一元三次方程求根公式推导
一元三次方程求根问题

一元三次方程求根问题一元三次方程求根问题是一个曾经困扰了人们许多年的问题,后来数学家们在经过非常多的计算后,用巧妙的方法将其解决了。
目前,我还不知道一元三次方程求根公式和其推导过程,下面,我就尝试将这个问题解决。
显然,所有的一元三次方程都可以转化为x 3+bx 2+cx +d =0的形式,先从一些三次多项式的公式入手,其中有这样一个公式()()()B A AB B A AB B A B A B A +-+=--+=+333322333 在这里令x =A+B ,m =-3AB ,n =-(A 3+B 3),则上述公式转为x 3+mx+n=0这便是一个特殊的一元三次方程。
而 ⎪⎩⎪⎨⎧-=+-=nB A m B A 3333327所以由一元二次方程的韦达定理得A 3与B 3是方程02732=-+m ny y 的两根, 不考虑A 与B 之间的顺序,得⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=++-=22742274223223m n n B m n n A故33233227422742m n n m n n B A x +--+++-=+= 在解二次方程时,可以通过配方的方法将 ax 2+bx +c =0转化为04422=-+⎪⎭⎫ ⎝⎛+a b ac 2a b x a 再将ab x 2+换元,以达到消去一次项的目的。
那么,在解x 3+bx 2+cx +d =0的过程中,是否也有类似的方法呢? 我们可以尝试对其进行“配立方”来消去二次项, 得⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+++273332323b d x b c b x d cx bx x ⎪⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=2723333323b bcd b x b c b x 这就转为x 3+mx+n=0的形式,带入刚才得到的其求根公式,得32233b t n t n x ---++-= 其中108441827274,3,2723332223223c d b bcd c b d m n t b c m b bc d n ++--=+=-=+-= 以上只得出了一元三次方程一个根的求根公式,还不一定是实根,而一元三次方程一般有一或三个实根,原因可能是在上述求解过程中只在实数的范围内运算,并没有考虑到虚数。
一元三次方程求根公式推导过程

一元三次方程求根公式推导过程一元三次方程的求根公式,即可利用一个公式求得该方程的三个根,可谓一个十分重要的数学公式。
其公式的推导过程,虽繁琐,但也是有一定的规律可循的。
本文将就这一推导过程,加以详述。
首先来看一元三次方程的一般形式:$$ax^3 + bx^2 + cx + d = 0$$将该方程的左右两边分别平方,得到:$$a^2x^6+2abx^5+2acx^4+b^2x^4+2bcdx^3+2acdx^2+cd^2x^2+2abdx +c^2=0$$将上式两边同时乘以$4a^3$,得到:$$4a^3x^6+8a^2bx^5+8a^2cx^4+4a^2b^2x^4+16a^2bcdx^3+16a^2acd x^2+4a^2cd^2x^2+8a^2abdx+4a^2c^2=0$$将上式整理得到:$$x^2(4a^3x^4+8a^2bx^3+8a^2cx^2+4a^2b^2x^2+16a^2bcdx+16a^2a cd)+c^2-4a^3d^2=0$$设 $P =4a^3x^4+8a^2bx^3+8a^2cx^2+4a^2b^2x^2+16a^2bcdx+16a^2acd$,则上式变为:$$x^2P+c^2-4a^3d^2 = 0$$再将上式整理得到:$$x^2P+(frac{-b}{2a})^2-frac{1}{4a^2}(4ac-b^2)=0$$ 把上式分解因式,即有:$$x^2+frac{-b}{2a}+frac{2ac-b^2}{4a^2P} = 0$$ 设$D = b^2-4ac$,则上式可写为:$$x^2+frac{-b}{2a}+frac{D}{4a^2P} = 0$$将上式左右两边同时乘以$frac{1}{4a^2P}$,得到:$$frac{x^2}{4a^2P}+frac{-b}{8a^3P}+frac{1}{16a^4P^2}D=0$$ 根据二次方程的求根公式,即有:$$x=frac{-2a^2Ppmsqrt{8a^2Pb+D^2}}{4a^3P}$$再将上式改写,即得最终的一元三次方程求根公式:$$x=frac{-bpmsqrt{b^2-4ac}}{2a}-frac{2a^2P}{bpmsqrt{b^2-4ac }}$$由此可见,一元三次方程求根公式,是通过繁琐的整理、变形,最终才得到的。
一元三次方程的求根公式及其推导

一元三次方程的求根公式及其推导有三个实数根。
有三个零点时,当有两个实数根。
有两个零点时,当有唯一实数根。
有唯一零点时,当。
,有两实根,为,则方程若有唯一实数根。
有唯一零点有一实根,则方程若有唯一实数根。
有唯一零点没有实根,则方程若实数根的个数。
点的个数即方程零即方程则设实数根的判定:程即可。
因此,只需研究此类方的特殊形式即公式化为均可经过移轴三次方程由于任一个一般的一元0)()(0)1281(811)()(0)()(0)1281(811)()(0)()(0)1281(811)()(33:0)(0)3(0)()(0)(,0).2(0)()(0)(',0).1(0)(,00)(,)(.1,0,0)2792()3)(39()3(0)3272()3)(3()3(032323221''3333233232323=⇔<+=•=⇔=+=•=⇔>+=•--==-===<=⇔===⇔=>=++=++=++==++=+-++-++=+-++-++=+++x F x F p q F F x F x F p q F F x F x F p q F F px px x F p x F x F x F p x F x F x F p q px x x F q px x x F q px x x F q px x D A ABC B B Ax AB AC B Ax D A BC A B A Bx A B C A Bx A D Cx Bx Ax βαβαβαβα33233232323323233231322321323232333333333333333333333332332332323212811210861128112108610)1281(811)27(41281121086112811210861181281918128190)1281(811)27(402727,3)(300)(33)(3)(.1.200128100128100128112810)1281(8110)0.(0.p q q p q q x p q p q p q q a B pq q a A B A p q q a p q q a p q p q p qa a B A qB A pB A q B A p AB q B A p AB q px x B A ABx x ABx B A B A AB B A B A x B A x B A B A B A x q px x p q q px x p q q px x p q p q p q p q p q p +--+++-=≤+=--⎪⎩⎪⎨⎧+--==++-==⎪⎪⎩⎪⎪⎨⎧+--=++-=>+=--=-+⎪⎩⎪⎨⎧-=+-=⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧-=+-==+-=-=++=+--++=+++=+=+=+==++<+=∆=++=+=∆=++>+=∆+=∆>+≥式,为:实数根的方程的求根公上方法只能导出有一个)。
一元三次方程 求根公式

一元三次方程求根公式一元三次方程求根公式一元三次方程是指方程的最高次数为三次的方程,一般表示为ax³+bx²+cx+d=0,其中a、b、c、d为实数且a≠0。
求解一元三次方程的根是数学中的重要问题之一,我们可以通过求根公式来解决这个问题。
一元三次方程的求解过程较为复杂,需要借助求根公式来进行计算。
根据数学原理,一元三次方程的根可以通过以下公式来求解:我们要计算一元三次方程的判别式Δ,Δ的计算公式为Δ=b²c²-4ac³-4b³d-27a²d²+18abcd。
判别式Δ的值可以帮助我们判断方程的根的情况。
当Δ>0时,方程有一个实根和两个共轭复根。
实根可以通过以下公式计算得出:x₁=(-b+((b²-3ac)^(1/2)))/(3a)。
而共轭复根可以通过以下公式计算得出:x₂=x₃=(-b-(b²-3ac)^(1/2))/(6a)+i((3(b²-3ac))^(1/2))/(6a)和x₂=x₃=(-b-(b²-3ac)^(1/2))/(6a)-i((3(b²-3ac))^(1/2))/(6a)。
当Δ=0时,方程有一个实根和一个重根。
实根可以通过以下公式计算得出:x=(-b+((b²-3ac)^(1/2)))/(3a)。
重根可以通过以下公式计算得出:x=(-b-(b²-3ac)^(1/2))/(3a)。
当Δ<0时,方程有三个不相等的实根。
实根可以通过以下公式计算得出:x₁=2√(-p/3)cos((1/3)arccos(√(-3q/2p^3))) - b/(3a),x₂=2√(-p/3)cos((1/3)arccos(√(-3q/2p^3))-2π/3) - b/(3a),x₃=2√(-p/3)cos((1/3)arccos(√(-3q/2p^3))+2π/3) - b/(3a)。
韦达定理一元三次方程根的关系

韦达定理一元三次方程根的关系韦达定理是解一元三次方程根的公式之一,它可以帮助我们求解形如ax^3 + bx^2 + cx + d = 0的一元三次方程的根。
韦达定理的应用可以使得我们更深入地理解一元三次方程的根之间的关系,从而有助于我们在数学领域更灵活地进行推理和运用。
一、韦达定理的数学表达式我们先来看一下韦达定理的数学表达式。
对于一元三次方程ax^3 + bx^2 + cx + d = 0,我们可以根据韦达定理的公式进行求解:1. 设该方程的三个实数根分别为x1、x2、x3,则有x1 + x2 + x3 = -b/a。
2. 且有x1*x2 + x2*x3 + x3*x1 = c/a。
3. 且有x1*x2*x3 = -d/a。
二、韦达定理的深入理解从韦达定理的公式中,我们可以深入地理解一元三次方程根之间的关系。
x1 + x2 + x3 = -b/a告诉我们方程根之和与系数之间的关系。
x1*x2 + x2*x3 + x3*x1 = c/a告诉我们方程根的两两乘积与系数之间的关系。
x1*x2*x3 = -d/a告诉我们方程根的乘积与系数之间的关系。
韦达定理为我们提供了一种直观而深刻的方式来理解一元三次方程根之间的联系,为我们在数学推理中提供了便利。
三、个人观点和理解对于韦达定理,我个人认为它不仅仅是一种求解一元三次方程根的工具,更是一种深入理解数学规律的方法。
通过运用韦达定理,我们可以更全面地把握一元三次方程根的性质,加深对数学知识的理解。
韦达定理的应用也为我们解决实际问题提供了便利,使得我们可以更灵活地运用数学知识来解决现实中的复杂情况。
总结回顾通过本文的阐述,我们对韦达定理有了更加深入和全面的理解。
我们学习了韦达定理的数学表达式,以及其对一元三次方程根之间关系的深入解读。
我也共享了我对韦达定理的个人观点和理解。
通过对韦达定理的全面探讨,相信我们对数学中的一元三次方程有了更加深刻和灵活的理解。
希望本文可以帮助你更好地理解韦达定理,并在数学领域的学习和应用中有所帮助。
一元三次方程求根公式推导方法

一元三次方程求根公式推导方法宝子,今天咱们来唠唠一元三次方程求根公式的推导,这可有点小烧脑,但超有趣呢。
一元三次方程的一般形式是ax³+bx²+cx + d = 0。
咱们先想法子把它简化一下。
通过一个小技巧,设x = y - b/(3a),把这个代入原方程,就能得到一个关于y 的方程,这个方程就没有二次项啦,形式变成了y³+py+q = 0,这里的p和q呢是根据原来方程的系数a、b、c、d算出来的。
那接下来咋整呢?咱们引入两个新的变量,设y = u+v。
把y = u + v代入y³+py+q = 0就得到(u + v)³+ p(u + v)+q = 0。
展开这个式子就有u³+v³+3uv(u + v)+p(u + v)+q = 0。
咱们再让3uv = - p,这样就可以把式子简化一下。
由3uv = - p可以得到v = - p/(3u)。
再把v = - p/(3u)代入u³+v³+q = 0这个式子,就得到u³ - p³/(27u ³)+q = 0。
这时候把u³看成一个整体,设u³ = t,那么方程就变成了t²+qt - p³/27 = 0,这就是一个一元二次方程啦。
一元二次方程求根公式咱都很熟啦,就可以求出t的值。
求出t之后呢,再把t开立方得到u的值,然后根据v = - p/(3u)求出v的值。
最后把u和v加起来就是y的值啦,再把y = x + b/(3a)代回去,就求出x的值了。
宝子,一元三次方程求根公式推导虽然有点绕,但就像玩一个很有挑战性的游戏一样。
每一步都像是解开一个小谜题,当最后得到求根公式的时候,就有一种超级成就感呢。
希望你也能感受到这个推导过程的乐趣呀。
一元三次方程求根公式 卡尔丹定理

一元三次方程求根公式卡尔丹定理卡尔丹定理是一元三次方程求根的重要公式。
在数学中,一元三次方程是指形如ax^3 + bx^2 + cx + d = 0的方程,其中a、b、c、d为已知系数,x为未知数。
解一元三次方程的问题在数学中具有重要的意义,它在实际生活中的应用也非常广泛。
卡尔丹定理是由法国数学家卡尔丹于16世纪提出的。
该定理通过对方程的系数进行变量替代,将一元三次方程转化为一个二次方程和一个一次方程的求解问题。
通过求解这两个方程,可以得到原方程的根。
我们将一元三次方程ax^3 + bx^2 + cx + d = 0的系数进行变量替代,令x = y - b/3a。
将此代入原方程,可得到一个新的方程ay^3 + Py + Q = 0,其中P和Q是与原方程的系数相关的新的常数。
接下来,我们对新方程应用求解二次方程的公式,将其转化为一个二次方程求解问题。
通过求解这个二次方程,我们可以得到两个根y1和y2。
我们将得到的根y1和y2代入原方程中,得到两个新的一次方程,通过求解这两个一次方程,我们可以得到另外两个根x1和x2。
需要注意的是,卡尔丹定理对于一元三次方程可能存在的重根和虚根也是适用的。
重根是指方程有两个或三个相等的根,虚根是指方程的根不是实数。
在使用卡尔丹定理求解一元三次方程时,我们需要对不同情况进行分类讨论,并得出相应的结论。
除了卡尔丹定理,还有其他方法可以求解一元三次方程,比如牛顿迭代法和龙贝格-维尔斯特拉斯算法等。
这些方法在不同的情况下可能更加高效或精确,但卡尔丹定理作为一种经典的方法,仍然被广泛使用。
卡尔丹定理是一元三次方程求根的重要公式。
通过对方程的系数进行变量替代,将一元三次方程转化为一个二次方程和一个一次方程的求解问题,卡尔丹定理为我们解决一元三次方程提供了一种简洁而有效的方法。
在实际应用中,我们可以根据具体情况选择合适的方法来求解一元三次方程,以解决各种问题。
一元三次方程的求根公式

一元三次方程的求根公式称为“卡尔丹诺公式”一元三次方程的一般形式是x3+sx2+tx+u=0如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消去。
所以我们只要考虑形如x3=px+q的三次方程。
假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。
代入方程,我们就有a3-3a2b+3ab2-b3=p(a-b)+q整理得到a3-b3 =(a-b)(p+3ab)+q由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时,3ab+p=0。
这样上式就成为a3-b3=q两边各乘以27a3,就得到27a6-27a3b3=27qa3由p=-3ab可知27a6 + p = 27qa3这是一个关于a3的二次方程,所以可以解得a。
进而可解出b和根x.除了求根公式和因式分解外还可以用图象法解,中值定理。
很多高次方程是无法求得精确解的,对于这类方程,可以使用二分法,切线法,求得任意精度的近似解。
参见同济四版的高等数学。
一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。
我归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。
归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。
方法如下:(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为x^3=(A+B)+3(AB)^(1/3)x,移项可得(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得(6)A+B=-q,AB=-(p/3)^3(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即(8)y1+y2=-(b/a),y1*y2=c/a(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a(10)由于型为ay^2+by+c=0的一元二次方程求根公式为y1=-(b+(b^2-4ac)^(1/2))/(2a)y2=-(b-(b^2-4ac)^(1/2))/(2a)可化为(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)(13)将A,B代入x=A^(1/3)+B^(1/3)得(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)后记:一、(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元三次方程求根公式推导
推导一元三次方程的求根公式可以基于维尔斯特拉斯方程,该方程是一个带参数的三次方程,具有一根已知解。
我们将在推导的过程中应用维尔斯特拉斯方程。
下面是详细的推导步骤:
1.令y=x-α,其中α是一个待定常数。
将y代入原一元三次方程,并进行变形,得到新的方程a(y+α)^3+b(y+α)^2+c(y+α)+d=0。
展开并对y进行整理,得到
a(y^3+3αy^2+3α^2y+α^3)+b(y^2+2αy+α^2)+c(y+α)+d=0。
2. 对表达式进行分组,得到 (ay^3 + by^2 + cy + d) + 3α(ay^2 + by + c) + 3α^2(ay + b) + α^3a + α^2b + αc + d = 0。
3. 根据原一元三次方程的定义,ay^3 + by^2 + cy + d = 0,因此第一项为 0,可以消去。
4. 对剩下的表达式控制进行整理,得到3α(ay^2 + by + c) +
3α^2(ay + b) + α^3a + α^2b + αc + d = 0。
5. 接下来,我们需要选择α 的值,使得3α(ay^2 + by + c) +
3α^2(ay + b) + α^3a + α^2b + αc + d = 0 中的二次项系数为 0。
令3α(ay^2 + by + c) + 3α^2(ay + b) = 0,消去α,并整理表达式,得到ay^2 + (2aα + b)y + α(ay + b) + c = 0。
6.根据二次项系数为0的条件,2aα+b=0,解得α=-b/(2a)。
7. 将α 的值代入到原一元三次方程中,得到a(y+α)^3 +
b(y+α)^2 + c(y+α) + d = 0,展开并整理表达式,得到 a y^3 + (3αa + c)y^2 + (3α^2a + 2αc + d)y + (α^3a + α^2c + αd) = 0。
8.为了使得三次项的系数为0,3αa+c=0,解得α=-c/(3a)。
9. 将α 的值代入到原一元三次方程中,得到a(y+α)^3 +
b(y+α)^2 + c(y+α) + d = 0,展开并整理表达式,得到 ay^3 +
3αay^2 + (3α^2a + b)y + (α^3a + α^2b + αc + d) = 0。
10. 为了使得二次项的系数为 0,3α^2a + b = 0,带入α = -
c/(3a),得到 3(-c/(3a))^2a + b = 0,整理后可得 b = (c^2 -
3ad)/(3a^2)。
11. 现在可以得到维尔斯特拉斯方程: ay^3 + py + q = 0,其中 p = (3ac - b^2)/(3a^2),q = (2b^3 - 9abc + 27a^2d)/(27a^3)。
12.维尔斯特拉斯方程的一个解为y=1、将y=1代入维尔斯特拉斯方
程并进行整理,得到a+p+q=0。
13. 将 p 和 q 的值带入到 a + p + q = 0 中,得到 a + (3ac - b^2)/(3a^2) + (2b^3 - 9abc + 27a^2d)/(27a^3) = 0。
14. 将方程进行整理和化简,得到 a^3 + pa^2 + qa + d = 0。
15. 接下来,我们需要根据 a^3 + pa^2 + qa + d = 0 的形式,利用已知根 y = 1,找到另外两个根 z 和 w。
通过这个推导过程,我们求得了维尔斯特拉斯方程以及维尔斯特拉斯方程的一个解。
然后,我们通过通过变换解方程得到的表达式,进一步找到了另外两个方程的根。
这样,我们就得到了一元三次方程的求根公式。
需要注意的是,一元三次方程的求根公式比较复杂,并且解的表达式比较繁琐。
实际应用中,通常会使用数值方法来求解一元三次方程的近似解。