离散信号的傅里叶变换(MATLAB实验)
matlab中的傅里叶变换

matlab中的傅里叶变换Matlab中的傅里叶变换是一种数学工具,用于将一个信号从时域转换到频域。
它是一种广泛应用于信号处理、图像处理、通信系统等领域的重要技术。
在Matlab中,傅里叶变换可以通过内置函数fft和ifft来实现。
fft函数用于计算离散傅里叶变换(DFT),而ifft函数用于计算离散傅里叶逆变换(IDFT)。
傅里叶变换在Matlab中的使用步骤如下:1. 准备信号数据,将待变换的信号存储在一个向量中,可以是时间域的信号序列。
2. 应用fft函数,使用fft函数对信号进行傅里叶变换,得到频域表示。
3. 可选操作,对频域表示进行幅度谱和相位谱的计算,以及其他的频谱分析操作。
4. 应用ifft函数,如果需要,可以使用ifft函数对频域表示进行逆变换,将信号恢复到时域。
需要注意的是,傅里叶变换得到的频域表示是对称的,通常只需要使用一半的频域数据进行分析。
此外,Matlab中还提供了其他相关的函数,如fftshift和ifftshift,用于对频域数据进行平移操作。
傅里叶变换在信号处理中有广泛的应用,例如:1. 频谱分析,可以通过傅里叶变换将信号从时域转换到频域,进而分析信号的频谱特性,如频率成分、频谱密度等。
2. 滤波器设计,可以在频域上设计滤波器,通过傅里叶变换将滤波器的频率响应转换到时域,实现对信号的滤波操作。
3. 图像处理,可以利用傅里叶变换对图像进行频域滤波、图像增强等操作,如去除噪声、边缘检测等。
总结起来,Matlab中的傅里叶变换是一种强大的信号处理工具,通过将信号从时域转换到频域,可以实现频谱分析、滤波器设计、图像处理等应用。
matlab自行编写fft傅里叶变换

傅里叶变换(Fourier Transform)是信号处理中的重要数学工具,它可以将一个信号从时域转换到频域。
在数字信号处理领域中,傅里叶变换被广泛应用于频谱分析、滤波、频谱估计等方面。
MATLAB作为一个功能强大的数学软件,自带了丰富的信号处理工具箱,可以用于实现傅里叶变换。
在MATLAB中,自行编写FFT(Fast Fourier Transform)的过程需要以下几个步骤:1. 确定输入信号我们首先需要确定输入信号,可以是任意时间序列数据,例如声音信号、振动信号、光学信号等。
假设我们有一个长度为N的信号x,即x = [x[0], x[1], ..., x[N-1]]。
2. 生成频率向量在进行傅里叶变换之前,我们需要生成一个频率向量f,用于表示频域中的频率范围。
频率向量的长度为N,且频率范围为[0, Fs),其中Fs 为输入信号的采样频率。
3. 实现FFT算法FFT算法是一种高效的离散傅里叶变换算法,它可以快速计算出输入信号的频域表示。
在MATLAB中,我们可以使用fft函数来实现FFT 算法,其调用方式为X = fft(x)。
其中X为输入信号x的频域表示。
4. 计算频谱通过FFT算法得到的频域表示X是一个复数数组,我们可以计算其幅度谱和相位谱。
幅度谱表示频率成分的强弱,可以通过abs(X)得到;相位谱表示不同频率成分之间的相位差,可以通过angle(X)得到。
5. 绘制结果我们可以将输入信号的时域波形和频域表示进行可视化。
在MATLAB 中,我们可以使用plot函数来绘制时域波形或频谱图。
通过以上几个步骤,我们就可以在MATLAB中自行编写FFT傅里叶变换的算法。
通过对信号的时域和频域表示进行分析,我们可以更好地理解信号的特性,从而在实际应用中进行更精确的信号处理和分析。
6. 频谱分析借助自行编写的FFT傅里叶变换算法,我们可以对信号进行频谱分析。
频谱分析是一种非常重要的信号处理技术,可以帮助我们了解信号中所包含的各种频率成分以及它们在信号中的能量分布情况。
DTFT的Matlab实现

DTFT
MATLAB数字信号处理
离散时间傅里叶变换及MATLAB实现 1、离散时间傅里叶变换的定义及特点
X (ej ) x(i)eji i
x(n) 1 π X (ej )ejnd n
如此
[1,2 , ,K ]
K=length(w);
X (ej ) [ X (e j1 ), X (e j2 ), , X (ejK )]
MATLAB数字信号处理
离散时间傅里叶变换及MATLAB实现
若序列x(n)用样值向量x和位置向量n描述,X (ej ) 用向量X描 述,则DTFT的计算公式(3-6)可以用一个向量与一个矩阵 的相乘来实现,即
[H,w]=freqz(b,a,N,'whole');
此时w的返回值为 0 2π 。如此,序列x(n)的DTFT X (ej )的计
算就可以用下述语句实现
[X,w]=freqz(x,1,N,'whole');
MATLAB数字信号处理
离散时间傅里叶变换及MATLAB实现 3、离散时间傅里叶变换的性质验证
X (ej1 ), X (ej2 ), , X (ejK )
x(n1 ), x(n2 ),
e j1n1
,
x(nN )
e
j1n2
e
j1nN
e j2n1 e j2n2
e j2nN
e jKn1
e jK n2
e jK nN
5
x1(n)
时域移位序列
1
0.5
0 -5 0 5 10 15
数字信号处理实验 matlab版 离散傅里叶级数(DFS)

实验11 离散傅里叶级数(DFS)(完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word格式会让很多部分格式错误,谢谢)XXXX学号姓名处XXXX一、实验目的1、加深对离散周期序列傅里叶级数(DFS)基本概念的理解。
2、掌握用MA TLAB语言求解周期序列傅里叶级数变换和逆变换的方法。
3、观察离散周期序列的重复周期数对频谱特性的影响。
4、了解离散序列的周期卷积及其线性卷积的区别。
二、实验内容1、周期序列的离散傅里叶级数。
2、周期序列的傅里叶级数变换和逆变换。
3、离散傅里叶变换和逆变换的通用子程序。
4、周期重复次数对序列频谱的影响。
5、周期序列的卷积和。
三、实验环境MA TLAB7.0四、实验原理用matlab进行程序设计,利用matlab绘图十分方便,它既可以绘制各种图形,包括二维图形和三位图形,还可以对图像进行装饰和控制。
1、周期序列的离散傅里叶级数(1)连续性周期信号的傅里叶级数对应的第k次谐波分量的系数为无穷多。
而周期为N 的周期序列,其离散傅里叶级数谐波分量的系数只有N个是独立的。
(2)周期序列的频谱也是一个以N为周期的周期序列。
2、周期序列的傅里叶级数变换和逆变换例11-1已知一个周期性矩形序列的脉冲宽度占整个周期的1/4,一个周期的采样点数为16点,显示3个周期的信号序列波形。
要求:(1)用傅里叶级数求信号的幅度频谱和相位频谱。
(2)求傅里叶级数逆变换的图形,与原信号图形进行比较。
解MA TLAB程序如下:N=16;xn=[ones(1,N/4),zeros(1,3*N/4)];xn=[xn,xn,xn];n=0:3*N-1;k=0:3*N-1;Xk=xn*exp(-j*2*pi/N).^(n'*k); %离散傅里叶级数变换 x=(Xk*exp(j*2*pi/N).^(n'*k))/N; %离散傅里叶级数 逆变换 subplot(2,2,1),stem(n,xn);title('x(n)');axis([-1,3*N,1.1*min(xn),1.1*max(xn)]); subplot(2,2,2),stem(n,abs(x)); %显示逆变换结果 title('IDFS|X(k)|');axis([-1,3*N,1.1*min(x),1.1*max(x)]); subplot(2,2,3),stem(k,abs(Xk)); %显示序列的幅度谱 title('|X(k)|');axis([-1,3*N,1.1*min(abs(Xk)),1.1*max(abs(Xk))]); subplot(2,2,4),stem(k,angle(Xk)); %显示序列的相位谱 title('arg|X(k)|');图11-1由离散傅里叶级数逆变换图形可见,与原信号相比,幅度扩大了32倍。
实验四 离散时间信号的傅里叶变换

实验四离散时间信号的傅里叶变换1.实验目的(1)理解离散序列傅里叶变换的原理和方法。
(2)掌握快速傅里叶变换的原理和方法。
2.实验原理(1)离散傅里叶变换(DFT)和快速傅里叶变换(FFT)在MATLAB中,离散傅里叶正变换采用fft( )函数,离散傅里叶逆变换采用ifft( )函数。
调用格式为:Xk=fft(x) 表示计算信号x的快速傅里叶变换Xk。
Xk=fft(x,N) 表示计算信号x的N点快速傅里叶变换。
xn=ifft(Xk)表示计算Xk的快速傅里叶逆变换xn。
Xn=ifft(Xk,N) 表示计算Xk的N点快速傅里叶逆变换xn。
另外,MATLAB中使用fftshift()函数来移动零频点到频谱中间,重新排列fft( )的输出结果,便于观察傅里叶变换。
其调用格式为:X=fftshift(Xk)(2)离散时间系统的频率特性在用MATLAB计算系统的频率响应时,可调用freqz( )函数进行求解,其调用格式为:H=freqz(b,a,w)其中b为系统函数中分子多项式的系数向量,a为分母多项式的系数向量,w为角频率向量,向量H则返回在w所定义的频率点上系统函数的值。
该函数还有其他调用形式[h,w]=freqz(b,a,n)该形式计算默认范围内n个频率点的系统函数的值(n的默认值为512)。
freqz(b,a)该形式并不返回系统函数的值,而是以对数坐标的方式绘出系统频率响应曲线。
3.实验内容(1)求有限长序列x[n]=(0.7e^(jpi/4))^n,0<=n<=16的傅里叶变换。
N=17;n=0:N-1;x=(0.7*(exp(j*pi/4))).^n;X=fft(x,N);stem(n,fftshift(X));grid on;0246810121416(2)已知无限长序列x[n]=a^n*u[n](a=0.7),用fft( )计算其频谱。
a=0.7;N=51;n=0:N-1;x=(a.^n).*heaviside(n);X=fft(x,N);stem(n,fftshift(X));grid on;05101520253035404550(3)对于矩阵脉冲波序列x[n]=1(-M<=n<=M),0(n为其他值),自取M值用freqs( )函数求幅度频谱。
matlab如何做傅里叶变换

matlab如何做傅里叶变换
MATLAB 是一种用于数学建模和计算的高级编程语言,它拥有丰富的图形处理、计算和可视化工具,可以为用户提供强大的思维创新和简化研究的方法。
傅里叶变换 (FFT) 是一种快速的数学处理方法,可以用来将信号和系统的时间域表示转换为频率域中的表示。
MATLAB 具有内置函数,可帮助用户执行傅里叶变换,从而为用户提供了非常方便的使用方式。
首先,使用 MATLAB 中的 fft 函数可以进行傅立叶变换。
由于傅里叶变换是一种离散变换,因此在使用过程中,需要考虑计算时的采样频率等问题,使用如下语句可以实现:y = fft(x,n)。
其中,x 表示要进行变换的原始信号,n 表示要进行傅里叶变换的长度,默认的n 为原始信号的长度。
此外,MATLAB 还提供了另一个相关的函数 ifft,用于进行逆变换。
它的函数形式与前文所述的进行正向变换的函数非常类似,如下所示:ifft(x,n),其中 x 表示要逆变换的存储在矢量中的信号,n 表示要进行反变换的长度,默认的 n 为 x 的长度。
此外,MATLAB 还提供了另一个函数 fftshift,它主要用于移动傅里叶变换的中心位置,并调整频域的形状,因此可以有效地提高频谱的准确性。
最后,MATLAB 还提供了多种其他的傅里叶变换相关的相关函数,例如 fft2 用于二维离散时间信号的变换,fft3 用于三维离散时间信号的变换,以及 rofft、gofft 等形式的实数和复数形式的变换等。
因此,MATLAB 具有可扩展性强的特点,可以为不同的傅立叶变换应用场景提供支持。
离散信号的傅里叶变换(MATLAB实验)

离散信号的变换(MATLAB 实验)一、实验目的掌握用Z 变换判断离散系统的稳定与否的方法,掌握离散傅立叶变换及其基本性质和特点,了解快速傅立叶变换。
二、实验内容1、已经系统函数为5147.13418.217.098.22505)(2342-++--+=z z z z z z Z H (1) 画出零极点分布图,判断系统是否稳定;(2)检查系统是否稳定;(3) 如果系统稳定,求出系统对于u(n)的稳态输出和稳定时间b=[0,0,1,5,-50];a=[2,-2.98,0.17,2.3418,-1.5147];subplot(2,1,1);zplane(b,a);title('零极点分布图');z=roots(a);magz=abs(z)magz =0.90000.92200.92200.9900n=[0:1000];x=stepseq(0,0,1000);s=filter(b,a,x);subplot(2,1,2);stem(n,s);title('稳态输出');(1)因为极点都在单位园内,所以系统是稳定的。
(2)因为根的幅值(magz )都小于1,所以这个系统是稳定的。
(3)稳定时间为570。
2、综合运用上述命令,完成下列任务。
(1) 已知)(n x 是一个6点序列: ⎩⎨⎧≤≤=其它,050,1)(n n x计算该序列的离散时间傅立叶变换,并绘出它们的幅度和相位。
要求:离散时间傅立叶变换在[-2π,2π]之间的两个周期内取401个等分频率上进行数值求值。
n=0:5;x=ones(1,6);k=-200:200;w=(pi/100)*k;X=x*(exp(-j*pi/100)).^(n'*k);magX=abs(X);angX=angle(X);subplot(2,1,1);plot(w/pi,magX);grid;title('幅度');subplot(2,1,2);plot(w/pi,angX);grid;title('相位');(2) 已知下列序列:a. ,1000),52.0cos()48.0cos()(≤≤+=n n n n x ππ;b .)4sin()(πn n x =是一个N =32的有限序列;试绘制)(n x 及它的离散傅立叶变换)(k X 的图像。
Matlab-离散傅里叶变换

N−1
−n
j Im [Z]
如果 Z = e
2π N
2π j k N
N−1 n=0
,则有
2π − j kn N
2 3 4 5 6
1
k=0 Re[Z] 7 (N-1)
X(e
2π j k N
) = ∑x(n)e ~ = X(k) (k
~ 可见, (k)是Z变换 X (Z) 在单位 X
圆上抽样,抽样点在单位圆上的N个 等分点上,且第一个抽样点为k=0。
j
2π rn N
=1+ e
+e
j
2π r⋅2 N
+L+ e
j
2π r⋅( N−1) N
1−e
j
2π r⋅N N 2π j r N
= N(r = mN时 )
1−e
同样,当 k − r = pN 时,p也为任意整数,则
∑e
n=0
N−1
j
2π (k−r)n N
= N = Nδ (0) = Nδ[(k − r) − pN]
)的m次幂,频域搬移m,调制特性。
四.周期卷积和 ~ ~ ~ 1.如果 Y (k) = X1(k)X2(k) 则:
~ ~(n) = ID [Y (k)] y FS = ∑~ (m)~2 (n − m) = ∑~2 (m)~ (n − m) x1 x x x1
m=0 m=0 N−1 N−1
证明从略。
= δ [(k − r) − pN] = δ (k − r − pN) = δ [k −(r + pN)]
1 亦即 ∑e N n=0
N−1 k=0
N−1 j 2π (k−r)n N
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散信号的变换(MATLAB 实验)
一、实验目的
掌握用Z 变换判断离散系统的稳定与否的方法,掌握离散傅立叶变换及其基本性质和特点,了解快速傅立叶变换。
二、实验内容
1、已经系统函数为
5147.13418.217.098.2250
5)(2342-++--+=z z z z z z Z H (1) 画出零极点分布图,判断系统是否稳定;
(2)检查系统是否稳定;
(3) 如果系统稳定,求出系统对于u(n)的稳态输出和稳定时间b=[0,0,1,5,-50];a=[2,-2.98,0.17,2.3418,-1.5147];
subplot(2,1,1);zplane(b,a);title('零极点分布图');
z=roots(a);
magz=abs(z)
magz =
0.9000
0.9220
0.9220
0.9900
n=[0:1000];
x=stepseq(0,0,1000);
s=filter(b,a,x);
subplot(2,1,2);stem(n,s);title('稳态输出');
(1)因为极点都在单位园内,所以系统是稳定的。
(2)因为根的幅值(magz )都小于1,所以这个系统是稳定的。
(3)稳定时间为570。
2、综合运用上述命令,完成下列任务。
(1) 已知)(n x 是一个6点序列: ⎩⎨⎧≤≤=其它,050,1)(n n x
计算该序列的离散时间傅立叶变换,并绘出它们的幅度和相位。
要求:离散时间傅立叶变换在[-2π,2π]之间的两个周期内取401个等分频率上进行数值求值。
n=0:5;x=ones(1,6);
k=-200:200;w=(pi/100)*k;
X=x*(exp(-j*pi/100)).^(n'*k);
magX=abs(X);angX=angle(X);
subplot(2,1,1);plot(w/pi,magX);grid;title('幅度');
subplot(2,1,2);plot(w/pi,angX);grid;title('相位');
(2) 已知下列序列:
a. ,1000),52.0cos()48.0cos()(≤≤+=n n n n x ππ;
b .)4sin()(πn n x =是一个N =32的有限序列;
试绘制)(n x 及它的离散傅立叶变换
)(k X 的图像。
a . n=[0:1:100];x=cos(0.48*pi*n)+cos(0.52*pi*n);
subplot(2,1,1);plot(n,x);title('x(n)的图像');
X=dft(x,101);
magX=abs(X);
subplot(2,1,2);plot(n,magX);title('丨X(k)丨的图像');
b.
n=[0:1:31];x=sin(n*pi/4);
subplot(2,1,1);plot(n,x);title('x(n)的图像');
X=dft(x,32);
magX=abs(X);
subplot(2,1,2);plot(n,magX);title('丨X(k)丨的图像');
三、实验总结:
通过实验,基本掌握了用Z变换判断离散系统的稳定与否的方法,以及离散傅立叶变换及其基本性质和特点。
了解了快速傅立叶变换,加深对专业课的理解。