生,l道侧门可通过80名学生.15.【解析】解:(1)设装运乙、丙水果的车分别为x辆,y辆,得:,解得:.答:装运乙种水果的车有2辆、丙种水果的汽车有6辆.(2)设装运乙、丙水果的车分别为a辆,b辆,得:,解得.答:装运乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆.(3)总利润:5×4m+7×2(m﹣12)+4×3(32﹣2m)=10m+216.∵,∴13≤m≤15.5,∵m为正整数,∴m=13,14,15,∴当m=15时,总利润最大:10×15+216=366(千元),答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366千元.。
六年级数学等量关系知识点

六年级数学等量关系知识点数学是一门抽象而又普遍的科学,同时也是充满逻辑和推理的学科。
在数学学科中,等量关系是一个重要的概念,在六年级的学习中,学生需要掌握并应用等量关系的知识。
本文将介绍六年级数学中的等量关系知识点。
一、什么是等量关系等量关系表示物体的两种属性或者两个量之间存在着相等的关系。
在数学中,等量关系常常用符号“=”来表示。
例如,2 + 3 = 5中的等号表示2 + 3和5之间存在着相等的关系。
二、等式和算式在数学中,等式是指两个表达式之间等于关系的陈述。
等式中的等号表示左右两边的表达式是相等的。
例如,2 + 3 = 5就是一个等式。
而算式是指可以进行运算的等式。
例如,2 + 3 = 5就是一个算式。
三、等量关系的性质等量关系具有一些重要的性质,这些性质可以帮助我们进行等式的变形和运算,进而解决问题。
1. 传递性等量关系具有传递性,即如果a = b,b = c,那么a = c。
例如,如果2 + 3 = 5,5 = 7,那么我们可以得出2 + 3 = 7。
2. 对称性等量关系具有对称性,即如果a = b,那么b = a。
例如,如果2 + 3 = 5,那么我们可以得出5 = 2 + 3。
3. 替换性等量关系具有替换性,即在等式的两边同时替换相等的量,等式仍然成立。
例如,如果2 + 3 = 5,那么我们可以将2 + 3替换为5,得到5 + 3 = 5。
四、等量关系的运算在解决数学问题时,我们常常需要进行等量关系的运算。
以下是几种常见的等量关系运算。
1. 相等量的加减运算如果等式两边分别加上或者减去相等的量,等式仍然成立。
例如,如果3 + 2 = 5,那么我们可以得出3 + 2 + 4 = 5 + 4。
2. 相等量的乘除运算如果等式两边同时乘以或者除以相等的非零量,等式仍然成立。
例如,如果4 × 2 = 8,那么我们可以得出4 × 2 × 3 = 8 × 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 销售中的盈亏问题:
利润率二翌幻00%
(1) 进价
(2) 标价=成本(或进价)X (1+利润率);
(3) 实际售价=标价X打折率;
(4) 利润=售价一成本(或进价)=成本X利润率;
注意:“商品利润=售价一成本”中的右边为正时,是盈利;当右边为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
2. 积分问题:
积分问题多出现在球赛和知识竞赛中,赛事的规则不同,得分也不一样,一般地,球赛总得分=胜场得分+平场得分+负场得分;知识竞赛得分=对题得分+错题得分+不做题得分。
注意:从比赛的规则入手正确找出相等关系是列方程的关键。
3. 行程问题:
(1) 路程=速度x时间
(2) 相遇路程=速度和x相遇时间
(3) 追及路程=速度差x追及时间
(4) 顺流速度=静水速度+水流速度
(5) 逆流速度=静水速度-水流速度
(6) 顺水速度一逆水速度=2X水速
4. 形积变化中的方程
(1) 相关公式
①长方体体积=长x宽x高。
②圆柱体体积=底面积X高。
③长方形面积=长乂宽;长方形周长= 2X (长+宽)。
④圆的面积=兀x半径2;圆的周长=直径x兀。
(2) “等积变形”中常见的情况
①形状发生了变化,而体积没变。
②形状、面积发生了变化,而周长没变。
③形状、体积发生了变化,但根据题意能找出体积之间的关系,把这个关系作为等量关系。
④形状、周长发生了变化,但概括题意能找出周长之间的关系,求面积。
(3) 形积变化问题
形积变化,即图形的形状改变时,面积也随之发生变化。
注意:在形积变化时,图形的形状和面积都发生了变化,应注意在已知题目中找出不变的,也就是找出等量关系列出方程。
5. 工程问题:
如果题目没有明确指明总工作量,一般把总工作量设为 1.基本关系式:
(1) 总工作量=工作效率X工作时间;
(2) 总工作量=各单位工作量之和.
6. 银行存贷款问题:
(1) 利息=本金x利率x期数
(2) 本息和(本利和)=本金+利息=本金+本金x利率x期
数=本金x (1+利率x期数)
(3) 实得利息=利息-利息税
(4) 利息税=利息x利息税率
(5) 年利率=月利率X 12
2
(6) 月利率=年利率X 一
7. 数字问题:
已知各数位上的数字。
写出两位数,三位数等这类问题一般设间接未知数,例如:a, b分别为一个两位数的个位上,十位上的数字, 则这个两位数可以表示为10b+a.
8. 调配问题:
从调配后的数量关系中找等量关系,注意弄清调配对象流动的方向和数量.
9. 浓度问题:
溶液质量W容质质量+溶剂质量
^1^X100%
浓度=m•-
溶质质量= 容液质量X浓度.。